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Abstract: Cancer stem cells (CSCs) are broadly considered immature, multipotent, tumorigenic 

cells within the tumor mass, endowed with the ability to self-renew and escape immune control. 

All these features contribute to place CSCs at the pinnacle of tumor aggressiveness and (immune) 

therapy resistance. The immune privileged status of CSCs is induced and preserved by various 

mechanisms that directly affect them (e.g., the downregulation of the major histocompatibility 

complex class I) and indirectly are induced in the host immune cells (e.g., activation of immune 

suppressive cells). Therefore, deeper insights into the immuno-biology of CSCs are essential in our 

pursuit to find new therapeutic opportunities that eradicate cancer (stem) cells. Here, we review 

and discuss the ability of CSCs to evade the innate and adaptive immune system, as we offer a 

view of the immunotherapeutic strategies adopted to potentiate and address specific subsets of 

(engineered) immune cells against CSCs. 
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1. Introduction 

Cancer is an evolving and dynamic disease whose progression may result in in-

tra-tumoral heterogeneity (ITH) that confers different levels of sensitivity, and thus fuels 

resistance to conventional, targeted and immune-based therapies [1]. Cancer stem cells 

(CSCs, also known as tumor-initiating cells (TICs)), are widely considered relatively 

quiescent, immature, tumorigenic cells within the tumor mass, endowed with the capac-

ity to self-renew and differentiate into multiple cell types (multipotency), and are re-

sponsible for ITH, tumor progression, recurrence, metastasis and therapy resistance [2,3]. 

CSCs were firstly identified in acute leukemia models as CD34+CD38− cells [4,5]. 

Upon xenotransplantation into non-obese diabetic mice with severe combined immu-

nodeficiency disease (NOD/SCID mice), CD34+CD38− cells were shown to be significantly 

more tumorigenic than their differentiated counterparts [4,5]. Since then, a variety of 

studies proved the existence of cancer cells with stem-like properties in a broad spectrum 

of solid tumors [6]. 

The identification and isolation of CSCs is mainly based on the expression of surface 

proteins shared with normal stem cells (such as human embryonic stem cells (hESCs)), 

including the antigens CD34, CD38, prominin 1 (PROM1; best known as CD133), CD44, 

its variant isoform CD44v6, CD24, activated leukocyte cell adhesion molecule (ALCAM; 

best known as CD166), epithelial cell adhesion molecule (EPCAM), leucine rich repeat 

containing G protein-coupled receptor 5 (LGR5), ephrin receptors and the activity of the 
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aldehyde dehydrogenases (ALDHs) [7,8] (Table 1). Despite these findings, a universal, 

highly sensitive and specific marker for CSCs is still lacking [8,9]. 

CSCs state and behavior are actively regulated by the aberrant activation of specific 

pathways, including Hedgehog (Hh), Notch and Wnt/β-catenin [10,11]. Additional 

pathways, such as the phosphoinositide 3-kinase/phosphatase and tensin homolog 

(PI3K/PTEN), control both CSC homeostasis and survival [12]. 

CSCs are naturally resistant to conventional chemotherapy and radiotherapy [13]. 

Moreover, CSCs are endowed with the ability to repair DNA damage through a robust 

DNA damage response (DDR) machinery [13] and to withstand high levels of replication 

stress by flaunting replication stress responses (RSRs) [14]. Another factor conferring 

therapeutic resistance to CSCs is the ability to enter dormancy [15] and acquire an an-

ti-apoptotic state [16]. Based on these observations, many anti-cancer treatments (e.g., 

all-trans retinoic acid, lysine (K)-specific demethylase 1A (KDM1A) inhibitor, polycomb 

complex protein BMI-1 inhibitor, antibody targeting LGR5 or the delta-like canonical 

Notch ligand 3 (DLL3) and drug-like inhibitors of the Wnt/β-Catenin signaling) were 

approved to target and eradicate CSCs in tumors with different histological origins [17]. 

CSCs reside in protected niches, which components strongly influence their tran-

scriptional and epigenetic signatures [18]. Moreover, CSCs are endowed with the ability 

to escape innate and adaptive immune control, a feature known as immune privilege 

[19], which will be extensively discussed in this review. 

According to this, it was observed that genotoxic drugs, such as chemotherapy, in-

duce cell death of differentiated cancer cells, while impacting on the surrounding tumor 

microenvironment (TME). The modifications inflicted in the TME affect cancer cell plas-

ticity and may tip the balance between non-CSCs and CSCs in favor of stem cell fates 

[20,21], with significant effects on the clinical outcome [22]. 

CSC plasticity imposes the development of novel strategies aimed at impairing such 

properties. These specific interventions targeting the CSC-niche signals would prevent 

CSC (re)fueling and cancer elimination, while therapies exclusively based on intrinsic 

CSC features represent a short-term and temporary cancer (stem) cell eradication without 

the achievement of a long-lasting disease-free survival. 

2. The Immune Privileged Status of CSCs 

Since their discovery, the characterization of the immunological profile of CSCs was 

the subject of intensive studies, which showed that CSCs are immune privileged cells, 

and by virtue of this property, they play a key role in all the three phases of the immu-

noediting process [19]. Indeed, during the elimination phase, CSCs remain protected 

from the fully active and functional immune system. In the equilibrium phase, they en-

fold their low multiplication rate and high resistance to cell death/killing, while accu-

mulating molecular alterations that favor the entry into the escape phase. During the es-

cape phase, CSCs are allowed with the ability to proliferate, mostly through symmetric 

cell divisions, to recruit immunosuppressive cells, and to adopt other tricks to escape 

immune control [23,24]. In particular, enriched cells with stem-related markers isolated 

from patients with locally advanced head and neck squamous cell carcinoma (HNSCC) 

showed decreased expression of human leucocyte antigen I (HLA-I) molecule after 

chemotherapy treatment [25]. Accordingly, melanoma initiating cells displayed low lev-

els of the major histocompatibility complex class I (MHC-I) [26]. Moreover, CSCs isolated 

from glioblastoma multiforme (GBM) were weakly positive and even negative for MHC-I 

[27], and TICs from the lung cancer cell line exhibited a lower expression of MHC-I as 

compared to differentiated counterparts [28]. The reduced expression of HLA-I or anti-

gen processing machinery (APM) molecules confer cancer cells stem-like properties and 

protection from T cell recognition [29]. Although, opposing results were obtained from 

CSCs isolated from colorectal cancer (CRC) that were found to express HLA-I molecules 

[30]. 
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The suboptimal expression of HLA-I molecules, if associated with detectable natural 

killer group 2D (NKG2D) ligands, can drive an increased susceptibility of CSCs to natu-

ral killer (NK) cells [31]. This phenomenon was observed in CSCs from CRC [32], mela-

noma [33], GBM [34] and oral squamous cell carcinoma [35]. However, CSCs from acute 

myeloid leukemia (AML) [36], GBM [27] and breast cancer (BC) [37] were shown to in-

duce T cell polarization toward Th2 phenotype [27], and to escape NK cell-mediated 

killing by the downregulation of activating NKG2D ligands. 

The upregulation of the “don’t eat me” signal CD47 is yet another trick that CSCs 

adopt to evade immune control [38]. CD47 is a broadly expressed transmembrane protein 

[39] that binds to the signal regulatory protein alpha (SIRPα) receptor on phagocytic cells 

(mainly macrophages (Mφs) and DCs), thus hindering phagocytosis [40]. Accordingly, 

the blocking of CD47 was shown to enable macrophage-mediated phagocytosis of CSCs 

from pancreatic ductal adenocarcinoma (PDAC) [41], AML [42] and hepatocellular car-

cinoma (HCC) [43], and thus promotes their elimination. 

Table 1. CSC markers in different cancers. 

Marker Tumor Type Rfs 

Surface markers 

CD44 molecule Lung, breast, gastric, liver, colorectal [15,20] 

Plasminogen sctivator, urokinase receptor (PLAUR, CD87) Lung [16] 

Thy-1 cell surface antigen (THY1, CD90) Lung, breast, gastric, liver [17] 

Prominin 1 (PROM1, CD133) Lung, breast, gastric, liver, colorectal [16] 

Activated leukocyte cell adhesion molecule (ALCAM, CD166) Lung, breast, gastric, liver, colorectal [18] 

Epithelial cell adhesion molecule (EpCAM) Lung, colorectal [19] 

CD24 molecule (CD24) Lung, breast, gastric, liver, colorectal [20] 

Integrin subunit beta 1 (ITGB1, CD29) Breast [21] 

ITGA6 integrin subunit alpha 6 (ITGA6, CD49f) Breast [21] 

Integrin subunit beta 3 (ITGB3, CD61) Breast [22] 

CD70 molecule (CD70) Breast [23] 

C-X-C motif chemokine receptor 4 (CXCR4) Breast, gastric [24] 

Leucine rich repeat containing G protein-coupled receptor 5 (LGR5) Breast, gastric, glioma, colorectal [25] 

Protein C receptor (PROCR) Breast [26] 

Leucine rich repeat and Ig domain containing 2 (LINGO2) Gastric [27] 

CD33 molecule (CD33) AML, CML [28,29] 

Interleukin 3 receptor subunit alpha (IL3RA, CD123) AML, CML [28,29] 

C-type lectin domain family 12 member A (CLEC12A, CCL1) AML [28] 

HAVCR2 hepatitis A virus cellular receptor 2 (TIM3) AML [28] 

Interleukin 2 receptor subunit alpha (IL2RA, CD25) CML [29] 

Dipeptidyl peptidase 4 (DPP4, CD26) CML [29] 

KIT proto-oncogene, receptor tyrosine kinase (KIT, CD117) CML [29] 

CD36 molecule (CD36) CML [29] 

Interleukin 1 receptor accessory protein (IL1RAP) CML [29] 

Intracellular markers and pathways 

Aldehyde dehydrogenase (ALDH) Lung, breast, gastric, colorectal, AML [20] 

Nanog homeobox (NANOG) Lung, breast, gastric, liver, colorectal, AML [33] 
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POU class 5 homeobox 1 (POU5F1, Oct-3/4) Lung, breast, gastric, liver, colorectal, AML [34] 

SRY-box transcription factor 2 (SOX2) Breast, gastric, liver, colorectal, AML [35] 

BMI proto-oncogene, polycomb ring finger (BMI1) Breast [36] 

Wnt/β-Catenin signaling Breast, liver, CML [38] 

JAK/STAT signaling CML [37] 

FOXO signaling CML [29] 

Hedgehog/Smo/Gli2 signaling CML [38] 

Notch signaling Breast, liver [38] 

Additional mechanisms of immune escape were identified and include: (i) the 

down-modulation of innate immune pathways (e.g., the toll-like receptor 4 (TLR4) [44], 

and the components of the signal transducer and activator of transcription 3 (STAT3) 

pathway [45]), and (ii) the heterogeneous expression of the immune checkpoints (e.g., 

Cytotoxic T-Lymphocyte Antigen 4 (CTLA4), Programmed death-ligand 1 (PD-L1), 

CD276 (also known as B7-H3) and V-set domain containing T cell activation inhibitor 1 

(VTCN1; best known as B7-H4) [17]) (Figure 1). 

Besides long-term self-renewal capability, multi-lineage differentiation, and high 

resistance to stress and apoptosis [46], CSCs are endowed with the ability to switch be-

tween dormant and proliferating states [46]. Based on their capacity to exit the cell cycle 

and remain in the G0 phase (quiescence), CSCs can evade host anti-tumor immunity by 

(i) preventing immune detection, (ii) preventing immune activation and (iii) activating 

immune suppression [47]. Dormant cancer (stem) cells from various cancer types were 

reported to downregulate both MHC-I complex [48] and UL16 binding protein (ULBP) 

ligands [49], which confer them the ability to evade T and NK cells, respectively. Fur-

thermore, CSCs exert immunosuppressive functions including the expression of the 

immune checkpoints such as CD274 (best known as PD-L1) and CD80 (also known as 

B7.1) by preventing T cell activity and cancer dormancy [50]. In addition, dormant cancer 

(stem) cells evade NK and T cell-mediated apoptosis through the genetic inactivation of 

the oncosuppressor caspase 8 (CASP8) and the death receptor Fas cell surface death re-

ceptor (FAS) [51]. Similarly, dormant cancer cells escape T cell induced apoptosis by de-

regulating the suppressor of cytokine signaling 1 (SOCS1) cascade and overexpressing 

the pro-tumorigenic cytokine interleukin (IL)-3 [52]. 
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Figure 1. Immune escape mechanisms of CSCs. Cancer stem cells (CSCs) adopt several tricks to 

escape immune control. First, CSCs avoid the recognition by CD8+ T cells by reducing the human 

leukocyte antigen-A, B, C (HLA-A, B, C) and the antigen processing machinery (APM) molecule 

expression. Second, CSCs impair the cytotoxicity of natural killer (NK) cells by downregulating the 

natural killer group 2D (NKG2D) ligand expression. Third, the ligation of immune checkpoint 

ligands such as programmed death-ligand 1 (PD-L1), cytotoxic T-lymphocyte antigen-4 (CTLA-4), 

B7 homolog 3 (B7-H3) and B7 homolog 4 (B7-H4) expressed by CSCs to their respective receptors 

on T cells decreases their proliferation and interferon-γ (IFN-γ) production or leads to apoptosis. 

Fourth, CSCs upmodulate the “don’t eat me” signal CD47 that blocks their phagocytosis through 

the interaction with the membrane glycoprotein signal regulatory protein α (SIRP-α) expressed on 

the surface of macrophages (Mφs). Fifth, CSCs acquire a state of dormancy by entering into a G0 

phase of cell cycle arrest. The cancer dormancy protects CSCs from immune control, ensuring their 

survival and eventually their metastatic dissemination. 

The immune privilege of CSCs is strictly dependent on niches. CSC niches are spe-

cialized areas within the TME that preserve CSC state and plasticity and protect them 

from immune attack [23]. Indeed, CSC niches are made of non-cancerous stromal cells 

(i.e., cancer-associated fibroblasts (CAFs), endothelial cells, mesenchymal stem cells) and 

cancerous non-stem cells that by providing cues in the form of secreted factors (i.e., cy-

tokines, extracellular vesicles and extracellular matrix (ECM) components) and complex 

interplays protect CSC exclusive abilities to self-renew, progress and disseminate in 

secondary sites [53]. Of note, the constant and evolving interplay with microenviron-

mental players, endows cancer (stem) cells with the ability to corrupt infiltrating immune 

cells, thus guaranteeing their survival and progression into overt disease [54]. Indeed, the 
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bidirectional interaction of cancer cells with the microenvironment is of vital importance 

in developing immune escaping variants as a natural consequence of spatial and nutrient 

competition and evolutionary forces, which finally fuel tumor heterogeneity [55]. 

Therefore, more insight into these evolutionary dynamics, as well as into the ability of 

cancer cells to orchestrate immune evasion and immune suppression, is crucial for a 

better understanding of CSC (immune) biology and thus for the development of more 

effective therapies. 

Nonetheless, despite their immune privileged phenotype, mainly due to defective 

MHC-I and –II expression [26], CSCs were found to express some tumor associated an-

tigens (TAAs) such as carcinoembryonic antigen (CEA) [56], human telomerase reverse 

transcriptase (hTERT) [57], survivin [58] and centrosomal protein 55 (CEP55) [30], and 

some cancer testis (CT) antigens such as DnaJ homolog subfamily B member 8 (DNAJB8) 

[59], olfactory receptor 7C1 (OR7C1) [60], brother of the regulator of the imprinted site 

variant subfamily 6 (BORIS sf6) [61], mucin 1 (MUC1) [62], promelanosome protein 

(PMEL; also known as gp100) [63] and cancer/testis antigen 1B (CTAG1B, also known as 

NY-ESO1) [64] (Figure 2). TAAs and CT antigens specifically expressed on the CSC sur-

face may represent promising targets for immunotherapy purposes [65]. Undoubtedly, 

the identification of tumor specific antigens (TSAs, also known as tumor neoantigens 

(TNAs)), derived from non-synonymous mutations, solely expressed on CSCs could 

represent a more specific and efficient immune target [51]. Although a lot of efforts are 

focused on this field by exploiting and integrating omic studies, a deep knowledge of the 

expression of TNAs on CSCs is still lacking. Notably, CSCs bearing a somatic mutation in 

the “driver” gene SMAD family member 4 (SMAD4), may elicit antigen-specific T cell 

responses directed to both stemness and bulk cancer cells [66]. The identification of new 

patient-specific (unique) tumor antigens could be of invaluable help for the development 

and the optimization of immunotherapeutic treatments. 

 

Figure 2. Immunotherapeutic targeting of CSC antigens. Cancer stem cells (CSCs) express several 

tumor-associated antigens (TAAs). CSCs are selectively targeted by means of dendritic cells (DCs) 

and genetically modified T cells (T cell receptor (TCR) T cells and chimeric antigen receptor (CAR) 

T cells). DC-based vaccines consist of DC expansion and loading with CSC specific antigen to 

prime CD8+ T cells, which, in turn, recognize and eliminate CSCs. TCR-engineered T cells are T 

cells equipped with a genetically modified TCR that specifically recognizes tumor antigen pre-

sented by human leukocyte antigen-A, B, C (HLA-A, B, C) on the surface of CSCs. CAR-T cells are 

T cells engineered to express a CD3ζ intracellular domain joined to an antibody receptor that rec-

ognizes tumor antigens exposed on CSC surface in an HLA-unrestricted manner. Some TAAs, such 
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as aldehyde dehydrogenase (ALDH), human telomerase (hTERT) and survivin, and a cancer testis, 

(CT) antigen such as premelanosome protein (PMEL), are under clinical trial. 

3. Immunomodulatory Traits of CSCs and Their Immune Context 

CSCs reside in cellular niches (i.e., anatomically distinct regions within the TME) 

that maintain the stemness properties of these cells, preserve their phenotypic plasticity, 

protect them from the immune system, and fuel their metastatic potential [53]. The for-

mation of a unique (cellular) environment promoted by developing tumors is settled by 

acellular (i.e., ECM proteins elastin and collagen) and cellular (i.e., CAFs, monocytes, 

myeloid derived suppressor cells (MDSCs), tumor associated macrophages (TAMs), en-

dothelial cells and T cells) components [67]. Each player exerts a peculiar function on its 

own but together co-operate and synergize to develop a complex network that (spatially) 

surrounds and protects the CSCs, as shown in Figure 3 and explained below. 

 

Figure 3. CSC immunomodulatory patterns impairing innate and adaptive immune system. A 

schematic model showing the plethora of cellular, molecular and physical factors either released 

from cancer stem cells (CSCs) within the tumor microenvironment (TME) or exposed by their sur-

face that create an immune contexture crowded with immunosuppressive cells such as M2 tumor 

associated macrophages (TAMs), myeloid derived suppressor cells (MDSCs) and T regulatory cells 

(Tregs) and impaired cytotoxic T lymphocytes (CTLs). 

DCs are critical sentinels of immunity and key effectors of self-tolerance [68]. The 

balance between immunogenic versus tolerogenic behavior, mainly relies on DC matura-

tion and external signals within the local milieu [69]. Briefly, under steady-state, imma-

ture DCs express very low levels of costimulatory molecules and prevent T cell activation 

[70]. In the presence of inflammatory stimuli (e.g., pathogens, damaged cells), immature 

DCs that had taken up and processed pathogen- or tumor-associated antigens become 

fully mature and able to cross-present antigens on MHC-I molecules and overexpress 

costimulatory molecules thus inducing an antigen-specific T cell response [71]. Addi-

tionally, DCs are involved in the formation of anti-tumor T and B memory responses [72], 

and were shown to also play a tumor promoting role [73]. Indeed, it was observed that 

high production of the chemokine (C-X-C motif) ligand 1 (CXCL1) by cancer and stromal 

cells recruits immunosuppressive DCs which favor CSC survival and proliferation [74]. 
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Mφs are tissue-resident or infiltrated immune cells critical for innate immunity [75]. 

Several evidences suggested that Mφs may establish a dual relationship with cancer cells 

depending on their polarization towards tumor-reactive (M1 phenotype) or tu-

mor-promoting (M2 phenotype) states [76]. M2 polarization occurs in response to IL-4, 

IL-10, IL-13 or hypoxia. M2 TAMs produce arginase 1 (ARG1), IL-10, transforming 

growth factor-beta (TGF-β), vascular endothelial growth factor (VEGF), matrix metallo-

peptidase 9 (MMP9) and prostaglandin E2 (PGE2), thus subverting anti-tumor adaptive 

immunity and promoting tumor development and spreading [77]. The crosstalk between 

CSCs derived from HCC patients and TAMs is orchestrated by the secretion of IL-6 via 

STAT3, which promotes the expansion of CSCs both in in vitro and in vivo settings [78]. 

Along with similar lines, the IL-6-JAK1-STAT3 signal transduction pathway exerts a 

fundamental role in the phenotypic shift of non-stem into stem cells [79]. Moreover, 

STAT3 signaling is involved in cancer stem-like cell maintenance both in GBM [80] and 

BC [81]. Similarly, IL-6 secretion converts non-CSCs into CSCs in BC [82] and prostate 

cancer models [83]. Another factor involved in the promotion and stimulation of CSCs is 

represented by the pleiotrophin (PTN) that is released from TAMs and exerts its function 

through its receptor protein tyrosine phosphatase receptor type Z1 (PTPRZ1) [84]. As 

mentioned above, TAMs produce the multifunctional cytokine TGF-β, which drives a 

dedifferentiation process of CRC stem cells through the induction of twist family basic 

helix-loop-helix (bHLH) transcription factor 1 (TWIST1) [85]. These findings underscore 

the significance of TAMs as important components of the CSC niche, thus targeting 

TAMs by inhibiting their receptor such as the myeloid cell receptors colony-stimulating 

factor-1 receptor (CSF1R) or the chemokine (C-C motif) receptor 2 (CCR2), which de-

creases the number of TICs, improves chemotherapy outcome and elicits anti-tumor T 

cell responses [86]. 

MDSCs are the most prominent myeloid cell population infiltrating cancers and 

fueling tumor progression by modulating cancer cell survival, angiogenesis, invasion 

and metastasis [87]. Both human and mouse MDSCs are divided in two main subgroups, 

exhibiting different phenotypical and functional properties, namely, monocytic 

(M-MDSCs) and polymorphonuclear/granulocytic (PMN-MDSCs) MDSCs [88]. MDSC 

recruitment to the tumor is mediated by different chemokines, in particular C-C Motif 

Chemokine Ligand 2 (CCL2), CCL5 and CXCL5 [88]. The crosstalk between MDSCs and 

CSCs is regulated by key factors encompassing (i) PGE2 [89], (ii) STAT3 and NOTCH 

[90], and (iii) miRNA101 [91]. 

Tregs are a subset of CD4+ immune T cells characterized by the expression of the 

master transcription factor forkhead box P3 (FOXP3) [92]. In physiological conditions, 

Tregs guarantee tolerance to self-antigens and prevent/suppress autoimmune reactions 

[92]. In cancer, Tregs fuel tumorigenesis and tumor progression, by impairing host im-

mune defenses [93]. Moreover, Tregs are involved in the promotion of cancer stemness as 

shown in CRC [94] and BC [95] cells, where they induce the expression of the repro-

gramming factor SRY-box transcription factor 2 (Sox2) via nuclear factor kappa B 

(NF-kB)-CCL1 signaling. 

T helper 17 cells (Th17) are yet another specialized subset of CD4+ T cells character-

ized by the production of IL-17 [96]. Th17 are the key mediator of cancer development 

and display both tumor-promoting and tumor-suppressing activity [97]. It was reported 

that immune cell-derived IL-17 regulates stem cell features of pancreatic cancer cells by 

increasing the embryonic stem cell markers doublecortin-like kinase 1 (DCLK1) and 

ALDH 1 family member A1 (ALDH1A1) [98]. 

CD8+ T cells are a subtype of T cells and the main effectors of cell-mediated adaptive 

immune responses [99]. Interferon-gamma (IFN-γ), an effector cytokine produced by ac-

tivated CD8+ T cells, was shown to induce NSCLC stem cells in a dose-dependent manner 

[100]. Furthermore, the interaction between CD8+ T cells and BC cells increases the 

number of BC stem cells in a cell-to-cell contact- or (at least) proximity-dependent man-

ner [101]. 
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Notably, CSCs actively induce immune subversion within the TME [102]. CSCs from 

glioma biopsies were displayed to release growth differentiation factor 15 (GDF15), 

which contributes to cancer cell proliferation and immune escape [103]. Similarly, CSCs 

from CRC, HNSCC and GBM were found to release immunosuppressive cytokines, en-

compassing IL-4, IL-8, granulocyte-CSF, MΦ inhibitory cytokine-1 (MIC-1) and TGF-β, 

that impair the cytotoxic T lymphocyte (CTL) function [29]. In addition, CSCs were 

shown to promote the polarization of Mφs toward a M2 phenotype by the production of 

TGF-β [104], granulocyte-macrophage colony-stimulating factor (GM-CSF) [105], mac-

rophage colony-stimulating factor (M-CSF) [106], and via the cyclooxygenase 

(COX)-2/PGE2 pathway [107]. In turn, M2 TAMs support the expansion and drug re-

sistance of CSCs by producing the cytokine IL-6 [108]. CSCs were shown to recruit TAMs 

at the tumor site through the release of soluble factors such as periostin (POSTN) in GBM 

[109] and the activation of specific pathways such as the Hippo one in liver cancer models 

[110]. 

CSCs also dialog with CD8+ T cells, MDSCs and Tregs and actively participate in the 

induction of an immunosuppressive milieu, which fuel their immune evasion and ma-

lignant potential [102]. Indeed, CSCs from HNSCC were shown to inhibit T cell, Treg and 

MDSC proliferation, contextually impairing the Th1 response and improving the Treg 

response [29]. Furthermore, brain TICs are endowed with the ability to impair T cell 

functionality by secreting the ECM protein tenascin-C (TNC) [111]. It was reported that 

the recruitment of Tregs into tumors occurs through the sensing of CCL5 released by 

CSCs. In turn, Tregs create an anti-inflammatory environment by releasing high levels of 

IL-10 [112]. CSCs from BC, CRC and HNSCC can evade immune surveillance by in-

creasing the expression of the immune checkpoint ligand PD-L1, which binds to its re-

ceptor PD-1 expressed on T cell surfaces thus inducing their exhaustion [113]. Another 

immune “brake” is represented by T cell immunoglobulin mucin-3 (TIM-3), a specific 

surface molecule found on leukemic stem cells [114]. This receptor was described as re-

sponsible for T cell suppression and MDSC expansion [115]. Similarly, it was observed 

that B7-H4 promotes brain CSC tumorigenicity while negatively regulating T 

cell-mediated immunity [116]. Along with this, the interaction between GBM CSCs and 

Mφs enhances the expression of B7-H4 via the IL6/JAK/STAT3 pathway and thus pro-

motes immune suppression [117]. The observations reported above show that multiple 

mechanisms and molecular pathways are either up regulated or aberrantly activated in 

CSCs, which result in immune privilege. Therefore, the blockade of these signaling 

through mono- or combination therapies should be considered in order to rescue the 

tumor-specific immune responses. 

While experimentally defining CSC-immune cell interplays is undoubtedly chal-

lenging for a variety of reasons, including the intrinsic heterogeneity of CSC subsets, the 

difficulties related to in vitro co-culturing settings, efforts have been made to functionally 

characterize this crosstalk in multiple cancers and multiple settings (Box 1) and have re-

vealed a series of cell-intrinsic and cell-extrinsic molecular mechanisms that underlie the 

CSC immune privilege and host co-evolution. 

Box 1. 2D and 3D models to evaluate the bidirectional crosstalk between CSCs and immune cell 

subsets. 

Conventional in vitro platforms, such as 2D monolayer cultures and transwell as-

says, have been widely utilized to understand the role of cancer stem cells (CSCs) within 

the tumor microenvironment (TME) and the mechanisms governing their immune sup-

pression [118]. Over the past years, a flurry of studies in the field of “2D on-

co-immunology”, revealed the molecular pathways and (immune) effectors involved in 

the crosstalk between cancer cells with stem-like properties and different subsets of im-

mune cells, including tumor associated macrophages (TAMs), dendritic cells (DCs), T 

regulatory cells (Tregs), αβ and γδ T cells [117]. Although the results collected from the 

aforementioned studies corroborate the immune privileged status of CSCs, 2D models 
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are end-point assays that do not allow real-time observations of dynamic cellular inter-

actions [119]. Most importantly, these models do not fully recapitulate the complex in 

vivo TME leading to non-physiologically relevant cell behavior [120]. Therefore, the in-

novations and development in 3D culture systems over the past 5 years allowed to better 

understand the complex interplay occurring between CSCs and immune effectors. 

However, a deep knowledge of the behavior of CSCs and their surrounding (immune) 

cells is still lacking. A practical example of a 3D culture is represented by human organ 

culture (HOC) consisting of a tissue that after a mechanical fragmentation process (<1 

mm3 fragments) and resting for up to 24 h in a sterile 96-well plate containing culture 

inserts can be either immersed in fixative (paraformaldehyde for light microscopy or 

glutaraldehyde for electron microscopy) for in situ studies or frozen in isopentane-cooled 

in liquid nitrogen for molecular biological/biochemical analysis [121]. As compared to 3D 

cultures, HOCs emulate the natural biochemical and physical properties of the extracel-

lular matrix (ECM) recognized as an independent factor that influences cell activity [122]. 

Furthermore, ECM scaffold of the former may contain biological pathogens and its vas-

cular networks lacks segmental structure [123]. In comparison to organoids, HOCs pre-

serve surrounding tissue that favors cell-to-cell and cell-to-ECM crosstalk and display 

histological diversity [124]. HOCs can be used to study (cancer) stem cells and their 

niche. It was reported that HOCs allowed the comparison of differentiated and kidney 

CSCs [125]. The latter showed low proliferation rate and may be hit by a cytotoxic drug 

coupled with a target agent (cyclophosphamide and the tumor necrosis factor receptor 2 

signaling (R2TNF) agonist) able to induce cellular division, thus enhancing the efficiency 

of chemotherapy for renal clear cell carcinoma (RCC). Since HOCs offer the possibility to 

preserve the integrity of cells and matrices in an organ-specific structure reflecting better 

the in vivo complexity than 3D cultures and organoids, they may be exploited to deeper 

study the interaction of CSCs and different immune subsets.  

Another interesting 3D culture is represented by the hanging drop spheroid model 

that allows the formation of stable spheroids in a non-adherent 3D in vitro environment 

[126]. These spheroids were generated on a hanging drop array plate in which one or 

more cell populations were harvested and maintained in standard culture conditions for 

different studies including flow cytometry analysis, quantitative PCR (qPCR) and drug 

toxicity assays [127]. This 3D culture system was used to mimic the environment of 

ovarian cancer in which cancer cells interact with Mφs in anchorage independent condi-

tions and grow as spheroids within the malignant ascites [128]. Furthermore, the hanging 

drop spheroid model was employed to investigate the interaction driven by the WNT 

pathway between ovarian CSCs and macrophages (Mφs) [129].  

Finally, an emerging 3D cell-culture model is represented by organ-on-a-chip, a “tissue 

chip” that mimics the microstructure, dynamic mechanical properties and biochemical 

functionalities of living organs [130]. Although this model seems to be an artificial model 

relying on microfabricated scaffolds to mimic ECM, it potentially allows to reproduce 

various tumor regions including the niche, which hosts cancer cells with stemness prop-

erties. 

4. Immunotherapeutic Strategies against CSCs 

The recognition of the yin and yang role of the immune system in both controlling 

and favoring tumor progression together with a growing knowledge of its functions, 

paved the way for the development of several immunotherapeutic strategies against 

cancer [131]. Immunotherapy could be basically defined as a refined therapeutic ap-

proach that employs the immune system’s power to specifically hit and (hopefully) 

eradicate cancer. A flurry of strategies empowering immune responses against cancer 

(stem) cells were investigated [132]. However, novel approaches aimed at arming T cells 

against specific CSC surface targets, which could help eradicate residual disease and 

potentially improve the long-term outcome of patients, are still in an embryonic phase 
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and need further investigation and optimization. Here, we discuss some potential strat-

egies to immunologically target CSCs. 

Adoptive cell therapy (ACT) represents a (maybe the most) promising therapy for 

cancer patients. This clinical approach involves the ex vivo activation and expansion of 

autologous or allogeneic immune effector cells, followed by the (re)infusion into patients 

that were previously subjected to lymphodepleting chemotherapy or radiotherapy [133]. 

The T cell-based ACT can rely on CTLs, alone or combined with CD4+ helper T cells. Al-

ternatively, ACT can involve NK or cytokine-induced killer (CIK) cells, both targeting 

cancer cells in a MHC-unrestricted manner [134]. Recently, the use of engineered T cells 

and chimeric antigen receptor (CAR) T cells to target EpCAM antigen showed therapeu-

tic benefit in solid and hematologic tumor models [135]. Notably, this benefit was always 

associated with the depletion of CSCs [135]. Additionally, adoptively transferred CTLs 

specific for the CRC-stem cell antigen ankyrin repeat and SOCS Box containing 4 (ASB4) 

were reported to selectively kill CSCs [136]. The transmembrane glycoprotein CD133 is a 

common CSC marker and its expression on GBM stem cells has been exploited to de-

velop an AC133-specific CAR cell able to kill CD133+ cells both in in vivo and in vitro 

settings [137]. Due to the therapeutic potential of CD133 for anti-cancer therapy, autolo-

gous CAR-modified T cells directed against CD133 were tested in a phase I clinical study 

[138]. Of note, 21 out of 23 metastatic patients who received CAR-T-133 cell-infusion had 

no developed detectable de novo lesions after the treatment. Similarly, CAR-T cells tar-

geting the epidermal growth factor receptor variant III (EGFRvIII) were successfully 

tested against GBM stem cells [139]. Based on these data, a γ-retroviral vector expressing 

this EGFRvIII CAR was produced for clinical application (NCT01454596). Other CSC 

markers targeted by CAR-based ACT include the type II transmembrane receptor 

NKG2D, the interleukin three receptor alpha CD123 molecule and the disialoganglioside 

(GD2), all employed to develop CAR-T cells against both differentiated and CSCs, in 

GBM, AML and BC, respectively [140]. A combined CAR-T therapy co-targeting EGFR 

and CD133 in a case of unresectable/metastatic cholangiocarcinoma (CCA) resistant to 

chemo- and radiotherapy, was shown to induce a clinical response, although associated 

with several toxicities [141], which point the need to further investigate and ameliorate 

this biological therapy. 

As mentioned above, ACT may be also based on the adoptive transfer of CIK cells 

[142]. CIK cells are non-MHC restricted, cytotoxic anti-tumoral cells expanded in vitro 

from T lymphocytes with the addition of IFN-γ and the monoclonal antibodies against 

CD3 and IL-2 [143]. CIK cells share characteristics of both T and NK cells, due to the ex-

pression of functional T cell receptor (TCR) and NK molecules [144]. It was reported the 

development of autologous CIK cells against BRAF inhibitor-surviving melanoma CSCs 

[145]. A cocktail of DCs and CIK cells was shown to inhibit the growth of hepatic [146] 

and prostatic [147] CSCs both in vitro and in vivo. In HCC and nasopharyngeal carci-

noma (NPC), CIK cells were shown to eliminate CSCs via NKG2D-ligand recognition 

[148]. Accordingly, the adoptive transfer of heterologous NK cells showed the killing of 

both differentiated and undifferentiated cancer cells upon activation with IL-2 and IL-15 

in various cancer models [149]. Additionally, a subset of sarcoma CSCs, that survived 

chemotherapy and molecular targeted therapy, was responsive to CIK immunotherapy 

[150]. However, as previously discussed in this review, CSCs may and do adopt strate-

gies to escape immune control [151]. Indeed, epithelial ovarian CSCs were shown to 

evade CIK-mediated cellular lysis by activating hypoxia inducible factor-1α 

(HIF1A)-associated TGF-β1/decapentaplegic homologs (SMADs) and VEGFA signaling 

pathways that ultimately mediate the downregulation of intercellular adhesion mole-

cule-1 (ICAM-1). As regards to immunotherapy-based combinations, in BC it was ob-

served a synergistic effect between γδ and αβ CD8+ T cells occurring via the inhibition of 

farnesyl pyrophosphate synthase (FPPS), which allows it to overcome the resistance of 

CSC-like cells to γδ T cells. These cells, in turn, upregulate MHC class I and CD54 on 

CSC-like cells via secretion of IFN-γ and thereby increase the susceptibility to anti-
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gen-specific killing by αβ CD8+ T cells [152]. By exploiting the therapeutic potential of 

TCR-engineering, ALDH1A1-specific CD8⁺ T cells eliminate ALDHbright cells and inhibit 

tumor growth and spreading in different murine cancer models [153]. Additionally, 

DNAJB8 (a cancer/testis antigen)-specific CTL clone efficiently recognizes CRC stem cells 

both in in vitro and in vivo settings [59]. 

Some of these studies have proved the anti-tumor effects of ACT by targeting CSCs, 

although overall studies in this area are rather limited. Importantly, a high rate of severe 

toxicities was observed for CAR-T therapies targeting TAAs including carbonic anhy-

drase IX (CA IX) in renal cell carcinoma (RCC) [154] and ERBB2 in metastatic CRC [155]. 

Indeed, while CAR-T cells are among the most promising anti-cancer therapies, their 

widespread clinical use is prevented by various limitations encompassing: (i) the 

“on-target on-tumor” toxicities, characterized by moderate-to-severe and even fatal 

forms of cytokine release syndromes and/or by excessive detrimental tumor cell necrosis, 

so-called tumor lysis syndrome, which can cause a broad spectrum of systemic metabolic 

disturbances [154]; (ii) the “on-target off-tumor” toxicities, due to a shared expression of 

targeted antigens by both cancer and normal cells; (iii) the “off-target” toxicities, trig-

gered by the interaction between the extracellular crystallizable fragment (Fc) of CARs 

and the Fc receptor (FcR) expressed on innate immune cells, which leads to anti-

gen-independent activation [156]; (iv) a suboptimal trafficking to tumors and in vivo 

persistence [157]. A plethora of promising approaches are currently under development 

to overcome CAR-T cell related toxicities and thus improve and broaden their applica-

tion to solid tumors, as extensively reviewed in [158]. 

DC-based vaccine immunotherapy takes advantage of DCs, the most powerful 

APCs that generate robust immune responses, due to their capacity to link innate and 

adaptive immunity [159]. Different DC vaccine loading approaches have been tested in 

clinical trials including (i) loading of DCs with peptides, proteins, and tumor lysates; (ii) 

mRNA transfection; (iii) delivery of DNA and the use of viral vectors [160]. During the 

last decade, several clinical trials were developed including DCs loaded with tumor cell 

lysates in distinct tumor types such as metastatic hormone-refractory prostate cancer 

[161] and melanoma [162]. Furthermore, the use of DCs loaded with tumor-derived 

RNAs was shown highly immune-stimulating in patients with metastatic melanoma 

[163]. Accordingly, DCs pulsed with CSC lysates were reported to trigger potent an-

ti-tumor immune responses, in malignant melanoma, renal, pancreatic and squamous 

cell carcinoma [159]. Moreover, DCs charged with total lysates of Panc-1 CSCs and 

loaded with Nanog homeobox (NANOG) peptide evoke strong anti-tumor responses in 

pancreatic and ovarian cancer, respectively [164]. Notably, ALDH(high) CSC-DC vaccine 

was reported to reduce local tumor relapse and to increase host survival in squamous cell 

cancer and melanoma murine models [165]. The combination of DC based vaccines with 

immune checkpoint blockers (anti-CTLA-4 and anti-PD-1/PD-L1) showed an improved 

targeting and a successful eradication of CSCs in melanoma, GBM and bladder cancer 

models [159]. Therefore, the use of poly antigenic tumor lysates from CSCs would po-

tentially allow the simultaneous targeting of the whole spectrum of antigens and would 

thus be a way to overcome resistance due to the loss of one or a few antigens. 

Oncolytic virotherapy is based on natural or genetically engineered non-pathogen 

viral strains that directly kill tumor cells through immunogenic cell death (ICD) and thus 

switch on the so called “cancer-immunity cycle” [166]. Oncolytic virotherapy gained at-

tention over the past decade owing to the ability of oncolytic viruses to interact with 

cancer cells and immune cells within TME (and, hence, keep clinical response 

long-lasting) and to the simply “editing” of the viral platform, which allows the imple-

mentation of various genetic elements encoding immunostimulatory cytokines (e.g., IL-7 

and IL-12) [167]. The first oncolytic virus to obtain Food and Drug Administration (FDA) 

approval was talimogene laherparepvec to treat patients with advanced melanoma [168]. 

Although the precise mechanisms underlying oncolytic virus-mediated productive 

crosstalk between immune and cancer cells remain to be elucidated, improvements in 
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developing immune cell-mediated anti-tumoral activity adopting oncolytic viruses are 

constantly being made. Genetically engineered oncolytic viruses are being developed 

and showed therapeutic efficacy as they specifically target CSCs in several solid tumor 

models [159]. Indeed, the use of engineered viruses to target such otherwise resistant 

cancer cells is a hot field of research. 

Immunotherapy-based combinations targeting CSCs may exert greater therapeutic 

effects than monotherapies. Since immunotherapeutic regimens only benefit from a 

subset of patients, in the melanoma murine model it was investigated the efficacy of the 

ALDH CSC-DC vaccine combined with a dual blockade of PD-1 and CTLA-4 [169]. Mice 

who received the triple combination displayed a stronger tumor growth control and even 

more regression than those who received the CSC-DC vaccine alone. Furthermore, the 

combination of two monoclonal antibodies against CTLA-4 and PD-1 molecules with 

oncolytic virus expressing IL-12 induced the recruitment of Mφs into TME and their po-

larization toward an inflammatory phenotype, along with an increment of T effector cells 

[170]. In an orthotopic mouse model of glioma, the combinatorial administration of a 

vaccine (containing GBM stem cell lysate, DCs and TLR-9 agonist CpG motif-containing 

oligodeoxynucleotides (CpG ODNs)) and the anti-PD-L1 antibody confers a greater sur-

vival advantage and decrement of the Treg fraction as compared to the vaccine alone 

[171]. Similarly, anti-PD-1 potentiates the efficacy of a vaccine targeting bladder CSCs by 

boosting the recruitment of pro-inflammatory immune cells and thus improving host 

survival [172]. Similarly, oncolytic virotherapy combined with the targeting of the VEGF 

receptor (VEGFR) tyrosine kinase inhibitor (TKI) was shown to be more efficient than 

each monotherapy [173]. 

CSC resistance to the standard anti-tumor treatments dictates the need to generate 

novel targeted therapeutic interventions aimed at eradicating CSCs. The knowledge of 

CSC immunological properties, as well as their sensitivity to immunotherapeutic ap-

proaches, are somehow limited but promising immunological targets in pre-clinical and 

clinical settings are emerging. Therefore, this new knowledge may drive next-generation 

therapies and, more likely, immunotherapies able to target CSCs and thus render cancer 

cure a reality. 

5. Concluding Remarks 

Scientific research on CSCs has contributed to their genetic, cytogenetic and phe-

notypical characterization and has brought to light their immune-privileged nature that 

allows them to escape from destruction by the innate or adaptive immunity. The peculiar 

nature of CSCs (i.e., self-renew, multipotency and therapy resistance) favors the devel-

opment of resistance to conventional therapies. In addition, CSCs displayed low immu-

nogenicity (i.e., MHC-class I and APM downregulation, NK ligand and CD47 downreg-

ulation, dormancy, etc.), and the currently ongoing immunotherapeutic approaches fail 

to selectively target them. This bleak scenario could be improved by understanding the 

mechanisms regulating the genomics, epigenetics and immunology of CSCs in order to 

shape the immune system toward effective anti-tumor immune surveillance. These data 

could suggest the way to eradicate tumors by optimizing and developing novel immu-

nologic approaches directed toward specific targets of CSCs. 
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