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Abstract: The Corona Virus Disease 2019 (COVID-19) pandemic represents an ongoing worldwide
challenge. The present large study sought to understand independent and overlapping metabolic
features of samples from acutely ill patients (n = 831) that tested positive (n = 543) or negative
(n = 288) for COVID-19. High-throughput metabolomics analyses were complemented with antigen
and enzymatic activity assays on plasma from acutely ill patients collected while in the emer-
gency department, at admission, or during hospitalization. Lipidomics analyses were also per-
formed on COVID-19-positive or -negative subjects with the lowest and highest body mass index
(n = 60/group). Significant changes in amino acid and fatty acid/acylcarnitine metabolism emerged
as highly relevant markers of disease severity, progression, and prognosis as a function of biological
and clinical variables in these patients. Further, machine learning models were trained by entering all
metabolomics and clinical data from half of the COVID-19 patient cohort and then tested on the other
half, yielding ~78% prediction accuracy. Finally, the extensive amount of information accumulated in
this large, prospective, observational study provides a foundation for mechanistic follow-up studies
and data sharing opportunities, which will advance our understanding of the characteristics of the
plasma metabolism in COVID-19 and other acute critical illnesses.
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1. Introduction

On 28 April 2020, we began performing one of the earliest investigations on the impact
of SARS-CoV-2 infection on the circulating metabolome [1]. At that time, we reported that
~3 million cases had been confirmed worldwide, a number that has dramatically risen since
to ~200 million cases and 4 million deaths—according to the World Health Organization
(https://www.who.int/emergencies/diseases/novel-coronavirus-2019—accessed on
10 May 2021). Our original study aimed to identify metabolic signatures that could help
inform prognosis and guide treatment early after the onset of COVID-19, the disease caused
by SARS-CoV-2 infection. Indeed, small-molecule metabolites provide the building blocks
that fuel viral replication, from nucleic acids to proteins and membrane lipids. SARS-
CoV-2 [1–5], like other viral infections [6], was found to promote the mobilization of free
fatty acids to support the formation of viral capsid-associated membranes; a phenomenon
that could be explained, at least in part, by activation of phospholipase A2 [7,8], a target
amenable to pharmacological intervention.

Despite public health interventions and the advent of multiple vaccination strate-
gies, SARS-CoV-2 remains a serious global threat. This may be explained by multiple
factors, including (i) vaccination rates lagging behind the percentage required to reach
herd immunity; (ii) reopening too early, while discontinuing public health mandates;
(iii) the emergence of variants with more efficient transmission [9,10], which may also
escape acquired immunity and/or vaccination [11,12]; and waning immunity from vacci-
nation or previous infection [13,14]. Therefore, efforts aimed at identifying strategies to
treat SARS-CoV-2, including metabolic interventions or repurposing drugs with potential
metabolic targets [15], remain important.

To this end, herein we prospectively collected a large independent data set, including
patient characteristics, clinical information, and routine and specialized clinical laboratory
results of acutely ill patients that were admitted to one of two large university hospitals in
New York City, who tested positive or negative for SARS-CoV-2. This large patient group
allowed for the verification and expansion of previously published metabolomics studies
in COVID-19 and other acute critical illnesses.

2. Materials and Methods

Patients: This study was approved by the Institutional Review Board of Columbia
University Irving Medical Center (CUIMC) (Protocol Number AAAT0680). The laboratory
information system (Cerner Millennium) was used to identify all patients from 1 March
2020 through 31 May 2020 who had antithrombin (AT) testing ordered. It was then
determined if these patients had been tested for the presence of SARS-CoV-2 based upon
the availability of SARS-CoV-2 PCR results in the patient’s electronic medical record. All
patients with AT and SARS-CoV-2 testing during the aforementioned 3-month time window
were included in this study. The frozen, residual, discarded sample from AT testing was
used for metabolomics and lipidomics analysis.

Data were obtained from 831 patients who were admitted or seen in the Emergency
Department from 14 April 2020 through 31 May 2020 in one of two large hospitals in
New York City (i.e., before the identification of and routine testing for novel variants in
the USA). The patients were stratified based on SARS-CoV-2 RT-PCR positivity status
(n = 543 SARS-CoV-2 positive; n = 288 SARS-CoV-2 negative).

As part of routine care, hemostasis was evaluated on STAR Evolution and STAR Max
analyzers (Diagnostica Stago, Parsippany, NJ, USA), hematology testing by Sysmex XN900
(Lincolnshire, IL, USA), and chemistry testing by Roche Cobas c502 (Indianapolis, IN).
Laboratory values, including antithrombin (AT), prothrombin time (PT)/international
normalized ratio (INR), activated partial thromboplastin time aPTT, fibrinogen, d-dimer,
white blood cell count (WBC), absolute neutrophil count (ANC), absolute lymphocyte count
(ALC), absolute monocyte count (AMC), hemoglobin, red blood cell count (RBC), RBC
distribution width (RDW), reticulocyte count, platelet count, IL-6, lactate dehydrogenase
(LDH), lactic acid, procalcitonin, troponin, blood urea nitrogen (BUN), creatinine, glucose,
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total-, direct-, and indirect bilirubin, aspartate amino transferase (AST), alanine amino
transferase (ALT), albumin, total protein, ferritin, C-reactive protein (CRP), erythrocyte
sedimentation rate (ESR), creatine kinase (CK), triglycerides, and blood type, were collected.

Laboratory data were obtained from the Clinical Data Warehouse at Columbia Univer-
sity Irving Medical Center (CUIMC) after approval from the Tripartite Request Assessment
Committee. Clinical and demographic data, including sex, age, race, ethnicity, weight, body
mass index, comorbidities (hypertension, diabetes mellitus, coronary artery disease, renal
disease, hyperlipidemia, liver disease, lung disease), intubation/ventilator requirement,
continuous veno-venous hemofiltration (CVVH) requirement, radiographically confirmed
thrombotic complications (deep vein thrombosis, pulmonary embolism, stroke), clotting of
CVVH, hospitalization course (admission date, date of Emergency Department presenta-
tion, discharge date), mortality, and date of death were collected manually by reviewing
the electronic medical record. Data were collected retrospectively for patients treated at
two New York Presbyterian Hospital campuses (CUIMC and The Allen hospital). Residual
platelet-poor plasma samples were collected for subsequent analyses.

Sample processing and metabolite extraction: Plasma samples were extracted via
a modified Folch method (chloroform/methanol/water 8:4:3 v/v/v), which completely
inactivates other coronaviruses, such as MERS-CoV [16]. Briefly, 20 uL of plasma were
diluted in 130 uL of LC-MS grade water, 600 uL of ice-cold chloroform/methanol (2:1)
was added, and the samples vortexed for 10 s. Samples were then incubated at 4 ◦C for
5 min, quickly vortexed (5 s), and centrifuged at 14,000× g for 10 min at 4 ◦C. The top
(i.e., aqueous) phase was transferred to a new tube for metabolomics analysis.

Ultra-High-Pressure Liquid Chromatography–Mass Spectrometry metabolomics and
lipidomics: Analyses were performed using a Vanquish UHPLC coupled online to a Q
Exactive mass spectrometer (Thermo Fisher, Bremen, Germany). Samples were analyzed
using a 5 and 17 min gradient as described [17–19]. Solvents were supplemented with 0.1%
formic acid for positive mode runs and 1 mM ammonium acetate for negative mode runs.
MS acquisition and data analysis was performed as previously described [17–19].

Metabolomics: UHPLC-MS metabolomics analyses were performed as described
in method [17–19] and application papers [1,20], using a Vanquish UHPLC system cou-
pled online to a high-resolution Q Exactive mass spectrometer (Thermo Fisher, Bremen,
Germany). Samples were resolved over a Kinetex C18 column (2.1 × 150 mm2, 1.7 µm;
Phenomenex, Torrance, CA, USA) at 45◦C. A volume of 10 uL of sample extracts from
the aqueous phase of the Folch extraction was injected into the UHPLC-MS. Each sample
was injected and run four times with two different chromatographic and MS conditions as
follows: (1) using a 5 min gradient at 450 µL/minute from 5–95% B (A: water/0.1% formic
acid; B: acetonitrile/0.1% formic acid) and the MS was operated in positive mode and
(2) using a 5 min gradient at 450 µL/minute from 5–95% B (A: 5% acetonitrile, 95%water/
1 mM ammonium acetate; B:95%acetonitrile/5% water, 1 mM ammonium acetate) and the
MS was operated in negative ion mode. The UHPLC system was coupled online with a Q
Exactive (Thermo, San Jose, CA, USA) scanning in Full MS mode at 70,000 resolution in
the 60–900 m/z range, 4 kV spray voltage, 15 sheath gas, and 5 auxiliary gas, operated in
negative or positive ion mode (separate runs). These chromatographic and MS conditions
were applied for both relative and targeted quantitative metabolomics measurements, with
the differences that for the latter targeted quantitative post hoc analyses were performed
on the basis of the stable isotope-labeled internal standards used as a reference quantitative
measurement, as detailed below.

Lipidomics: Samples were resolved as described, 4–6, [21] over an ACQUITY HSS
T3 column (2.1 × 150 mm2, 1.8 µm particle size (Waters, MA, USA) using an aqueous
phase (A) of 25% acetonitrile and 5 mM ammonium acetate and a mobile phase (B) of
50% isopropanol, 45% acetonitrile, and 5 mM ammonium acetate. Samples were eluted
from the column using either the solvent gradient: 0–1 min 25% B and 0.3 mL/min,
1–2 min 25–50% B and 0.3 mL/min, 2–8 min 50–90% B and 0.3 mL/min, 8–10 min 90–99%
B and 0.3 mL/min, 10–14 min hold at 99% B and 0.3 mL/min, 14–14.1 min 99–25% B and
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0.3 mL/min, 14.1–16.9 min hold at 25% B and 0.4 mL/min, 16.9–17 min hold at 25% B and
resume flow of 0.3 mL/min isocratic elution of 5% B flowed at 250 µL/min and 25 ◦C or
a gradient from 0–5% B over 0.5 min, 5–95% B over 0.6 min, hold at 95% B for 1.65 min,
95–5% B over 0.25 min, hold at 5% B for 2 min, flowed at 450 µL/min and 35 ◦C [19]. The
Q Exactive mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) was operated
independently in positive or negative ion mode, scanning in Full MS mode (2 µscans)
from 150 to 1500 m/z at 70,000 resolution, with 4 kV spray voltage, 45 sheath gas, and
15 auxiliary gas.

MS2 analyses for untargeted metabolomics: For discovery mode untargeted
metabolomics, dd-MS2 was performed at 17,500 resolution, AGC target = 1 × 105, maxi-
mum IT = 50 ms, and stepped NCE of 25, 35 for positive mode, and 20, 24, and
28 for negative mode, as described in Stefeanoni et al. [22], and applied to similar samples
(i.e., stored RBCs) in D’Alessandro et al. [23].

Quality control and data processing: Calibration was performed prior to analysis
using the Pierce ESI Positive and Negative Ion Calibration Solutions (Thermo Fisher
Scientific). Acquired data were then converted from raw to .mzXML file format using Mass
Matrix (Cleveland, OH, USA). Samples were analyzed in randomized order with a technical
mixture (generated by mixing 5 uL of all samples tested in this study) injected every 10 runs
to qualify instrument performance. This technical mixture was also injected three times
per polarity mode and analyzed with the parameters above, except CID fragmentation
was included for unknown compound identification (10 ppm error for both positive and
negative ion mode searches for intact mass, 50 ppm error tolerance for fragments in MS2
analyses—further details about the database searched below).

Metabolite assignment and relative quantitation: Metabolite assignments, isotopo-
logue distributions, and correction for expected natural abundances of deuterium, 13C,
and 15N isotopes were performed using MAVEN (Princeton, NJ, USA) [24], against an
in-house library of deuterated lipid standards (SPLASH®® LIPIDOMIX®® Mass Spec
Standard, Avanti Lipids) and in-house libraries of 3000 unlabeled (IROATech product
A2574 by ApexBio MSMLS, IROATech, Bolton, MA, USA; standard compounds for central
carbon and nitrogen pathways from SIGMA Aldrich, St Louis, MO, USA) and labeled
standards (see below for the latter). Discovery mode analysis was performed with standard
workflows using Compound Discoverer 2.1 SP1 (Thermo Fisher Scientific, San Jose, CA,
USA). From these analyses, metabolite IDs or unique chemical formulae were determined
from high-resolution accurate intact mass, isotopic patterns, identification of eventual
adducts (e.g., Na+ or K+, etc.) and MS2 fragmentation spectra against the KEGG pathway,
HMDB, ChEBI, and ChEMBL databases. Additional untargeted lipidomics analyses were
performed with the software LipidSearch (Thermo Fisher, Bremen, Germany).

Simultaneous thrombin and plasmin generation assay (STPGA): Simultaneous eval-
uation of thrombin and plasmin generation (TG and PG, respectively) was performed
as described previously [25]. Briefly, plasma samples were mixed with either thrombin
specific substrate, Z-Gly-Gly-Arg-AMC (Bachem, Bubendorf, Switzerland) or plasmin
specific substrate, Boc-Glu-Lys-Lys-AMC (Bubendorf, Switzerland), and 16 nM of throm-
bomodulin (PeproTech, Rocky Hill, NJ, USA). The reaction was initiated by adding an
activator solution that yielded a final concentration of 1 pM tissue factor (Diagnostica
Stago, Parsippany, NJ, USA), 0.7 µg/mL of tissue plasminogen activator (Sigma-Aldrich,
St. Louis, MO, USA), and 16 mM CaCl2. Sample wells supplemented with buffer (150 mM
NaCl and 20 mM HEPES) and AMC fluorophore instead of activator solution were used
for background and calibrator measurements, respectively. Calculation of thrombin and
plasmin concentration was performed as described previously [26]

VWF, FVIII, and ADAMTS13 activity and antigen quantitation: The antigen and
activity measurement of VWF and ADAMTS13 was performed by using commercial
ELISA kits. VWF antigen and collagen-binding activity levels were measured by us-
ing Human Von Willebrand Factor ELISA Kit (ab168548, Abcam, Cambridge, UK) and
TECHNOZYM®® vWF:CBA ELISA Kit (5450301, Technoclone, Vienna, Austria), respec-
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tively. ADAMTS13 antigen and activity levels were measured by using Human ADAMTS13
ELISA Kit (ab234559, Abcam) and TECHNOZYM®® ADAMTS13 Activity ELISA (5450701,
Technoclone), respectively. FVIII antigen levels were measured by using Human Factor
VIII total antigen assay ELISA kit (HFVIIIKT-TOT, Molecular Innovations, Novi, MI, USA).
All assays were performed following manufacturer’s recommendations with additional
dilution of plasma samples as required.

Statistical Analysis: Graphs and statistical analyses (either t-test or repeated mea-
sures ANOVA) were prepared with GraphPad Prism 5.0 (GraphPad Software, Inc, La
Jolla, CA, USA), GENE E (Broad Institute, Cambridge, MA, USA), and MetaboAnalyst
4.0. In MetaboAnalyst, relative quant data (but not for abs quant), raw values for inte-
grated peak areas for each metabolite, were normalized on a pool of day 0 controls and
auto-scaled for each species independently prior to margining all the data for multivariate
analysis. Analyses through MetaboAnalyst included principal component analysis, partial
least square discriminant analysis, hierarchical clustering analyses (including time-series
repeated measures and two-way ANOVA analyses), calculation of receiver operating char-
acteristic (ROC) curves, correlation analyses (Spearman), and machine learning analyses
(random forest, support-vector machine—SVM).

3. Results
3.1. COVID-19 Patients Display Significant Markers of Kidney Injury, Including Increases in
Creatinine and Purine Oxidation, and Decreases in Amino Acids

Metabolomics analyses performed for 543 samples from hospitalized acutely ill
COVID-19-positive patients were compared with those performed for 288 samples from
acutely ill COVID-19-negative patients (Figure 1A). Raw data, along with clinical charac-
teristics are detailed in Supplementary Table S1; a visual representation of technical mixes
as a quality control against test samples confirmed good reproducibility (CV < 20%) in the
T-distributed stochastic neighbor embedding (tSNE) analysis (Supplementary Figure S1).

The metabolic phenotypes of these COVID-19-negative patients partially overlapped
with those who were COVID-19-positive (Figure 1B). Figure 1C shows which metabo-
lites differentiate between these two groups, using variable importance in projection (VIP)
scores in the partial least squares discriminant analysis (PLS-DA). Volcano plot elaborations
(Figure 1D) also clearly showed decreased levels of almost all amino acids with the ex-
ception of methionine (Figure 1E) as well as increased levels of purine oxidation products
(urate and allantoate) and decreased adenosine (Figure 1F) in COVID-19 patients. Several
of these observations were validated using stable isotope-labeled internal standards for
absolute quantification (Supplementary Table S1), including markers of hypoxia [27,28],
the carboxylic acid alpha-ketoglutarate, and sphingosine 1-phosphate (S1P) (Figure 1G).
Notably, amino acid reabsorption occurs in the kidney [29] and alterations in purine
metabolism [30] and S1P [31] were recently tied to kidney ischemia and chronic kidney
disease, respectively. In addition, moderate–severe kidney dysfunction was observed in
all COVID-19 (+) patients, indicated by blood urea nitrogen (BUN) and creatinine levels
(Figure 1H). The positive correlation between BUN and creatinine was paralleled by similar
trends for acylcarnitines (markers of mitochondrial dysfunction), and negative correlations
between BUN and amino acids. As an internal validation of this approach, creatinine
measured in the same samples by a CLIA-certified clinical chemistry assay and mass
spectrometry correlated extremely well (p < 0.0001; r2 = 0.871 Spearman; Figure 1J).
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Figure 1. Metabolomics of hospitalized patients with (n = 543) and without (n = 288) COVID-19 (A). Partial least square-
discriminant analysis of metabolomics data separated the two cohorts (B). Top 15 metabolites with the highest loading 
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significant effects of COVID-19 on plasma amino acid levels and purine oxidation. Violin plots (including median + ranges) 

Figure 1. Metabolomics of hospitalized patients with (n = 543) and without (n = 288) COVID-19 (A). Partial least square-
discriminant analysis of metabolomics data separated the two cohorts (B). Top 15 metabolites with the highest loading
weights are indicated in the variable importance in projection (VIP) ranked list in (C). In (D), the volcano plot highlights
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significant effects of COVID-19 on plasma amino acid levels and purine oxidation. Violin plots (including median + ranges)
are shown for amino acids (E) and purines (F) from relative quantitative analyses, and for two markers of mitochondrial
dysfunction and hypoxia, alpha-ketoglutarate and sphingosine 1-phosphate (S1P), using absolute quantitative analyses
against stable isotope-labeled internal standards in (G). In (H), blood urea nitrogen (BUN) and creatinine, markers of
kidney dysfunction, were significantly increased in COVID-19 patients. Metabolic and clinical correlates of BUN (top
positive correlate being creatinine) are in (I). A significant positive correlation (p < 0.0001; r2 = 0.871) was observed between
creatinine measurements via CLIA-certified and mass spectrometry (MS)-based approaches (J). In (J), violin plots highlight
metabolites in the arginine, proline, and creatine metabolism. Asterisks indicate significance (* p < 0.05; ** p < 0.01;
*** p < 0.001; **** p < 0.0001).

Overall, these results demonstrate significant up-regulation of creatine metabolism,
accompanied by dysregulation of arginine catabolism to proline, polyamines, and citrulline
(Figure 1J); also a hallmark of COVID-19-induced endotheliopathy [32]. Interestingly, other
markers of endothelial coagulopathy were also significantly increased in COVID-19 patients
(Figures 1–8), including VWF and its collagen-binding activity (p < 0.0001). However, no
significant differences in ADAMTS-13 levels or activity were observed; thus, VWF antigen:
ADAMTS13 activity ratios were increased (p < 0.0001), favoring high-molecular-weight
VWF oligomers and increased thrombotic potential.

3.2. Up-Regulation of the Kynurenine Pathway Is Inversely Related to Indole Metabolism

Despite widespread decreases in most amino acids, circulating levels of kynure-
nine, a tryptophan catabolite (and other kynurenine pathway intermediates) were con-
firmed [1,4,33–35] to be significantly increased in COVID-19 patients as a function of IL-6
levels (Figure 2A,B). In contrast, indole metabolites, which are largely derived from tryp-
tophan metabolism by the gut microbiome, were significantly decreased in COVID-19
patients (Figure 2A). Indeed, plasma levels of tryptophan/indoles and kynurenine were
among the top negative and positive correlates with IL-6 levels (Figure 2B, Supplemen-
tary Figure S2). IL-6 levels also positively correlated with coagulopathy markers (APTT,
D-dimer), and mortality (Figure 2B). Positive correlations with age (Figure 2C) were ob-
served for mortality and hypoxia markers [36], including lactate, purine oxidation products
(xanthine, urate), and markers of mitochondrial dysfunction (carboxylic acids citrate, alpha-
ketoglutarate, succinate, fumarate), with a role in inflammation and thermogenesis via lipid
catabolism [37–39]. COVID-19 induced increases in free fatty acids as well as short- and
medium-chain acylcarnitine species and decreased long-chain saturated and unsaturated
acylcarnitines (Figure 2D,E). Poly- and highly unsaturated fatty acids positively corre-
lated with IL-6 (Figure 2B) and negatively correlated with age (Figure 2C), but correlated
positively with markers of kidney dysfunction (BUN), coagulation (vWF levels, plasmin
generation—PG rate), and body weight. These results suggest increased lipid mobiliza-
tion resulting from SARS-CoV-2-induced blood cell membrane vesiculation/lipolysis, as
reported [21], and/or adipose tissue lipid catabolism, perhaps as a strategy for assembling
viral membranes [6] (Figure 2F).

Given the role of obesity in COVID-19 outcomes [40], we evaluated metabolomics data
in five body mass index (BMI) ranges, from underweight (BMI 13–20) to severely obese
(BMI up to 50), highlighting a positive correlation between BMI and several 18, 20, and
22C series mono- and poly-unsaturated fatty acids in COVID-19-positive, as compared to
COVID-19-negative patients (significant metabolites shown in Figure 2G, Supplementary
Figure S3). Therefore, lipidomics analyses were performed as a function of the lowest (<20)
and highest (>38) BMI ranges (n = 15 subjects per group) and results separated by lipid
class and fatty acyl-chain composition (Figure 2H–I; Supplementary Table S1). COVID-19
patients, especially those with highest BMI, had significantly higher levels of phosphatidyl-
cholines (PCs), triacylglycerols (TAG), diacylglycerols (DAG), monoacylglycerols (MG),
lysophosphatidylethanolamines (LPEs), and phosphatidylserines (PS; Figure 2H); these
were particularly enriched in very-long-chain, highly unsaturated fatty acids (20:3, 20:5,
22:5, 22:6) and depleted in 18C series fatty acids (stearic, oleic, linoleic) (Figure 2I).
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Figure 2. Alteration of tryptophan/kynurenine/indole metabolism as a function of inflammation, and dysregulation of
lipid metabolism as a function of body mass index in hospitalized patients with and without COVID-19. In (A), violin
plot of tryptophan metabolism as a function of COVID status (median + range). Metabolic and clinical correlates to
interleukin 6 (IL-6) as a marker of inflammation (B) and patient age (C) indicate a strong correlation of this pathway and
lipid metabolism, especially free fatty acids (D) and acylcarnitines (E), with disease state. Free fatty acids may derive
from blood cell vesiculation and/or mobilization from white adipose tissue, a process that could fuel viral membrane
formation (F). In (G), breakdown of free fatty acid levels as a function of patients’ body mass index (BMI) and COVID-19
status. Lipidomics analyses of COVID-19-positive and -negative patients with BMI lower than 20 or higher than 38 revealed
a significant impact of these variables on lipid class (H) and fatty acyl composition (I). (p < 0.05; * p < 0.01; ** p < 0.001;
*** p < 0.0001; **** p < 0.0001).
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correlates to age or COVID-19 status were identified through Spearman correlation and two-way
ANOVA, with top variables including markers of kidney dysfunction (A), hypoxia (B), coagulopathy
(C), and age-related mitochondrial dysfunction (D). Similar analyses were performed as a function
of patients’ COVID-19 status and sex (E), with inflammatory markers being significantly affected
by COVID-19, and RBC (F) and coagulation parameters (G) by sex. Similarly, sex affected fatty acid
levels (especially poly- and highly unsaturated, long-chain fatty acids), and arginine and purine
metabolism (H–J). Because of the impact of sex on RBC-related parameters, additional analyses
were performed highlighting correlates to RBC counts and COVID-19 status, demonstrating a strong
correlation with kidney dysfunction (K). All the metabolites shown in this figure as dot plots are
significant by two-way ANOVA (FDR < 0.05).
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Figure 4. Markers of mortality in hospitalized patients, including COVID-19 patients. In (A), clinical and metabolic markers
of mortality were ranked from Spearman correlation analyses (y axes indicate −log10 of p-values). Because mortality
is a non-continuous variable, additional univariate (B–F) and multivariate (G) biomarker analyses were performed to
calculate ROC curves and train machine learning algorithms (random forest in this figure, supporting vector machine in the
Supplement) to predict mortality in hospitalized COVID-19 patients based on the top 10 clinical and metabolic variables
(H), a model that yielded 78% prediction accuracy (G–I).
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divided into subgroups depending on clinical complications (e.g., stroke, deep vein thrombosis) and/or interventions (e.g.,
ventilators, hemodialysis). Mechanical ventilation (A–E), stroke (F–J), DVT (K–N), and hemodialysis (with or without
coagulopathy; O–Q ) in both COVID-19 patients and controls. All metabolites shown in this figure as dot plots are significant
by two-way ANOVA (FDR < 0.05).
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Figure 7. Pre-existing conditions and metabolic/clinical markers. Hospitalized patients, with and without COVID-19, were
divided into subgroups depending on clinical history. Specifically, patients were identified who presented with a history
of hypertension (A–E), chronic kidney disease (F–K), lung disease (L–M), coronary artery disease (N,O), cancer (P,Q), or
liver disease (R,S). All metabolite/clinical variables shown in this figure as dot plots are significant by two-way ANOVA
(FDR < 0.05).
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Figure 8. Time-course analysis of two patients with severe COVID-19, one surviving (A–C) and one dying (D–F) of disease.
Both patients were ventilated with coagulopathic complications, either stroke or deep vein thrombosis. The first patient,
a 14-year-old female with no pre-existing conditions, survived at the end of the time course and manifested transient
activation of the kynurenine pathway and accumulation of creatinine (kidney dysfunction), which resolved early (C).
This patient was also characterized by late accumulation of plasma free fatty acids (18C, 20C, and 22C poly- and highly
unsaturated fatty acids). The second patient, a 52-year-old female with a history of obesity and lung disease, did not survive
COVID-19; no activation of the kynurenine pathway was observed and creatine levels remained elevated.

3.3. Effects of Sex, Age, and Ethnicity on the Plasma Metabolome of Hospitalized COVID-19 Patients

Because older male COVID-19 patients have a poorer prognosis, as compared to young
females [3,40,41], and given the large size of our cohorts, we tried identifying metabolic and
clinical correlates for these variables (Figure 3A–D, Supplementary Figures S4E–J and S5).
Aging was associated with increased weight, BMI, kidney dysfunction (creatine, crea-
tinine), and tissue damage (creatine kinase), along with markers of hypercoagulability
(VWF:AG, FVIII), fibrinolysis (D-dimer), hyperglycemia, hypoxia and mitochondrial dys-
function (2-hydroxyglutarate, lactate, spermidine, acylcarnitines), purine oxidation (urate),
inflammation (CRP), proteolysis (albumin), and anemia (hemoglobin levels, RBC counts),
especially in COVID-19 patients (Figure 3A–D).

Male patients, both with and without COVID-19, had higher RBC counts and
hemoglobin levels, lower citrulline and creatine levels, and lower levels of highly un-
saturated fatty acids (e.g., eicosapentaenoic, docosapentaenoic, docosahexaenoic acid;
Figure 3E–I, Supplementary Figure S5); however, only COVID-positive males, but not
females, had increased urate levels (Figure 3J).

Because RBC count and hemoglobin level were tightly correlated (Supplementary
Figure S6) and were affected by both age and sex, we divided both cohorts into sub-groups
based on RBC count (Figure 3K); this highlighted a positive correlation between RBC count
and kidney damage (BUN, creatinine, guanidinoacetate), total protein level, and glycemia,
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along with negative correlations with one-carbon metabolites choline and methionine. In
these cohorts, race was also associated with inflammation, thromboinflammatory com-
plications, body weight/BMI, and kidney dysfunction; indeed, IL-6, D-dimer, BUN, and
creatinine levels were highest in individuals with COVID-19 of African descent (Sup-
plementary Figure S7). In addition, plasma dimethylglycine, indole, and cystine levels
were highest in individuals of African descent, whereas kynurenine levels increased in
all COVID-19 patients independent of race. Interestingly, ABO blood group status, which
is controversially associated with COVID-19 prognosis [42], indicated that the highest
kynurenine, GABA, dimethylglycine, and creatinine levels were in blood group O subjects
(Supplementary Figure S8). Although our sample size was limited for blood group A
COVID-19 patients (n = 111 samples), they had the highest IL-6 levels (Supplementary
Figure S8).

3.4. Markers of Mortality in Acutely Ill Hospitalized Patients

While previous studies identified prognostic and disease severity markers in COVID-
19 patients, they studied relatively few patients and did not include hospitalized COVID-
19-negative patients as controls [1,34,35,43–48]. To visualize ranking correlates of mortality,
we performed preliminary correlation analyses of both our cohorts (Figure 4A), confirming
strong positive correlations between mortality and markers of inflammation, coagulopathy,
kidney and tissue damage, and hypoxia. Because death is a non-continuous variable,
biomarker analyses were also performed to calculate ROC curves for metabolites and clini-
cal covariates at admission that significantly associated with poor outcomes independent
of cohort (Figure 3B–F), or divided into COVID-19 patients and controls (Supplementary
Figure S9). Several of the highest-ranking variables (Figure 3) included IL-6, acylcarnitines
(especially hexanoylcarnitine), D-dimers, albumin, and tryptophan metabolites.

Because metabolomics data and clinical variables were available for 542 COVID-
19 samples, we used 244 randomly selected samples to train a machine learning model
to predict mortality in these patients (Figure 4G). Data on training, ROC curves from
multivariate models, prediction accuracy, and the top 15 variables fed into the model are
shown in Supplementary Figure S10A–B for elaboration with the random forest or SVM
algorithm. Overall, the top 10 variables from the random forest algorithm (Figure 4H)
showed an AUC of 0.81 (confidence interval 0.71–0.89), resulting in the highest predictive
ability with the fewest variables. Using the remaining 298 samples as a test set correctly
predicted survival or death of 234 patients, with only five false positives (i.e., predicted to
die, but survived) and 59 false negatives (i.e., predicted to survive, but died), demonstrating
a 78% accuracy of the model, with high specificity (>95%), but moderate sensitivity (<70%).

3.5. Metabolic and Clinical Correlates to Markers of Coagulopathy and Tissue Damage

Correlation analyses (Spearman) identified clinical and metabolic correlates to coagu-
lation parameters, including D-dimer, APTT, INR (>96% positive correlation with APTT,
thus excluded from the volcano plot), FVIII, TG, VWF:AG, and VWF:collagen-binding
activity (Figure 5A–F). IL-6, age, metabolites linked to oxidant stress and sulfur metabolism
(cystine), acylcarnitines (markers of mitochondrial dysfunction [49] and platelet activa-
tion [50,51]), and tryptophan and its metabolites, were top correlates to the coagulation
parameters (Figure 5A–F).

Similarly, correlating metabolites and clinical parameters to markers of tissue damage
(CK, LDH), inflammation (CRP), liver damage (ALT, AST), and proteolysis/hemodilution
(albumin) identified a strong interaction with arginine/proline metabolism, ferritin/
hemoglobin/RBC counts, and tryptophan/kynurenine metabolism (Figure 5G–L). In-
terestingly, conjugated bile acids, well-established markers of liver inflammation [52], were
positively correlated with liver transaminases (Figure 5J–K).
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3.6. Clinical and Metabolic Correlates to Clinical Complications: Ventilators, Stroke, Deep Vein
Thrombosis (DVT), and Hemodialysis

Leveraging the manually curated clinical records for the enrolled patients, we identi-
fied clinical and metabolic markers correlating with mechanical ventilation (Figure 6A–E;
Supplementary Figure S11), stroke (Figure 6F–J), DVT (Figure 6K–N), and hemodialysis
(with or without coagulopathy; Figure 6O–Q and Supplementary Figure S12) in both
COVID-19 patients and controls. In all cases, the top markers were related to kidney dys-
function (BUN, creatinine), proteolysis/hemodilution (albumin, RBC count, hemoglobin,
fibrinogen), free fatty acids (dodecanoic, linoleic, linolenic, docosapentaenoic), acylcar-
nitines, triglycerides, and amino acid metabolism (especially tryptophan, choline, and
GABA). Trends observed in controls were more dramatic in COVID-19 patients presenting
with similar manifestations.

3.7. The Effects of Clinical History and Pre-Existing Conditions on the Metabolome and Clinical
Phenotype of Acutely Ill Hospitalized Patients

Pre-existing conditions, including obesity, cardiovascular disease, kidney disease,
cancer, and diabetes, are all associated with poorer prognosis in COVID-19 [53]. Meta-
analysis of our cohorts (Figure 7A–S, Supplementary Figure S12) indicated that older
subjects are more likely to present with a history of hypertension, coronary artery disease,
and/or diabetes (Figure 7A,O; Supplementary Figure S12A,B). Hypertension, chronic
kidney disease, lung disease, and coronary artery disease share altered tryptophan and
arginine/proline/citrulline metabolism, trends exacerbated by COVID-19. Carnitine
metabolism and aromatic amino acids were increased in patients with a history of kidney
disease (Figure 7F–K), whereas cancer was accompanied by increased lactate (perhaps
resulting from a Warburg phenotype; Figure 7Q). A history of liver disease was accom-
panied by increased levels of conjugated bile acids (e.g., taurochenodeoxycholate), total
bilirubin, and methionine (Figure 7S). Finally, a history of diabetes was associated with
increased lactate and lactoyl-glutathione levels, the latter a marker of glyoxylase damage
(Supplementary Figure S13).

3.8. Longitudinal Sampling in Severe COVID-19 Patients

Sampling at admission allowed us to collect longitudinal samples from some patients.
The results from three severe COVID-19 cases, only two of whom recovered, are presented
here. Figure 8 (vectorial version in Supplementary Figures S14–S16, data in Supplemen-
tary Table S1) shows hierarchical clustering of metabolites as a function of time (19 time
points for two patients and 21 for the third patient). These three patients were female,
14, 45, and 52 years old, of different ethnicity and BMI. Despite similar disease severity
(e.g., all mechanically ventilated, with either stroke, clotting, or DVT manifestations), only
the surviving patients manifested a spike in kynurenine levels throughout their course,
which was not observed in the patient who died (Figure 8C,F). Increased creatine/creatinine
eventually resolved in the surviving patients, but not in the patient who died. The sur-
viving patients also manifested increased free fatty acid levels at the latest time points,
especially poly and highly unsaturated fatty acids of the 18, 20, and 22C series; in contrast,
the non-surviving patient exhibited late accumulation of acylcarnitines and amino acids
which did not resolve (Supplementary Figure S16).

4. Discussion

The present study provides the most extensive metabolomics analysis of COVID-
19 patients to date, including 831 samples at admission from hospitalized patients with
and without COVID-19 and 59 longitudinal samples from three case studies. Previous
metabolomics studies on COVID-19 were not powered to characterize the effects of other
variables critical for disease severity and prognosis. As examples, evaluations of biological
(e.g., sex [54], age [55], ethnicity [56], body mass index [57], blood group [42]) and clinical
(e.g., obesity, diabetes, cardiovascular disease, kidney disease) [53] characteristics are
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necessary to define independent and overlapping metabolic findings in COVID-19 and
other acute diseases. To this end, in some cases, we performed sub-analyses focusing on
one variable at a time, such as sex [3,41] or inflammation (e.g., circulating interleukin-6
(IL-6) levels) [1,4].

Leveraging the combination of large omics datasets from COVID-19 patients and
hospitalized (non-healthy) controls with manually curated clinical records, novel metabolic
correlates to biological variables and patient characteristics were identified in this study;
these results confirm and significantly enhance previous efforts in this disease [58,59].
For example, despite a positive correlation with weight and BMI, aging was accompa-
nied by decreased circulating levels of several poly- and highly unsaturated fatty acids
(PUFAs), consistent with reported age-dependent declines in unsaturated fatty acids in
healthy blood donors [23] and fatty acid desaturase activity, with functional implication
in hematopoiesis [60] as well as inflammatory and immune modulation [61]. PUFAs and
their bioactive derivatives (e.g., hydroxyoctadecadienoic and hydroxyeicosatetraenoic
acid) have been identified as modulators of inflammation as well as acute and chronic im-
mune response [61]. Dysregulated production of these immune-regulating lipid mediators
(eicosanoids and related docosanoids) was observed in patients with influenza [62] and
COVID-19 [63]. Decreased plasma PUFA levels in older and obese patients could contribute
to their poor prognosis after SARS-CoV-2 infection, potentially benefiting from therapeutic
treatment with intravenous omega-3 PUFAs to normalize PUFA levels, thereby increasing
the production of anti-inflammatory and pro-resolving immune lipid modulators [64].

Aging was also accompanied by increased markers of hypoxia (e.g., lactate, citrate,
alpha-ketoglutarate, fumarate), indicative of progressive mitochondrial dysfunction [65].
Given the role of these metabolites in immunometabolism [37], older patients also demon-
strated increased inflammation, especially COVID-19 patients, accompanied by poorer
outcomes. Similarly, purine catabolism and oxidation products (e.g., urate and xanthine),
hallmarks of ischemic [39] and hemorrhagic [36] hypoxic organ damage, increased with
age. Importantly, mitochondrial activity, aging, and inflammation are all associated with
hypercoagulabiity [49], harmonizing our observational results with the known increased
incidence of thromboembolic complications in COVID-19.

In contrast, aging, especially in COVID-19 patients, was accompanied by altered
levels of free fatty acids and acylcarnitines. The former may fuel viral membrane synthesis
through increased ATP production, which may be sustained by lipid mobilization from
adipose tissue and other sources, similar to observations in trauma patients [66] and
following the pathological vesiculation of RBC membranes [21]. Because obesity also
leads to poor outcomes in COVID-19, lipidomics analyses of 60 subjects with the highest
and lowest BMIs allowed identification of obesity-related lipid signatures in COVID-19
patients. In particular, neutral lipids (MG, DAG, TAG) and phospholipids (PC and LPE)
were mobilized; the latter may result from the release of methyl-groups from LPCs to meet
one carbon demands for viral nucleotide synthesis or repair of oxidant-induced isoaspartyl
damage [67]. This hypothesis is supported by the observed increase in plasma methionine
in the context of lower levels of most other amino acids. Similar to other studies, low levels
of most amino acids were observed

These metabolic observations of aging and obesity were exacerbated in COVID-19 pa-
tients and were consistent with disease severity, as indicated by clinical records and clinical
measurements of markers of inflammation (IL-6, CRP), coagulopathy (D-dimers, APTT,
INR, FVIII, VWF:AG, VWF:collagen-binding activity, VWF:ADAMTS-13 activity ratios,
thrombin and plasmin generation), and renal dysfunction (BUN, creatinine). Metabolic
correlates of these clinical parameters are provided in this study, as part of the efforts aimed
at compiling an encyclopedic characterization of metabolism in health and disease. For
example, we found strong negative correlations between kidney dysfunction and circu-
lating amino acid levels, as possible indicators of decreased renal reabsorption [29,30,68]
and hemodilution. As another example, positive correlations between pro-inflammatory
conjugated bile acids and liver transaminases support prior findings of mechanistic in-
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teractions of these metabolites with IL-1beta and hepatic stress [52]. Interestingly, these
metabolites were also associated with coagulopathy in trauma/hemorrhagic shock [69],
and with microbiome dysbiosis related to iron metabolism [70], observations informing
the correlations in our study between ferritin levels, acute-phase response proteins (CRP),
and conjugated bile acids.

Besides aging and inflammation, other factors are also associated with poor outcomes
in COVID-19. For example, the expression levels of angiotensin-converting enzyme 2
(ACE2) receptor in enterocytes modulate disease severity, in that viral entry into cells
is mediated by pairing of ACE2 with the viral spike protein [71]. Notably, we confirm
that arginine/proline/citrulline metabolism is an important pathway affected by COVID-
19 [1,4,72], which not only depends on kidney function, but also on enterocytes [73]. Low
plasma arginine and arginine bioavailability were observed in children and adults with
COVID-19 [72]. These patients had reduced T-cell proliferative capacity in vitro that was
partially, but significantly improved with arginine supplementation [74]. Furthermore,
arginase to nitric oxide (NO) synthase activity may influence the pro-/anti-inflammatory
state of gut resident macrophages [75]. In addition, circulating levels of arginine pathway
metabolites can be affected by RBC arginase activity [21], which is in turn affected by oxi-
dant stress and aging [76] and can contribute to COVID-19-induced endotheliopathy [32].
In the current study, arginine was significantly lower in COVID-19-positive patients com-
pared to COVID-19-negative critically ill hospitalized patients. Taken together, low plasma
arginine in COVID-19 patients may contribute to endothelial dysfunction via decreased
NO generation as well as alter immune response, which could potentially be improved
with arginine supplementation.

Endothelial dysfunction is a common finding in patient populations most at risk for
severe disease (i.e., obesity, diabetes, hypertension). The endothelium is directly affected by
SARS-CoV-2 infection, resulting in damage to the vasculature [77,78]. The endothelium can
also be indirectly affected in COVID-19 through the overstimulation of the immune system,
resulting in cytokine storm, endothelial activation, and capillary leak. The damaged and
overstimulated endothelium results in a shift in the vascular equilibrium towards more
vasoconstriction with subsequent organ ischemia and circulatory collapse along with
upregulation of the coagulation cascade promoting a pro-thrombotic state, which is likely
exacerbated in patients with pre-existing endothelial dysfunction [79,80].

Indole metabolites of microbial origin [81] were also significantly decreased in COVID-
19 patients, especially in those with the poorest outcomes. These decreases may result
from tryptophan depletion as a function of kynurenine pathway activation in COVID-
19 [1,33,34,41], especially in older males. We confirmed that kynurenine levels correlated
with SARS-CoV-2 infection, disease severity, and mortality. Indeed, IL-6 levels and kynure-
nine/tryptophan ratios were among the top predictors of mortality in COVID-19 patients,
confirming previous targeted analyses [35] of our larger, independent cohort. However, as
activation of interferon responses appear necessary for eliciting adaptive immunity against
COVID-19 [46], it is interesting that, in our longitudinal blood collections of the COVID-
19 patients who died, plasma kynurenine levels did not increase. In contrast, because
some metabolites in the kynurenine pathway are neurotoxic (e.g., picolinic acid, quinolinic
acid) [82], uncontrolled activation of this pathway may contribute to some neurological
comorbidities of COVID-19 (e.g., brain fog, weakness, fatigue). Interestingly, declines in
tryptophan-derived de novo nicotinamide synthesis are associated with aging and inflam-
mation [83], suggesting that nutritionally replenishing NAD reservoirs (e.g., nicotinamide
riboside) may be therapeutic in facilitating recovery from severe COVID-19 [84].

Depleting tryptophan to promote kynurenine synthesis may also lead to serotonin
depletion, a key component of platelet-dense granules with a role in platelet activation [85].
This is relevant given the importance of coagulopathy in COVID-19, with increased plasma
levels of FVIII, D-dimers, and VWF (i.e., increased VWF:collagen-binding activity, increased
VWF:ADAMTS-13 activity ratio), which are among the top correlates of mortality in our
cohort. In addition, inflammation negatively correlated with albumin levels, perhaps due
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to inflammation-induced proteolysis, agreeing with previous reports that albumin predicts
all-cause and cardiovascular mortality in chronic kidney disease patients [86]. Albumin
strongly correlated with total protein and hemoglobin levels, which were also among the
top correlates with kidney dysfunction, thereby strengthening the evidence supporting
RBC contributions to kidney physiology [31]. In contrast, no major effects of ABO blood
group were noted in our cohort, except for a link to IL-6 levels (highest in blood group A,
corroborating prior evidence relating to increased disease severity [42]). Not surprisingly,
ABO blood group was also linked to patient ethnicity in our cohort, which correlated
with increased inflammation (IL-6), D-dimers, creatinine, and cystine (oxidant stress) in
individuals of African descent.

Altered lipid metabolism is a common finding in patients with COVID-19 [59,87].
Activation of phospholipase A2 increases the formation of lysophospholipase A2 liberat-
ing free fatty acids, particularly PUFAs, while producing lysophospholipids, which are
necessary for viral replication [88]. Plasma lipididomic profiles reflect all secreted and non-
secreted lipid sources found in systemic circulation. Sphingosine-1-phosphosphate (S-1-P),
a bioactive lipid with anti-inflammatory actions on endothelial cells [89], was decreased in
our previous study comparing COVID-19 patients to healthy controls [1] and subsequently
identified as a negative biomarker of disease severity in COVID-19 patients [90]. This ob-
servation was confirmed in the current study, supporting the hypothesis that normalizing
S-1-P could improve vascular function and disease symptomology.

A recent study comparing healthy controls to COVID-19 patients suggest increased
secretion of monosialodihexosylganglioside (GM3)-enriched exosomes (increased levels
of sphinomyelins (SMs) and reduced DAGs), altering CD4+ T-cell activation, resulting in
immunosuppression [59]. In the current study, SM was decreased and DAG was increased.
Differences may be attributable to the health status of the reference group (healthy controls
vs. acutely ill hospitalized patients). Additionally, a study of 103 symptomatic COVID-19
subjects from northern Italy were compared to 32 and 26 non-COVID-19 patients with
(sick control) and without symptoms (healthy control). The main finding was altered lipid
metabolism with similar increases in fatty acid and triglyceride concentration along with
decreased sphingomyelin; however, the authors observed decreased DAG and phospho-
lipids (PC, PE, and PI) and a larger increase in lysophospholipid concentration. [87] The
observed differences could be due to different study populations or sample analysis.

Finally, as a proof-of-principle, we entered admission data (clinical and metabolomics)
into machine learning algorithms, randomly selecting approximately half of the COVID-
19 patient cohort as a training set and the other half as a test set. The resulting model
exhibited high specificity (>95%), but moderate sensitivity (~70%). The prediction accuracy
of these models may be affected by clinical contributors to the metabolic heterogeneity of
hospitalized patients, such as elements of their medical history. Nonetheless, we report
here for the first time that metabolic phenotypes of COVID-19 patients were most extreme
in patients presenting with a history of hypertension, chronic kidney disease, cancer,
coronary artery disease, or lung disease. Future research integrating metabolomics with
microbiomics datasets could enhance our understanding on how the gut flora contributes
to the pathology and disease severity in patients infected with SARS-CoV-2.

There are several limitations due to the inherent nature of the study design. Metabolomic
and lipidomic analysis was performed on leftover, discarded plasma used for PT analysis.
Although extreme care was taken to freeze the residual sample as rapidly as possible, there
was variability in the amount of time the specimen was stored at 4 C. Additionally, the
time of day as well as fasting status was not standardized, which could increase variability
in the observed metabolite concentrations [91–93]. Because both the control (SARS-CoV-2-
negative) and the SARS-CoV-2-positive subjects were critically ill, hospitalized patients, it
is unlikely that any of the aforementioned variables could explain the observed metabolic
differences described in this manuscript.

Taken together, the extensively detailed information in this large, prospective, ob-
servational study will support future mechanistic studies and data sharing opportuni-
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ties to enhance understanding of the plasma metabolism in COVID-19 and other acute
critical illnesses.
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