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Abstract: Adequate vascularization is a fundamental prerequisite for bone regeneration, formation
and tissue engineering applications. Endothelialization of scaffold materials is a promising strategy
to support neovascularization and bone tissue formation. Besides oxygen and nutrition supply, the
endothelial network plays an important role concerning osteogenic differentiation of osteoprogenitor
cells and consecutive bone formation. In this study we aimed to enhance the growth stimulating,
proangiogenic and osteogenic features of the ADSC and HUVEC coculture system by means of
VEGFA165 and BMP2 application. We were able to show that sprouting phenomena and osteogenic
differentiation were enhanced in the ADSC/HUVEC coculture. Furthermore, apoptosis was unidi-
rectionally decreased in HUVECs, but these effects were not further enhanced upon VEGFA165 or
BMP2 application. In summary, the ADSC/HUVEC coculture system per se is a powerful tool for
bone tissue engineering applications.

Keywords: bone tissue engineering; ADSC; HUVEC; VEGFA165; BMP2

1. Introduction

The treatment of large volume bone defects due to trauma, oncologic surgery or
infection can be challenging. The application of autologous bone still represents the current
gold standard for the reconstruction of large volume bone defects [1]. Dependent on the
defect size and/or entity, the use of vascularized bone grafts becomes necessary [2]. How-
ever, the transplantation of autologous bone tissue can be limited due to the defect size
and the corresponding donor site morbidity. To minimize donor site morbidity, allogenic,
xenogenic and alloplastic bone replacement materials such as demineralized bone matrix or
bioactive glass have been introduced into clinical practice [3,4]. However, these transplants
often lack the osteogenic, osteoconductive and osteoinductive potential of autologous
bone grafts. Furthermore, these transplants are less suitable for larger defects due to the
lack of sufficient vascularization. An elegant strategy to circumvent these limitations is
the generation of bioartificial vascularized bone grafts based on the principles of tissue
engineering [5]. Besides appropriate scaffold materials, the bone forming cells, as well as a
sufficient vascularization strategy, seem to be the bottleneck for bone tissue engineering. In
the past, different sources for the isolation, cultivation and expansion of osteoprogenitor
cells have been identified. Adipose derived stem cells (ADSCs) represent a promising
cell source due to their easy isolation and cultivation with only a few side effects. Fur-
thermore, ADSCs can be differentiated into osteoprogenitor cells by the application of
osteogenic supplements such as dexamethasone and 1,25-dihydroxyvitamine D3 [6]. The
endothelialization of scaffolds is a strategy to facilitate vascularization of tissue engineered
constructs and to enhance cell survival as well as tissue formation [7,8]. Besides the preser-
vation of tissue homeostasis, the microvascular network plays an important role in signal
transduction. We and others have shown that endothelial cells can stimulate proliferation
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and cell survival of cocultured osteoprogenitor cells [9–11]. Moreover, endothelial cells
stimulate the osteogenic differentiation of osteoprogenitor cells as indicated by increased
matrix mineralization and the production of osteogenic markers. Alkaline phosphatase
(ALP) is a prominent early osteogenic marker, which is upregulated in osteoprogenitor
cells upon 48–72 h of cocultivation with endothelial cells [12,13]. In a previous study we
have been able to prove that coculturing ADSCs and human umbilical vein endothelial
cells (HUVECs) in a ratio of 1:1 displays the best effects with regard to proliferation, cell
survival and osteogenic differentiation. This study intended to enhance the positive effects
of the ADSC/HUVEC coculture system by the application of BMP2 and VEGFA165.

2. Materials and Methods
2.1. Cell Culture

HUVECs were purchased from PromoCell (Heidelberg, Germany) and cultured in
Endothelial Cell Growth Medium (ECGM) (PromoCell, Heidelberg, Germany). ECGM
contained Endothelial Cell Basal Medium (ECBM) and supplements (PromoCell), 10% FCS
superior, 100 U/mL Penicillin and 100 µg/mL Streptomycin (Biochrom, Berlin, Germany).
According to an established protocol, ADSCs were isolated from five patients undergoing
autologous breast reconstruction with an abdominal free flap [14]. The ethics committee
approved the isolation of ADSCs [AZ: 126_16] and the patients gave informed consent.
ADSCs were cultured and expanded in MEMa (Gibco, Paisley, UK) supplemented with
10% FCS superior, 100 U/mL Penicillin and 100 µg/mL Streptomycin (all supplements
from Biochrom). Osteogenic differentiation of ADSCs was induced prior to the experi-
ments. For this purpose, ADSCs were cultured in ECGM medium containing an additional
1 × 10−8 M dexamethasone, 50 µg/mL L-ascorbic acid, 10 mM glycerophosphate and
0.01 µM 1,25-dihydroxyvitamine D3 (all supplements purchased from Sigma, Steinheim,
Germany) for 14 days [6,13]. For the following experiments, three experimental groups
were performed. All groups comprised the untreated ADSC and HUVEC monoculture as
well as the ADSC/HUVEC coculture in a ratio of 1:1. The cells in the control group were
cultured in osteogenic modified ECGM. The other two experimental groups were either
cultured in osteogenic modified ECGM supplemented with VEGFA165 (100 ng/mL) or
BMP2 (60 µg/mL). VEGFA165 was purchased from R&D Systems (Minneapolis, MN, USA)
and BMP2 in the form of InductOs was purchased from Medtronic (Heerlen, Netherlands).
The growth factors were reconstituted as recommended by the manufacturers. Cells were
seeded in a density of 5000 cells/cm2 in standard two-dimensional cell culture plates in an
humidified atmosphere at 37 ◦C and 5% CO2. The media were changed twice a week.

2.2. Immunoselection Using Magnetic Beads

Depending on the experimental setup, cells were detached from the cell culture dishes
and negative immunoselection was performed after 3 or 7 days. Briefly, the detached
cells were resuspended in 1 ml PBS containing 0.1% BSA. Magnetic beads (25 µL) coated
with a CD31 antibody (Invitrogen, Waltham, MA, USA) were added and incubation was
performed for 20 min at 4 ◦C Afterwards, cell separation was performed with a magnetic
separator (DynaMgTM, Invitrogen, Oslo, Norway) and each cell type was used for the
further experiments.

2.3. Cell Proliferation Assay

After 7 days, cells were detached from the cell culture plate, separated using negative
immunoselection and counted. The cell number was counted with a TC20TM automated
cell counter (BIO-RAD, Hercules, CA, USA).

2.4. Cell Death Detection ELISA

After 7 days of cell culture, apoptosis was measured and quantified using the well-
established cell death detection ELISA (Sigma, Steinheim, Germany). Briefly, cells were
lyzed in 200 µL lysis buffer and centrifuged at 200× g for 10 min. Thereafter, 20 µL
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of the supernatant were pipetted on a microplate coated with an anti-histone antibody.
After a washing step, a peroxidase-labelled anti-DNA antibody was added. The enzyme
reaction was induced with ABTS substrate (2,2′-Azino-di [3-ethylbenzthiazolin-sulfonat])
and absorbance was measured at 405 nm.

2.5. Matrigel Assay

A matrigel assay was performed to assess the influence of VEGFA165 and BMP2
on the angiogenic characteristics of the ADSC/HUVEC coculture system. Briefly, the
wells of a µ-Slice (Ibidi, Martinsried, Germany) were filled with 10 µL matrigel (Corning,
Kaiserslautern, Germany). After the matrigel polymerized, 10,000 cells per well were
added and incubation occurred for 4 h. Vital cells were marked with calcein (Sigma). The
newly formed vessel network was analyzed with Angiogenesis Analyzer (ImageJ Version
2 NIH, Bethesda, MD, USA).

2.6. RNA Isolation, Reverse Transcription and Quantitative Real Time PCR

The early osteogenic differentiation marker alkaline phosphatase (ALP) was assessed
using quantitative real time polymerase chain reaction (qRT-PCR). After 3 days of cell
culture, the cells were detached and separated, and total RNA was extracted with the
RNeasy® Mini Kit (QIAGEN, Hilden, Germany) following the manufacturer’s instruc-
tions. cDNA synthesis was performed with 1 µg RNA using the QuantiTect® Reverse
Transcription Kit (QIAGEN) according to company guidelines. For qRT-PCR, 25 ng cDNA,
SsoAvancedTM Universal SYBR® Green Supermix (BIO-RAD) and the primers for ALP
and RPL13a (reference gene) were used. Each sample was normalized to RPL13a and the
relative standard curve method was used for analysis [15].

2.7. Statistical Analysis

Statistical analysis was performed with Graph Pad Prism 7.00 (Graph Pad Software,
San Diego, CA, USA). After testing for normal distribution, analysis of variance (ANOVA)
was performed with Tukey test for multiple comparison. p values ≤ 0.05 were defined as
statistically significant.

3. Results
3.1. Proliferation

To assess the impact of VEGFA165 and BMP2 on proliferation, a proliferation assay
was performed. After 7 days, cells were detached, separated and counted individually.
Considering the total cell number, no significant increase was measured in the cocul-
ture compared to the ADSC monoculture in the control group. However, a statistically
significant increase was observed in the ADSC monoculture and coculture after adding
VEGFA165 compared to the control group (p ≤ 0.05). BMP2 did not affect the cell number
in the coculture and HUVEC monoculture compared to the control group. A statisti-
cally significant lower cell number can be found in the ADSC monoculture treated with
BMP2 (p ≤ 0.001) compared to the control group and the ADSC monoculture treated with
VEGFA165 (Figure 1A). Using negative immunoselection, the impact of VEGFA165 and
BMP2 was counted cell type specific in the cocultures (Figure 1B,C). With regard to the
ADSC control groups, only VEGFA165 induced a statistically significant increase of the
cell number under coculture conditions (p ≤ 0.01). Compared to the control groups, a
statistically significant lower cell number was only found in the HUVEC monoculture
upon VEGFA165 treatment.
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Figure 1. Proliferation rate of ADSCs and HUVECs under mono‐ and coculture conditions. After adding VEGFA165, a 

statistically significant increase of the total cell number was detected in the ADSC monoculture as well in the coculture 

group (A). Using negative  immunoselection, the effects of BMP2 or VEGFA165 were observed cell type specific (B,C). 

Statistically significant differences between the experimental groups are indicated for * p ≤ 0.05, ** p ≤ 0.01 and *** p ≤ 0.001. 

Figure 1. Proliferation rate of ADSCs and HUVECs under mono- and coculture conditions. After
adding VEGFA165, a statistically significant increase of the total cell number was detected in the
ADSC monoculture as well in the coculture group (A). Using negative immunoselection, the effects of
BMP2 or VEGFA165 were observed cell type specific (B,C). Statistically significant differences between
the experimental groups are indicated for * p ≤ 0.05, ** p ≤ 0.01 and *** p ≤ 0.001.Proliferation rate of
ADSCs and HUVECs under mono- and coculture conditions. After adding VEGFA165, a statistically
significant increase of the total cell number was detected in the ADSC monoculture as well in the
coculture group (A). Using negative immunoselection, the effects of BMP2 or VEGFA165 were
observed cell type specific (B,C). Statistically significant differences between the experimental groups
are indicated for * p ≤ 0.05, ** p ≤ 0.01 and *** p ≤ 0.001.
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3.2. Apoptosis

We measured a statistically significant reduction of apoptosis in the HUVEC coculture
control group (p≤ 0.05). Moreover, the addition of VEGFA165 and BMP2 reduced apoptosis
in monocultured HUVECs to a high extent (p ≤ 0.001). Conversely, only the addition of
BMP2 induced a statistically significant reduction of apoptosis in cocultured HUVECs
compared to the coculture control group (p ≤ 0.01; Figure 2A). In ADSCs, VEGFA165 and
BMP2 treatment did not influence cell survival under monoculture conditions. On the other
hand, VEGFA165 treatment reduced apoptosis significantly (p ≤ 0.001) in the cocultured
ADSCs compared to the corresponding control and BMP2 group (Figure 2B).
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Figure 2. Apoptosis of ADSCs and HUVECs under mono- and coculture conditions. Coculturing
reduced apoptosis in the HUVEC control group. Moreover, BMP2 and VEGFA165 reduced apoptosis
in the HUVEC monocultures (A). VEGFA165 reduced apoptosis in the cocultured ADSCs (B). Statisti-
cally significant differences between the experimental groups are indicated for * p ≤ 0.05, ** p ≤ 0.01
and *** p ≤ 0.001.

3.3. Matrigel Assay

To investigate the impact of VEGFA165 and BMP2 on network formation, we per-
formed a matrigel assay. Unlike osteogenic differentiated ADSCs, HUVECs and cocultures
from all experimental groups formed tubes (Figure 3).
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Figure 3. Monocultured ADSCs treated with or without BMP2 or VEGFA165 formed no tubes in ma-
trigel (A–C). Sprouting was observed in the coculture (D–F) and HUVEC monoculture groups (G–I).

Even the addition of VEGFA165 or BMP2 did not influence network formation of
ADSCs in the monoculture (Figures 3A–C and 4A,B). Compared to the control group, the
addition of growth factors did not influence network formation (Figure 4A,B).

3.4. ALP Gene Expression

Alkaline phosphatase is a well-established parameter for early osteogenic differentia-
tion. Negative immunoselection allows the specific quantification of ALP gene expression
of ADSCs under coculture conditions. In all cocultures we were able to prove a statistically
significant increase of ALP gene expression (p ≤ 0.001) compared to the corresponding
monocultures. VEGFA165 and BMP2 did not change ALP gene expression in the mono-
and cocultures (Figure 5).
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cerning the branch number and length. Statistically significant differences between the experimental
groups are indicated for * p ≤ 0.05, ** p ≤ 0.01 and *** p ≤ 0.001.
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Figure 5. After negative immunoselection, PCR analysis was carried out in ADSCs. Alkaline
phosphatase (ALP) gene expression as a surrogate parameter for osteogenic differentiation was
upregulated under coculture conditions. BMP2 or VEGFA165 had no effect on ALP gene expression.
Statistically significant differences between the experimental groups are indicated for *** p ≤ 0.001.

4. Discussion

Bone formation and angiogenesis are two closely related processes. Inhibition of an-
giogenesis can lead to impaired bone formation and/or insufficient fracture healing [16,17].
Besides a sufficient microvascular network providing nutrients and oxygen, endothelial
cells are critically involved in intercellular signal transduction with osteoprogenitor cells.
In this regard, we [11,18] and other groups [9,12] have been able to prove that cocultur-
ing endothelial cells with osteoprogenitor cells increases cell survival, proliferation and
osteogenic differentiation. In this regard, heterotypic cell contacts between endothelial cells
and osteoprogenitor cells seem to be the driving force [19]. In a recent work we demon-
strated that coculturing adipose derived stem cells (ADSCs) and human umbilical vein
endothelial cells (HUVECs) stimulates proliferation, proangiogenic effects and osteogenic
differentiation [13]. We translated our in vitro results into the rat arteriovenous loop (AV
loop) model. Forming an arteriovenous fistula between the femoral vessels by means of
a venous interponate, vascularization of an hydroxyapatite-fibrin matrix was surgically
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induced. After six weeks, we showed that the coimplantation of ADSCs and HUVECs
stimulated bone formation of the hydroxyapatite-fibrin matrix [20]. Because only approx-
imately 20% of the newly formed tissue was mineralized, we intended to enhance the
osteogenic potential of the ADSC/HUVEC coculture system with the application of growth
factors. Vascular endothelial growth factor A isoform 165 (VEGFA165) and bone morpho-
genetic protein 2 (BMP2) are well known growth factors associated with bone formation
and angiogenesis [17,21–23]. Based on previous work and in order to translate our findings
into the AV loop model, we used a concentration of 60 µg/mL BMP2 and 100 ng/mL
VEGFA165 for our study [21,24,25]. After 7 days of incubation, we did not detect a growth
stimulating effect in the ADSC/HUVEC coculture without growth factors. However, we
were able to prove that VEGFA165 induced proliferation in ADSCs under mono- and cocul-
ture conditions compared to the control group. Interestingly, the application of VEGFA165
did not stimulate the proliferation of HUVECs under coculture conditions. Moreover,
the application of VEGFA165 reduced the cell number of HUVECs under monoculture
conditions compared to the control group. Based on the findings from a previous study, it
is alluring to speculate that VEGFA165 concentrations higher than 200 pg/mL might have
adverse effects on HUVEC proliferation [13]. From the pertinent literature, it is well-known
that VEGF can stimulate the proliferation rate of ADSCs in a dose dependent manner [26].
BMP2 did not affect the proliferation rate of HUVECs neither under mono- nor under
coculture conditions. Besides that, BMP2 reduced the cell number of ADSCs in the mono-
culture, whereas the cell number in the coculture remained unaffected. In accordance to
a previous study, we were able to show that cocultivation reduced the apoptosis rate in
HUVECs in the control group [13]. This effect was only unidirectional and not observed in
cocultured ADSCs. The addition of BMP2 or VEGFA165 further reduced the apoptosis rate
in HUVECs under monoculture conditions compared to the corresponding control group.
Interestingly, this effect was not observed in cocultured HUVECs. It might be reasonable to
assume that apoptosis is regulated independently of BMP2 and/or VEGFA165 in HUVECs
under coculture conditions. The results from the proliferation and apoptosis experiments
are in accordance with previous work demonstrating that heterotypic cell contacts between
HUVECs and osteoprogenitor cells have a strong influence on proliferation and/or cell
survival [11]. Given the fact that vascularization of bone tissue engineering constructs is the
major limiting step for the clinical application, we tried to enhance the angiogenic potential
of the ADSC/HUVEC coculture system. In accordance to a previous study, we were able to
show that osteogenic differentiated ADSCs under monoculture conditions did not sprout
in the matrigel assay [13]. In the HUVEC monoculture and in the coculture of ADSCs and
HUVECs, we observed sprouting phenomena. Surprisingly, the addition of VEGFA165
or BMP2 had no effect on the sprouting performance compared to the control group. The
pertinent literature proves that cocultivation of endothelial cells with osteoprogenitor cells
stimulates the osteogenic differentiation [12,13,18,27,28]. Most often, alkaline phosphatase
(ALP) is used as a marker molecule for early osteogenic differentiation. Using negative
immunoselection, we demonstrated increased ALP gene expression in ADSCs after 72 h of
cocultivation with HUVECs. Interestingly, the application of VEGFA165 or BMP2 did not
further increase ALP gene expression in ADSCs neither in the monoculture nor in the co-
culture. Consistent with the pertinent literature, the role of paracrine acting molecules such
as VEGFA165 or BMP2 is controversial. Heterotypic cell contacts between endothelial cells
and osteoprogenitor cells or the extracellular matrix seem to play a superior role [18,29].

5. Conclusions

In our study, we were able to demonstrate that coculturing ADSCs and HUVECs
stimulates osteogenic differentiation and proangiogenic effects. Moreover, apoptosis was
decreased in HUVECs in a unidirectional manner. The addition of VEGFA165 or BMP2 did
not further stimulate osteogenic differentiation, sprouting phenomena or cell survival of
the ADSC/HUVEC coculture.
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