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Abstract: Hypoxia is a common feature in most tumors, including hematological malignancies. There
is a lack of studies on hypoxia- and physioxia-induced global proteome changes in lymphoma. Here,
we sought to explore how the proteome of diffuse large B-cell lymphoma (DLBCL) changes when
cells are exposed to acute hypoxic stress (1% of O2) and physioxia (5% of O2) for a long-time. A total
of 8239 proteins were identified by LC–MS/MS, of which 718, 513, and 486 had significant changes, in
abundance, in the Ri-1, U2904, and U2932 cell lines, respectively. We observed that changes in B-NHL
proteome profiles induced by hypoxia and physioxia were quantitatively similar in each cell line;
however, differentially abundant proteins (DAPs) were specific to a certain cell line. A significant
downregulation of several ribosome proteins indicated a translational inhibition of new ribosome
protein synthesis in hypoxia, what was confirmed in a pathway enrichment analysis. In addition,
downregulated proteins highlighted the altered cell cycle, metabolism, and interferon signaling.
As expected, the enrichment of upregulated proteins revealed terms related to metabolism, HIF1
signaling, and response to oxidative stress. In accordance to our results, physioxia induced weaker
changes in the protein abundance when compared to those induced by hypoxia. Our data provide
new evidence for understanding mechanisms by which DLBCL cells respond to a variable oxygen
level. Furthermore, this study reveals multiple hypoxia-responsive proteins showing an altered
abundance in hypoxic and physioxic DLBCL. It remains to be investigated whether changes in the
proteomes of DLBCL under normoxia and physioxia have functional consequences on lymphoma
development and progression.

Keywords: hypoxia; physioxia; diffuse large B-cell lymphoma (DLBCL); B-cell non-Hodgkin lym-
phomas (B-NHL); label-free quantitative proteomics; protein–protein interaction network (PPIN);
cell stress

1. Introduction

The environment in which lymphoma cells are found in the human body has different
levels of oxygenation. Lymphatic tissues show a lower concentration of oxygen than blood
(0.6–2.8% of oxygen) [1,2], while the oxygen concentration in bone marrow counts for
approximately 1.3–4.2% [3]. Indeed, secondary lymphoid organs, such as the spleen, may
also encounter a hypoxic environment (0.5–4.5% of oxygen) [4]. When normal B-cells are
incapable of adjusting to low O2 and do not survive hypoxic stress in vitro for more than
48 h, lymphoma cells respond to hypoxic stimuli through alterations in gene expression and
escape from cell death [5]. Surprisingly, the exact molecular background of the adaptation
to an imbalance in oxygen supply is still not fully understood.

Mammalian cells have historically grown and divided well in ambient air, thus cul-
turing cells in a more physiologic setting concerning oxygen (so-called physioxia) has not
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received approval for many years. Meanwhile, with technological advances, data support
that cells benefit from being cultured in physioxia. There is strong evidence that physioxia
influences the growth [6–8], differentiation [9,10], and survival [11] of many cell types,
cultured as monolayers and three-dimensional spheroids. Moreover, culturing of cells un-
der physiological oxygen has significant consequences on, e.g., adhesion and motility [12],
self-renewal [13], and production of EMC and growth factors [14]. Notably, Timpano et al.
reported that physioxic cultures significantly improve mitochondrial metabolic activity
while reducing DNA damage [15]. Surprisingly, the data describing the global differences
in the transcriptomes and proteomes of cells when cultured in physiological oxygen are
lacking. However, the observed differences in the phenotypes between normoxic and
physioxic cells raise essential questions on the relevance of the in vitro studies performed
in normoxic conditions, primarily when they are related to the development of potentially
life-saving therapies.

Non-Hodgkin’s B-cell lymphomas (B-NHLs) are a heterogeneous group of lymphopro-
liferative malignancies originating from the different stages of B-lymphocyte development
and maturation [16]. It was believed that lymphoma cells proliferate independently from
the tissue blood supply, and this is partially true for indolent lymphomas, in which limited
metabolic requirements are met directly from the circulation [2]. Meanwhile, the over-
all survival of aggressive lymphomas, including the most frequent diffuse large B-cell
lymphoma (DLBCL), strongly depends on continuous tissue oxygenation and nutrient
supply [17], similarly to solid tumors. Aggressive lymphomas share other features with
solid tumors, including rapid cell growth, angiogenesis, and the presence of focal necrosis;
thus, their response to hypoxia could resemble that of solid tumors [18]. However, an
increasing number of reports are showing that hypoxia-related changes in DLBCL are more
complex and heterogeneous than originally thought [5,19].

The majority of cancers undergo extensive cellular reprogramming to adapt to environ-
mental challenges, such as hypoxia. Low oxygen pressure in the cancer microenvironment
leads to the transcriptional induction of several genes, of which key regulators are the
hypoxia-inducible transcriptional factors (HIFs) [20]. The HIFs regulate several target
genes in diverse biological pathways; thus, cancer cells respond to the hypoxic stress by
controlling of mRNA-specific translation [21] and cell cycle, increasing angiogenesis [22],
and metabolic reprogramming [23,24]. Recently, Bhalla et al. observed a 50% decrease in
translation in DLBCL under the influence of activated HIF-1α [5]. Importantly, translation
was not completely stopped, and targets, such as GLUT1, HK2, and CYT-C, proved resis-
tant to translational repression due to hypoxia. In turn, Sharma et al. revealed the hypoxia
and normoxia-induced RNA editing events in lymphoma by RNA sequencing, which was
enriched for genes involved in mRNA translation and ribosome function [24]. Importantly,
the authors showed that inhibition of mitochondria respiration results in Warburg-like
metabolic remodeling that occurs independently of HIF-1α. Additional recent observations
demonstrate further crosstalk of hypoxia and mitochondrial oxidative phosphorylation [25],
mTOR [23,26], and BCR [27] pathways in normal and malignant B-cells.

Few previous works have been dedicated to describing the protein profile of B-NHLs,
especially DLBCL [28–30]; however, none of these results showed how lymphoma cells
would behave under variable oxygen mimicking in vivo settings. Therefore, our goal
here was to describe the quantitative changes in global protein expression of DLBCL cells
under hypoxic (1% O2) and physioxic (5% O2) conditions with large-scale LC–MS/MS,
and subsequent bioinformatics data analysis. We identified for the first time hundreds
of hypoxia- and physioxia-responsive proteins, many of which have not been previously
associated with hypoxia. Clearly, the observed response to hypoxia in DLBCL is highly
complex and heterogenous, which was previously highlighted in work based on whole-
genome sequencing data [19]. At the same time, the enrichment analysis revealed several
hypoxia- and physioxia-responsive pathways, commonly altered in lymphoma cell lines,
including ribosome biogenesis, translation, metabolism, and cell cycle. Hypoxia largely
impacts lymphoma progression by promoting a more malignant phenotype, associated
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with poor clinical prognosis in several cancer types [31]. Thus, the results presented in
this work provide a valuable source of new molecular targets and pathways potentially
important for the design of new anti-B-cell therapies of NHL.

2. Materials and Methods
2.1. Cell Culturing under Physioxia and Hypoxia

Ri-1, U2904, and U2932 cell lines were obtained from the Leibniz Institute German
Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany). The
characteristic of the cell lines are presented in Table 1.

Table 1. The general characteristic of the diffuse large B-cell lymphoma (DLBCL) cell line used in the
study. AMP—amplification, R—rearrangements, ABC—activated B-cell like, GCB—germinal center
B-cell like, FL—follicular lymphoma, SLL—small lymphocytic lymphoma.

Cell Line Origin Subtype Features

Ri-1 transformed SLL
(Richter Syndrome) ABC MYC R

U2904 transformed FL (Kiel
centrocytic/centroblastic) GCB MYC R, BCL2 R

U2932 de novo DLBCL, NOS ABC BCL2 AMP

For the experiments, 1 × 106 of cells were seeded on 75 cm2 flask and incubated for
72 h in Gibco™ RPMI 1640 medium with GlutaMAX (Thermo Fisher Scientific, Berlin,
Germany) containing 10% heat-inactivated fetal bovine serum (FBS, Thermo Fisher Sci-
entific) in a humidified atmosphere in standard conditions. The viability of diffuse large
B-cell lymphoma (DLBCL) cells was evaluated by Trypan blue dye exclusion assay on
the Countess Automated Cell Counter (Thermo Fisher Scientific). Cells were routinely
>95% viable.

Next, 3 × 106 of cells/mL were subjected to either physioxic (5% O2, 5% CO2) or
hypoxic (1% O2, 5% CO2) treatment for 72 h using the multigas incubator (New Brunswick
Galaxy 48R, Eppendorf, Hamburg, Germany). During incubation, the temperature of 37 ◦C
and proper humidity were maintained. As a control, cell lines incubated in normoxia (21%
of O2, 5% CO2) were used. Four independent biological replicates were conducted for each
condition for each cell line. All supplies and media were acclimated for at least 18 h in
either hypoxia or physioxia, as previously suggested [32].

2.2. Sample Preparation for Mass Spectrometry

For the sample preparation, 1 × 106 of cells were lysed in 150 µL of lysis buffer
containing 100 mM of Tris-HCl, pH 8, 50 mM of dithiothreitol (DTT), and 2% of sodium
dodecyl sulfate (SDS) for 5 min at 99 ◦C. Next, lysates were sonicated on the water at room
temperature for 2 min and centrifuged at 10,000 RCF for 10 min, followed by transferring
supernatant to the new tubes. The total protein concentration was measured in accordance
with the tryptophan fluorescence (WF)-based assay [33]. Sample aliquots containing 70 µg
of total protein were processed using the multi-enzyme digestion filter aided sample
preparation (MED FASP) protocol [34] with minor modifications [35]. Briefly, proteins were
consecutively digested overnight with endoproteinase Lys-C (Wako Chemicals, Neuss,
Germany) and then with trypsin (Promega, Madison, WI, USA) for 3 h. The enzyme
to protein ratio was 1:50. Aliquots containing 10 µg of total peptides were desalted on
C18-StageTips [36] and concentrated to a volume of ~5µL. Samples were stored frozen at
−20 ◦C until analysis.

2.3. LC–MS/MS

Analysis of peptides was performed using a Q Exactive HF Mass Spectrometer
(Thermo-Fisher Scientific). Moreover, 1 µg of total peptides was chromatographed on
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a 50 cm column with a 75 µm inner diameter packed C18 material (Dr. Maisch GmbH,
Ammerbuch, Germany). Next, peptide separation was carried out at 300 nL/min for 90 min
with the use of two-step acetonitrile (ACN) gradient of 5–60% over the first 75 min and
60–95% for the following 15 min. The temperature of the column oven was 60 ◦C. The
mass spectrometer operated in data-dependent mode. Survey scans were acquired at a
resolution of 50,000 at m/z 400 with transient time 256 ms. Most abundant isotope patterns
with charge ≥+2 from the survey scan (300–1650 m/z) were selected up to the top 15,
with an isolation window of 1.6 m/z and fragmented by HCD with normalized collision
energies of 25. The maximum ion injection times for the survey scan and the MS/MS scans
were 20 and 60 ms, respectively. The ion target value for MS1 and MS2 scan modes was
set to 3 × 106 and 105, respectively, while the dynamic exclusion was 25 s and 10 ppm.
The mass spectrometry data were deposited to the ProteomeXchange Consortium via the
PRIDE partner repository [37] with the PXD026726. Reviewer account details: username:
reviewer_pxd026726@ebi.ac.uk; password: 6rGpX4.

2.4. MS/MS Data Analysis and Statistical Analysis

MaxQuant (MQ) software (Max Planck Institute, Martinsried, Germany) was used for
spectra searching. A maximum of two missed cleavages was allowed. Carbamidomethy-
lation of cysteines was set as a fixed modification. The minimum peptide length was
specified to be seven amino acids. The initial maximal mass tolerance in MS mode was set
to 7 ppm, while fragment mass tolerance was set to 20 ppm for HCD data. The maximum
false peptide and protein discovery rate was set as 0.01. Specific protein concentrations
were calculated by the “Total Protein Approach” (TPA) [38] using raw intensity MQ output.
Statistical analysis of proteomic data was conducted by Perseus software v.1.6.10.45 (Max
Planck Institute for Biochemistry) [39]. Importantly, the samples were filtered for proteins
detected in 100% in each group. The absolute protein concentration was log2-transformed,
z-scored and the two-sample T-test was performed. Benjamini–Hochberg FDR procedure
was used to calculate p-values, and p < 0.05 was considered statistically significant. The
following comparisons were performed: hypoxic cell lines versus corresponding normoxic
cell lines, physioxic cell lines versus corresponding normoxic cell lines, and hypoxic cell
lines versus corresponding physioxic cell lines to identify the hypoxia- and physioxia-
related proteins. The ratio was calculated by (1) dividing the mean TPA values of the
hypoxic/physioxic cell lines with the mean TPA values of the corresponding cell lines
under normoxia; and (2) dividing the mean TPA values of the hypoxic cell lines with the
mean TPA values of the corresponding cell lines under physioxia. The cutoff values of
±1.5-fold for up- and downregulated proteins between samples were established.

2.5. Bioinformatic Analysis

The differentially abundant proteins were analyzed by open-source bioinformatics
software platform Cytoscape (version 3.8.2). Functional interaction network analysis
was performed using ClueGO and CluePedia (version 2.5.7), STRING, and cytoHubba
Cytoscape plugins [40–42]. Pathway enrichment analysis was carried out and visualized
with the Metascape [43]. Protein–protein interaction network for up- and downregulated
proteins was visualized by ClueGO against Gene Ontology (GO)–Biological Processes (all
updated on 8 May 2020) with standard settings. Only pathways with p < 0.01 were shown.
The Venn diagrams were created with the web tool from Bioinformatics and Evolutionary
Genomics group [44].

3. Results
3.1. Overview of Data

We were interested in determining how hypoxia (1% of oxygen) and physioxia (5%
of oxygen) differentially impacts the proteomes of DLBCL. We first cultured Ri-1, U2904,
and U2932 cells under the hypoxic and the physioxic condition for 72 h. Cells maintained
under the normoxic conditions served as a control. The experiment was performed in four
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biological replicates for each cell line in each condition. The findings of our comparative
LC–MS/MS proteomic study are summarized in Figure 1. A total of 8239 proteins were
identified across all three cell lines, of which 7959, 8031, and 8020 were found in Ri-1, U2932,
and U2904 cells, respectively (Figure 1A).

1 
 

 

Figure 1. Exploratory analysis. (A) The number of proteins identified in the study in each experimental group. The green
boxes indicate the number of proteins identified exclusively in the corresponding experimental group. (B) Results of
principal component analysis (PCA) of log2 intensities values from Ri-1, U2904, and U2932 cell lines (in four biological
replicates) under normoxia (21%) physioxia (5%), and hypoxia (1%). (C) Dendrogram that displays unsupervised hierarchical
clustering analysis between U2932 samples under hypoxia (H, 1% of O2), physioxia (P, 5% of O2), and normoxia (21% of
O2). Performed in Perseus software.
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Importantly, principal component analysis (PCA) differentiated the cell lines treated
under normoxia, physioxia, and hypoxia, and revealed similarity between Ri-1 and U2904
samples, especially under normoxia and physioxia (Figure 1B). In turn, Figure 1C shows an
unsupervised hierarchical clustering dendrogram of all U2932 samples. Two main clusters
are found, first representing cells under hypoxia, and second grouping samples under
physioxia and normoxia. Next, we analyzed the Pearson’s correlation coefficient for each
cell line and the representative results for a U2932 analysis are presented in Figure S1.
Biological replicates performed for each experimental condition showed high Pearson’s
correlation coefficient values, with a maximum of 0.92. For protein identification data, see
Table S1.

3.2. DLBCL Shows Extensive Changes in Proteomic Profile under Hypoxia and Physioxia When
Compared to Normoxia

We analyzed differentially expressed proteins with ≥1.5-fold (higher or lower) dif-
ferences in the protein abundance and p-values p < 0.05 under hypoxia and physioxia in
comparisons to 21% of oxygen. Compared with the cells cultured under normoxic condi-
tions, under hypoxia we identified 718, 513, and 486 of differentially abundant proteins
(DAPs) in Ri-1, U2904, and U2932 cell lines, respectively. Thus, Ri-1 cell line appeared to be
the most hypoxia-responsive with 11.45% of proteins with an altered abundance. U2904
and U2932 cells exhibited a relatively lower response to this treatment—the expression
of 8.14% and 7.6% of proteins was significantly affected. Maximum alterations of over
195-fold decrease in protein abundance were found for AIM1 and CDK16 in hypoxic Ri-1
cells. In turn, the most upregulated protein in our dataset was RAB39B in hypoxic U2905
cells with a fold change of 30.06. For more details, see the complete lists of DAPs identified
in each cell line (Table S2). Next, we used a volcano plot to visualize DAPs identified in
hypoxia (Figure 2A,D,G) and physioxia (Figure 2B,E,H).

Our data showed that the number of upregulated proteins was similar between the
three cell lines, while the number of downregulated proteins was significantly higher in Ri-
1 cells. Each cell line under physioxia exhibited weaker changes in the protein abundance
when compared to those induced by hypoxia, and the percentage of DAPs was 5.3%, 4.37%,
and 4.29% for U2904, Ri-1, and U2932, respectively. A full list of hypoxia, and physioxia-
responsive proteins identified in each particular cell line is available as Supplementary
data. Furthermore, Table 2 shows the confirmed HIF-1α targets identified in this study, of
which ALDH6A1 was upregulated in each cell line under hypoxia.

The numbers of DAPs overlapping in hypoxia and physioxia for each cell line sepa-
rately are presented in the Venn diagram (Figure 2C,F,I). The 49.29%, 40.58%, and 37.2% of
DAPs identified in physioxia were common with those identified in hypoxia in Ri-1, U2904,
and U2932 cells, respectively. In turn, the 19.22%, 21.83%, and 26.33% of altered proteins
in hypoxia were shared with DAPs identified in physioxia. This suggests that distinct
mechanisms may be responsible for the cellular response to hypoxia and physioxia. Next,
we classified DAPs in relation to fold change ranges, Figure 3A. The majority of DAPs were
up- or downregulated at a fold change range between 1.5 and 2.5. The percentage of the
most upregulated proteins with fold change > 5.0 identified in each study group varies
from 8% to 15.94% for physioxic U2932 cells and hypoxic Ri-1 cells, respectively. On the
other hand, the percentage of the most downregulated proteins (fold change >−5.0) is the
highest for physioxic U2932 cells (14.3%) and the lowest for hypoxic U2904 cells (5.7%).
The lists of overlapping proteins in each cell line are provided in Table S3.
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U2932 cells, (G) hypoxic U2904 cells, and (H) physioxic U2904 lymphoma cell lines when compared 
to normoxia. The number of proteins identified in 100% of biological replicates is provided. Red 
dots represent upregulated proteins with fold change ≥1.5 while green dots represent downregu-
lated proteins with fold change ≤−1.5, p-value cutoff <0.05. The number of up- and downregulated 
proteins is presented. Generated in Perseus software. (C) Venn diagram showing the overlap be-
tween DAPs identified in hypoxia and physioxia in comparison to standard oxygen conditions in 
Ri-1 cells, (F) U2932 cells, and (I) U2904 cells. The complete list of DAPs with all details is placed in 
Table S2, while lists of shared proteins in hypoxia and physioxia in each cell line are provided in 
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Figure 2. Volcano plots of data from label-free quantification of differentially abundant proteins (DAPs) in (A) hypoxic Ri-1
cells, (B) physioxic Ri-1 cells, (D) hypoxic U2932 cells, (E) physioxic U2932 cells, (G) hypoxic U2904 cells, and (H) physioxic
U2904 lymphoma cell lines when compared to normoxia. The number of proteins identified in 100% of biological replicates
is provided. Red dots represent upregulated proteins with fold change ≥1.5 while green dots represent downregulated
proteins with fold change ≤−1.5, p-value cutoff < 0.05. The number of up- and downregulated proteins is presented.
Generated in Perseus software. (C) Venn diagram showing the overlap between DAPs identified in hypoxia and physioxia
in comparison to standard oxygen conditions in Ri-1 cells, (F) U2932 cells, and (I) U2904 cells. The complete list of DAPs
with all details is placed in Table S2, while lists of shared proteins in hypoxia and physioxia in each cell line are provided in
Table S3.
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Table 2. The list of HIF-1α targets being differentially expressed in Ri-1, U2904, and U2932 cell lines
under hypoxia. FC- fold change.

Target Function Ri-1
(FC)

U2904
(FC)

U2932
(FC)

ALDH6A1

metabolic
reprogramming

3.750 2.001 4.112
ALDH7A1 3.689 1.847

PFKL 3.115 —— 4.105
PDK1 3.304 —— 2.096

BCAT2 1.529 —— ——
PFKFB4 4.396 —— ——

HK2 —— 2.015 ——
BNIP3L —— 6.746 ——
LDHA —— —— −9.452

PFKFB3 —— —— 6.548
PGK1 —— —— −5.407

ALDOC —— —— −3.286

PDCD4

metastasis and
invasion

1.879 —— 2.370
P4HA1 —— 5.630 6.070
CXCR4 —— 4.071 ——
NPM1 —— 3.611 ——

LGALS1 —— —— 2.468

GPI angiogenesis 1.590 4.169
HMOX1 −3.541 −4.303

ZEB1
epithelial-

mesenchymal
transition

2.210 —— ——

VIM EMT 3.140 —— ——

EGLN1
regulation of the

hypoxic
response

2.253 3.048 ——

IRAK4 apoptosis 3.605 —— ——

Response to Both: Hypoxia and Physioxia Is Cell Line Specific

Then, we compared DAPs identified in each cell line, after hypoxic and physioxic
treatment, and the analysis revealed that the response to increased oxygen is cell line
specific. Among the differentially abundant proteins in hypoxia, 518, 382, and 315 proteins
were specifically expressed in cell Ri-1, U2932, and U2904 cell lines, respectively (Figure 3B).
In turn, the 110 of DAPs were shared in hypoxia between Ri-1 and U2904 cells, while 70 and
40 DAPs were common for Ri-1 and U2932, and U2904 and U2932, respectively.

Only 19 of DAPs were common in the three compared groups, including TRUB2,
SEC14L1, CLPTM1, PICALM, ALDH6A1, CCDC86, PPT1, AK4, MMAA, VIMP, HMGCL,
GTPBP10, SGSH, EIF4A2, CFDP1, METTL17, KDM3A, DDX56, and PPP1R7. Under
physioxia, 280, 227, 213 of DAPs were altered specifically in U2904, U2932, and Ri-1 cells
respectively (Figure 3C). 40 of DAPs were overlapping in Ri-1 and U2904 cells, while 21 and
25 of the DAPs were shared in physioxia between Ri-1 and U2932, and U2932 and U2904
cells, respectively. Two altered proteins, CARS2 and METTL17, were identified in all cell
lines after physioxic treatment. These findings suggested that the response to physioxia is
highly cell line specific. The complete list of shared proteins is presented as Supplementary
Table S3.
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Figure 3. (A) Classification of differentially abundant proteins (DAPs) identified in hypoxia (1% of O2) and physioxia
(5% O2) based on fold changes in protein abundance in comparison to control samples maintained in standard oxygen
condition, p < 0.05. The red and green bars show the number of up- and downregulated proteins, respectively. The color
gradation shows increasing fold changes. (B) Venn diagrams showing numbers of DAPs overlapping between Ri-1, U2904,
and U2932 cell lines in hypoxia (1% of O2), and (C) physioxia (5% of O2). The list of shared proteins is provided in Table S3.

3.3. Hypoxic Treatment Exhibit Lower Magnitude of Changes When Compared with Physioxia

Next, we analyzed the cell lines proteomes under hypoxia versus corresponding cells
cultured under physioxia. We identified the 320, 279, and 357 DAPs in Ri-1, U2904, and
U2932 cells, respectively (Figure 4A–C). Importantly, we observed that 47.81%, 31.18%,
and 30.81% of DAPs identified in hypoxic Ri-1, U2904, and U2932 cells, respectively,
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were shared with DAPs identified in corresponding cell lines when hypoxia compared to
normoxia (Figure 4D).
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Figure 4. Volcano plots of data from label-free quantification of differentially abundant proteins (DAPs) in hypoxic (1%
of O2) (A) Ri-1 cells, (B) U2904 cells, and (C) U2932 cells when compared to physioxia (5% of O2). Red dots represent
upregulated proteins with fold change ≥ 1.5, while green dots represent downregulated proteins with fold change ≤ −1.5,
p-value cutoff < 0.05. Generated in Perseus software. The complete list of DAPs with all details is placed in Table S2. (D)
Venn diagram showing number of DAPs overlapping among Ri-1, U2904, and U2932 cell lines in hypoxia when analyzed
versus physioxia. The list of shared proteins is provided in Table S3. (E) The table showing the number of DAPs commonly
identified in each cell line when (i) hypoxia compared to physioxia, and (ii) hypoxia compared to normoxia.

As expected, the number of DAPs were significantly lower than the number of DAPs
identified in the hypoxia compared to normoxia. The differences in the number of outliers
identified in hypoxic cell lines ranged 55.43%, 42.59%, and 30.41% of the decrease in the
number of DAPs in Ri-1, U2904, and U2932 cells, respectively. Regarding the fold change
values of DAPs, these do not exceed a 10-fold increase in protein abundance in any cell line.
CRYZ was the most upregulated protein in our dataset, with a fold change of 9.545 in U2904
cells. In turn, the highest fold decrease of 48.331 was noticed for LRRC15 in U2932 cells.

Response to hypoxia, when compare with physioxia, is cell line-specific (Figure E).
308, 257, and 221 of outliers were specifically expressed in U2932, Ri-1, and U2904 cell
lines, respectively. In turn, only 35 DAPs were shared in hypoxia between Ri-1 and U2904
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cells, while 26 and 21 DAPs were common for Ri-1 and U2932, and U2904 and U2932,
respectively. Two altered proteins, KDM3A and MYO16, were identified in all cell lines
under hypoxia. A complete list of hypoxia-responsive proteins identified in each cell line
compared to physioxia is available as Supplementary Data.

3.4. Functional Enrichment Analysis
3.4.1. Upregulated Proteins Reveals Changes in Metabolism and HIF-1 Signaling Pathway
under Hypoxia

To find out which biological pathways are regulated preferentially in DLBCL cells
by hypoxia and physioxia relative to normoxia, an enrichment analysis was performed
with the use of Metascape. The enrichment was done for up- and downregulated proteins
separately for each cell line (12 enrichment analyses in total). The top 20 clusters with
their representative enriched terms (one per cluster) were presented for each experimental
condition (Figures 5 and 6). As expected, over-represented proteins in DLBCL cells under
the hypoxic conditions were associated mostly with amino acid and nucleotide metabolic
processes, and HIF1 signaling pathway (Figure 5A,C,E). Proteins involved in the response
to oxidative stress have also a higher abundance in hypoxia and physioxia relative to
normoxia. Our data, furthermore, showed that in physioxia, most of pathways were
predominantly affected within a particular cell line, e.g., SUMOylation of transcription
factors in Ri-1 cells, TNF alpha signaling in U2904 cells, or chaperone mediated protein
folding in U2932 cells (Figure 5B,D,F).

3.4.2. Ribosome Biogenesis, Translation, and Mitochondrial Gene Expression Decrease in
in DLBCL under Hypoxia and Physioxia

In turn, pathway mapping shows a decrease in abundance of proteins mainly involved
in the ribosome biogenesis, translation, and mitochondrial gene expression (Figure 6A–F).
Additionally, pathways associated with the cell cycle, e.g., negative regulation of cell cy-
cle, chromosome segregation or G2/M transition were enriched among downregulated
proteins, particularly in U2932 cell line. Interestingly, hypoxia also led to downregulation
of interferon signaling in Ri-1 and U2904 cells, which is important for the success of an-
ticancer treatments. According to our data, long-term physioxia downregulated similar
pathways when compared to those perturbed by hypoxia, however, the observed changes
were lower, what may results from a significantly lower number of physioxia-responsive
proteins (Figure 6B,D,F). Physioxic treatment significantly dysregulated ribosome biogen-
esis in Ri-1 and U2904 cells. In turn, mitochondrial metabolism processes were affected
in Ri-1 and U2932 cells. Interestingly, regulation of cell-adhesion and integrin-mediated
signaling pathways were affected in U2904 cells, what we previously described in the
optical-tweezers-based study (Figure 6D).
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using the Metascape database. The top 20 clusters with their representative enriched terms (one per cluster) are presented 
for each experimental condition. (A) The enrichment of 207 and 122 significantly upregulated proteins in hypoxia and (B) 
physioxia, respectively in Ri-1 cell line. (C) The enrichment of 230 and 150 significantly upregulated proteins in hypoxia 
and (D) physioxia, respectively in U2904 cell line. (E) The enrichment of 223 and 193 significantly upregulated proteins in 

Figure 5. Enrichment analysis of upregulated proteins in hypoxia (1% of O2) and physioxia (5% of O2) in DLBCL cell lines
using the Metascape database. The top 20 clusters with their representative enriched terms (one per cluster) are presented
for each experimental condition. (A) The enrichment of 207 and 122 significantly upregulated proteins in hypoxia and
(B) physioxia, respectively in Ri-1 cell line. (C) The enrichment of 230 and 150 significantly upregulated proteins in hypoxia
and (D) physioxia, respectively in U2904 cell line. (E) The enrichment of 223 and 193 significantly upregulated proteins in
hypoxia and (F) physioxia, respectively in U2932 cell line. The x-axis shows the significance, which is the value of −log10(P).
Enriched terms are colored by p-values.
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Figure 6. Enrichment analysis of downregulated proteins in hypoxia (1% of O2) and physioxia (5% of O2) in DLBCL cell
lines using the Metascape database. The top 20 clusters with their representative enriched terms (one per cluster) are
presented for each experimental condition. (A) The enrichment of 511 and 158 significantly downregulated proteins in
hypoxia and (B) physioxia, respectively, in Ri-1 cell line. (C) The enrichment of 283 and 126 significantly downregulated
proteins in hypoxia and (D) physioxia, respectively, in U2904 cell line. (E) The enrichment of 263 and 151 significantly
downregulated proteins in hypoxia and (F) physioxia, respectively in U2932 cell line. The x-axis shows the significance,
which is the value of –log10(P). Enriched terms are colored by p-values.
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3.5. Hypoxia-Responsive Proteins Make a Complex Protein–Protein Interaction Network
in DLBCL

Ri-1 cell line with 718 DAPs was the most affected by hypoxia; thus, we decided
to study the protein–protein interaction network on this representative. The up- and
downregulated proteins were analyzed separately by the use of ClueGO application of
Cytoscape (v.3.8.2) in accordance with Gene Ontology–Biological Processes to visualize the
protein–protein interaction network (Figure 7A,B). For the list of proteins belonging to all
enriched pathways, see Table S4.
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Figure 7. Protein–protein interaction networks of upregulated (A), and downregulated (B) proteins in Ri-1 cells under
hypoxia (1% of O2). The analysis was performed and visualized in ClueGO (v.2.5.7) Cytoscape App based on the Gene
Ontology–Biological Processes (all updated 18 May 2020). Nodes (circles) indicate the pathway function groups, while
edges represent connections between the nodes. Each node color represents a different pathway class that it belongs to. The
node size represents the term enrichment significance, while the length of each edge shows the relevancy between two
processes, p ≤ 0.05. The overlapping areas are the shared pathways of two groups. The details of analysis are provided in
Table S4.
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Six function cluster groups related to the response to hypoxia, amino acid metabolic
process (particularly valine), histone demethylase activity, deoxyribonucleotide metabolic
process, microtubule polymerization, as well as the oxidative phosphorylation were en-
riched from the upregulated proteins. Only two clusters related to the cellular response
to hypoxia and amino acid metabolic process were functionally connected to each other
(Figure S2A) and the shared upregulated proteins were as followed: PSMA3, PSMB5,
PSMC1, PSMC3, and PSMD11, PSMD13. Additionally, the most DAPs have been assigned
to the above pathways, namely 19 and 11 of proteins belonging to the amino acid metabolic
processes and the cellular response to hypoxia, respectively. In general, seven of the clusters
were enriched by equal or more than 10 proteins. Importantly, our data showed upreg-
ulation of several signaling pathways with big importance to lymphoma pathogenesis,
including Wnt-signaling pathway, non-canonical Wnt-signaling pathway, NIK/NF-kappa
B signaling, and interleukin 1-mediated signaling pathway.

In turn, the PPIN between downregulated proteins was more complex, and five
out of eight main clusters were functionally related. As expected, the proteins with a
decreased abundance under hypoxia formed the following clusters: ribosome biogenesis
(including 18 pathways), mitochondrial gene expression (13 pathways), cellular metabolic
processing (16 pathways), and RNA processing (nine pathways). The other biological
processes enriched by ClueGO were those associated with RNA modification, mitotic cell
cycle, regulation of transcription, and nucleus organization. The eight pathways were
represented by more than 200 proteins, including the cellular nitrogen compound metabolic
process with 276 of proteins assigned. Moreover, 51, 92, 46, and 21 of the downregulated
proteins were assigned to the pathway of ribosome biogenesis, RNA processing, translation,
and mitochondrial gene expression, respectively. In the PPIN of downregulated DAPs,
several proteins overlapped between the distinct pathways, as visualized in Figure S2B
using the CluePedia app from Cytoscape.

3.6. Hypoxia Induces Prominent Changes in Translation in DLBCL

Since we were interested in pathways predominantly affected by hypoxia, we ana-
lyzed the translation pathway (R-HSA-72766) in hypoxic Ri-1 cells in more detail. DAPs
belonging to the above pathway in accordance with the Metascape enrichment analysis
were uploaded to STRING to create the PPIN, Figure 8A. The changes to translation-related
proteins were suggestive of both promotion and inhibition of this process. Among the
14 and 20 up- and downregulated proteins, respectively, eukaryotic translation initiation
factors (EIFs) are well known as hypoxia-related proteins. Some of the DAPs related to
translation were weakly described in hypoxia, including mitochondrial large subunit pro-
teins (MRPs), VARS, and DDX6, while e.g., PARS2, MARS2, and ERAL1 proteins have not
been associated with hypoxia so far. In particular, we have demonstrated the impairments
in the expression of MRPs under hypoxia. Several of mitochondrial large subunit proteins
(MRPL11, MRPL14, MRPL21, MRPL14, MRPL28, MRPL37, MRPL42, MRPL53) were found
to be downregulated, while three mitochondrial small subunit proteins (MRPS11, MRPS12,
MRPS14) were significantly upregulated. Importantly, both clusters of proteins (involved
in the ribosomal translation) closely and functionally interact with each other. Further-
more, our data show an altered abundance in functionally connected ribosomal proteins,
including RPS5, RPS3A, RPS29, RPS6KB1, RPL6, and RPL32.
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cells, or PWP1, shared between U2904 and U2932 cells. Interestingly, the vast majority of 

Figure 8. (A) Protein–protein interaction network of DAPs identified in Ri-1 cells under hypoxia related to translation
(R-HSA-72766). Generated using the stringApp from Cytoscape. (B) Top 20 hub proteins identified in hypoxic Ri-1,
(C) U2904, and (D) U2932 cell lines based on the highest degree score. Analyzed and generated using the cytoHubba app
from Cytoscape. Red and green nodes represent up- and downregulated proteins, respectively.

3.7. Hub Proteins Associated with Hypoxia and Physioxia Are Frequently Related to
Ribosome Biogenesis

Finally, we used the cytoHubba plugin of Cytoscape to rank proteins in a network
and find the hub proteins affected the most by hypoxia and physioxia. First, a STRING
analysis was performed for DAPs identified in each cell line, and protein–protein interaction
relationship network tables were downloaded and visualized using Cytoscape. Next,
the hub proteins were identified in accordance with the degree algorithm of cytoHubba.
The selected “hypoxic” hub proteins differed between cell lines, but some of them were
overlapping including DDX56, MRTO4, RPF2, RSL24D1, and SDAD1 for Ri-1 and U2904
cells, or PWP1, shared between U2904 and U2932 cells. Interestingly, the vast majority of
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hub proteins are those downregulated in hypoxia. The PPIN between the top 20 hypoxia-
responsive proteins are presented for each cell line in Figure 8B,C,D.

Furthermore, most of the Ri-1 hub proteins are related to ribosome biogenesis (GLTS
CR2, BRIX1, BYSL), and rRNA processing (e.g., RRP9, IMP3, and NSA2). CCNB1 and PLK1
were annotated to the cell cycle. U2904 hub proteins are involved in ribosome biogenesis
(e.g., BMS1, PWP1, and TSR1), rRNA processing (e.g., EMG1, NOP14) and nucleotide
binding (e.g., DDX21, DDX28, DDX37, and DDX56). In turn, 13 of the U2932 hub proteins
were involved in the cell cycle (mainly mitosis), e.g., CDCA5, CDC23, CDC45). Importantly,
CHEK1 and RRM2 hubs were annotated to the p53 signaling pathway. For hypoxic Ri-1
and U2904 cells, most hub proteins are those related to ribosome biogenesis and rRNA
processing. In turn, hub proteins selected among all DAPs identified in U2932 are mostly
related to the cell cycle.

Beyond the hypoxia-related hub proteins listed above, some targets identified in phys-
ioxia are worth highlighting. The Figure S3A–C shows hub proteins specifically selected for
each cell line after physioxic treatment. The majority of hub targets were related to ribosome
biogenesis and translation (Ri-1), cell cycle (U2904), oxidative phosphorylation (U2932),
and apoptosis (U2904 and U2932). Our data furthermore showed that the majority of hubs
identified in U2932 cells under physioxia are NADH dehydrogenase (ubiquinone) pro-
teins (NDUFs), including NDUFA7, NDUFA8, NDUFA9, NDUFA10, NDUFB1, NDUFB4,
NDUFS1, NDUFS4, and NDUFS6 subunits (Figure S3D). Interestingly, all of the identified
NDUFs have increased in abundance in physioxia. Next, we searched for the overlapping
hub proteins identified in certain cell lines under hypoxia and physioxia. GLTSCR2 and
RPS3 were common for Ri-1 cells, while UBE2C and RFC4 were found overlapping in
U2932 cells. No commonly identified hubs were found for U2904 cells.

4. Discussion

Proteomic studies of hypoxia have been carried out extensively in recent years; how-
ever, the global effect of hypoxia-driven changes on lymphoma protein profiles remains
largely undocumented. In this work, we present a report on global protein profiling in
DLBCL cell lines exposed to long-term hypoxia (1%) and physioxia (5%). Since there are a
lack of data explaining the role of hypoxia in lymphoma, we aimed to describe the complex
molecular response of lymphoma cells to low oxygen concentrations. To the best of our
knowledge, this study was the first to assess and compare DLBCL proteome changes under
hypoxia, and physioxia. Recently, we better understood the need to study the realistic
pattern of temporally variable oxygen exposure to the cells and tissues. In our work, the
cells were incubated under constant hypoxia or physioxia for 72 h, while in cancer, the fluc-
tuation in oxygen concentration occurred at irregular intervals with sporadic reoxygenation
periods because of dysfunctional tumor vascularity and heterogenic blood supply [17]. In
addition, hypoxia does not affect all cells within the tumor evenly. While ideally controlled
laboratory experiments should mimic physiological conditions, the knowledge about the
real pattern of oxygen gradient within lymphoma and other hematological malignancies is
limited. Thus, we presented the first, robust analysis to address the differential lymphoma
response to physiological and hypoxic oxygen exposure. Even though the experimen-
tal conditions are not ideal, this study was planned and performed following currently
applicable standards.

Large-scale LC–MS/MS proteomics was applied to comprehensively characterize
the hypoxia- and physioxia-responsive proteins of three DLBCL cell lines: Ri-1, U2932,
and U2904, when compared to normoxia. Additionally, we showed the differences in the
obtained results when hypoxia was analyzed versus physioxia. In accordance with our
results, the long-term increase of oxygen concentration affected the protein profiles in each
cell line; however, the response to this treatment was cell line specific. Ri-1 and U2904 cell
lines appeared to be the most hypoxia- and physioxia-responsive, respectively. Hypoxia
significantly changed the abundance of 718 proteins in Ri-1 cells, while physioxia affected
the expression of 280 proteins in U2932 cells compared to normoxia. The vast majority of
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DAPs were identified within the particular cells and only 19 and 2 of the DAPs were shared
between cell lines exposed to hypoxia and physioxia, respectively. Most of these proteins
have been recently recognized for their role in carcinogenesis and targeted cancer therapy,
including, e.g., EIF4A2 [45], ALDH6A1 [46], SEC14L1 [47], METTL17 [48], KDM3A [49],
PPT1 [50], SGSH [51], AK4 [52], and PICALM [53]. Importantly, some of the notable DAPs
were recognized as hypoxia-responsive in human cancers, of which EIF4A2 is the most
documented [54]. Significantly increased AK4 abundance was detected in lung cancer
cells exposed to hypoxia, which is relevant to our work [52]. Moreover, it was noticed
that AK4 exaggerates HIF-1α protein expression under hypoxia, leading to endothelial to
mesenchymal transition in lung cancer. In turn, lysosomal protein PPT1 was upregulated in
colon cancer after prolonged hypoxia [55], while ALDH6A was upregulated in, e.g., breast
cancer under hypoxia [32]. In our dataset, the METTL17 was the one DAP overlapping
under the hypoxic and physioxic treatment.

Usually, in hypoxia and physioxia driven studies, cells are cultured at specific oxygen
concentrations relative to normoxia. Since hypoxia is much closer to the physiologic range
than normoxia, we analyzed the changes in the hypoxic proteomes of DLBCL cell lines
when analyzed in comparison to physioxia. As expected, the lower quantitative changes
in the proteomes of DLBCL cell lines were observed with a maximum decrease of 55% in
the number of DAPs identified in Ri-1 cells. Notably, 47.81%, 31.18%, and 30.81% of DAPs
identified in hypoxic Ri-1, U2904, and U2932 cells, respectively, were shared with DAPs
identified in corresponding cell lines, when hypoxia compared to normoxia. Similar to
previously performed comparisons, we observed that the response to hypoxic treatment is
cell line-specific, and the majority of DAPs were found within the particular cells. Only
two DAPs were shared in tree cell lines under hypoxia vs. physioxia: KDM3A, and MYO16,
of which KDM3A was found to be the target of HIF-1α [56].

Heterogeneity of cancers within response to hypoxia, which we reported here, was
frequently underlined. Recently, Bhandari et al., based on whole genome sequencing data,
quantified hypoxia in 1188 tumors spanning 27 cancer types [19]. The authors observed that
inter-tumoral variability in hypoxia was especially elevated in some tumor types, including
mature B-cell lymphomas. This contrasted with another hematological malignancy, chronic
lymphocytic leukemia (CLL), where little heterogeneity in hypoxia was observed.

The enrichment analysis was performed to annotate the pathways and biological
function to DAPs, and subsequently to determine which of them are impaired under
hypoxia and physioxia. Knowledge about the perturbed pathways and function can help
to understand how DLBCL cells adapt to oxygen stress, and to potentially develop new
treatment options. Translation and translational regulation are also pivotal for inducing
adaptive stress responses of cancer cells to environmental hypoxia by regulation of gene ex-
pression [57]. Cancer cells, including lymphoma, under hypoxia, exhibit global shutdown
or reprogramming of translation to promote recovery from stress or cell death [58]. Transla-
tion is one pathway that is crucial to cancer development and progression, and surprisingly,
the impact of hypoxia on global translation in B-NHL remains largely undocumented.
Bhalla et al. observed an oxygen-regulated switch in the protein synthesis machinery [5],
as was partially confirmed in our work. The authors measured the protein translation
efficiency in several DLBCL cell lines using 35S-labeled methionine incorporation, and
revealed a ≥50% reduction in translation upon activation of HIF1α. Furthermore, it was ob-
served that normal primary B-cells did not survive prolonged hypoxic stress when exposed
to 1% hypoxia for 24 to 48 h. Recently, Sharma et al. demonstrated changes in translational
and ribosomal genes in B-NHL under hypoxia [24], including genes encoding eukaryotic
initiation factor complexes (EIFs), which is in line with our work. Under physiological
conditions, EIFs are involved in all molecular aspects of translation initiation in mammals.
Importantly, extensive research in the past two decades has indicated that EIFs are impli-
cated in various types of cancer [59,60], including DLBCL [61]. Consistently with these
reports, we identified several EIFs that are dysregulated in DLBCL under hypoxia. EIF2S1,
EIF3F, and EIF4A2 were found upregulated in Ri-1 cells, while EIF3K and EIF4G1 were



Cells 2021, 10, 2025 19 of 26

downregulated. Importantly, EIF4A2 was overlapping in all three cell lines in our dataset.
Recently, eIF4A2 was indicated to be a regulator of hypoxic translation and colorectal
tumor cell survival [45].

In our work, translational repression was functionally related to downregulation of
mitochondrial function, as previously reported in DLBCL by Bhalla et al. in a transcrip-
tomic study [5]. Mitochondria perform central roles in cancer cells, performing several
bioenergetic and biosynthetic functions [62], and the mitochondrial proteomic profile is
distinct in cancer and non-malignant cells. Requirement of mitochondrial function is neces-
sary for lymphoma progression [63]. Notably, Sharma et al. revealed that mitochondrial
respiratory inhibition mimics hypoxic stress and induces RNA editing independently of
HIF-1α [24]. The authors hypothesized that hypoxia triggers apolipoprotein B (A3G)-
mediated RNA editing by activating a pathway triggered by mitochondrial respiratory
inhibition. Indeed, our results showed that hypoxic and physioxic treatment impaired
mitochondrial translation in DLBCL cells; in particular, we observed abnormal expression
of 10 mitochondrial ribosomal proteins (MRPs) in Ri-1 cells. MRPs are components of the
mammalian mitochondrial ribosome, which synthesizes in 13 proteins essential for oxida-
tive phosphorylation [64]. Recently, many researches have demonstrated the abnormal
expression of MRPs in various tumors, and importantly, evidence shows an alternative role
for MRPs in inducing apoptosis [65,66]. Mitochondrial ribosomal targets were previously
found to be differentially regulated in DLBCL under hypoxia [5,67], which is in agreement
with our work.

Our results show that prolonged hypoxia significantly inhibited ribosome biogenesis
in DLBCL cells. Ribosome, responsible for the translation of information contained in
mRNA into the protein, is one of the most conservative structures throughout the evolution.
However, its synthesis is one of the most complex biological processes [68]. Ribosomal
biogenesis includes the transcription of ribosomal RNA (rRNA), rRNA processing, and
production of ribosomal proteins [69]. The aberration in any of these processes may lead to
dysregulated ribosome biogenesis, evident in multiple spontaneous cancers [70], including
hematological malignancies [69–71]. Regarding B-NHL, the role of alterations in ribosome
biogenesis is yet to be determined, and only scant evidence suggest a possible correlation
with the outcome of diseases [72,73]. Ribosomal proteins are highly responsive to hypoxic
stress [74] and several alterations in ribosomal biogenesis were found in our dataset,
including downregulation of RPS29, RPS5, RPL6, RPF2, RPL31, BMS1, TSR3, and RPF2.
Furthermore, the PPIN analysis of hypoxic Ri-1 cells revealed as many as 51 downregulated
proteins involved in ribosome biogenesis. Our proteomic data indicate that DLBCL cell
lines converge to a common mechanism with downregulation of proteins involved in
ribosome biogenesis, indicating the relevance of these DAPs for a hypoxia-responsive
phenotype. Importantly, a similar observation was partially reported by Bhalla et al. in a
global transcriptome study [5]. Additionally, the authors observed a differential regulation
of ribosomal targets in distinct DLBCL cell lines, which is reflected by our results.

Nearly 20 years ago, Koshiji et al. demonstrated that HIF-1α—rather than other
hypoxia-associated genes—that induces the cell cycle arrest [75], which was further con-
firmed in several genomic and proteomic [31,74,76,77] studies. Cessation of the cell cycle
in lymphoma cells was also confirmed in the present work. Moreover, 47 cell proliferation-
associated genes were found downregulated in Ri-1 cells under hypoxia, including cyclin
CCNB1, and cyclin-dependent kinases CDK14, CDK15, and CDK16, which have significant
involvement in the lymphoma pathogenesis. Notably, CDK16 was the most downreg-
ulated protein in the entire dataset with a fold change of 195.216 in hypoxic Ri-1 cells.
Intriguingly, downregulation of the cell cycle was also noticed in U2904 cells under phys-
ioxia; however, in hypoxic Ri-1 cells, the upregulation of M Phase and G2/M transition
pathway was observed. The influence of physiological oxygen on the cell cycle is still not
well understood; however, studies show mostly acceleration in cell proliferation under
physioxia [10,51,78,79]. Notably, in our previously published data, we established that the
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Ri-1 cell line growth was significantly decreased in physioxia and hypoxia after 96 h of
treatment, while the proliferative capability of the remaining cell lines was unchanged [78].

Hypoxia inducible factors (HIFs) perform master roles in the cellular response to
hypoxia. HIFs regulate more than 100 genes in response to a decrease in oxygen [80]. Under
normoxia, the HIF signaling pathway is inhibited due to HIF-α subunit degradation [81].
The availability of oxygen in normal lymphatic tissues decreased and activation of HIF-
1α was observed in normal B-cells during maturation and activation. However, HIF-2α
subunit overexpression was observed only following malignant transformation [82]. In
our current proteomic data, upregulation of the HIF1α pathway was observed in each cell
line under hypoxic stress when compared to normoxia. Moreover, in Ri-1 cells, HIF1α
targets, such as those involved in glycolysis, were upregulated, including PDK1 [fold
change = 3.3], which is in accordance with other hypoxia-driven studies [83]. Under
physioxia, we have not noticed the changes in HIF1 pathways in any cell line; however,
some HIF1 related targets were altered, including downregulation of NDUFs in U2932
cells [84]. Interestingly, Miar et al. described for the first a new mechanism of hypoxic
immunosuppression via downregulation of the type I IFN pathway [83]. The authors
suggested that IFN downregulation is partially dependent on HIF1α. Our data show for
the first time the downregulation of the interferon-signaling pathway under both physioxia
and hypoxia in DLBCL cells.

It is well established that hypoxia-inducible factors (HIFs) mediate metabolic repro-
gramming in response to hypoxia [85,86]. Rebuilding of energy metabolism is one of
the leading hallmarks of cancer, which enables survival in a hypoxic environment. In
our study, cellular amino acid (CAA) metabolism pathway remained the most enriched
among upregulated proteins under hypoxia. Therefore, we reported for the first time that
lymphoma cells adapt to hypoxic stress through elevating CAA metabolism. This is in
line with Zhang et al., who recently suggested the critical role of HIFs in reprograming of
cellular amino acid metabolism in glioblastoma [87]. Moreover, our proteomic data showed
the main target proteins of HIF-1α were found upregulated, including metabolic targets
such as BCAT2, PDK1, HK2, ALDH6A1, and ALDH7A1. Of these, HK2 was described as a
key metabolic driver of the DLBCL phenotype [5].

The oxygenation of tissues in vivo is more hypoxic compared to ambient air; however,
knowledge of cancer cells responding to a physiological oxygen microenvironment remains
a largely overlooked part of cancerogenesis. Here, we made an effort to present the global
changes in B-cell proteomes under physioxia. Our data showed that the response of DLBCL
cells to physioxia was more cell line specific when compared to hypoxia. The response to
the oxidative stress pathway was only one pathway commonly upregulated in each cell
line under physioxia.

Interestingly, in our dataset, the enrichment analysis revealed an increase of SUMOyla-
tion of transcription factors pathway in Ri-1 cells. The upregulation of small ubiquitin-like
modifier (SUMO) is a common posttranslational modification (PTM) in several tumors and
is related to tumor development. Accordingly, a high level of SUMOylation was found to
be required for cancer cells to survive external stresses, including oxygen deprivation [88].
Interestingly, we identified the NDUF proteins to be important within the PPIN in U2932
cells under physioxia. It was previously hypothesized that suppression of NDUF expres-
sion and downregulation of other mitochondrial respiratory chain complex components
may be important events contributing to K-Ras-induced mitochondrial dysfunction [89].
Here, we report, for the first time, changes in NDUF synthesis in lymphoma under low
oxygen. Concurrently, the variability of enriched pathways made it difficult to draw the
precise conclusions regarding the molecular background of the physioxia-induced changes
in DLBCL proteome. However, the number of identified DAPs and enriched pathways in
each cell line in our dataset suggests that the oxygen level cannot be an omitted parameter
when planning in vitro studies with the human cell lines. Moreover, the current studies
highlight that cultures in physioxia are more likely to closely mimic microenvironmental
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effects [32], and following this line of argumentation, more research studying the physioxic
impact on overall cell characteristics is urgently needed.

Finally, in search for proteins of the core response to hypoxia and physioxia, a cyto-
Hubba analysis was performed. Our results showed that hypoxic hub proteins were mostly
downregulated. The notable hub proteins overlapping in Ri-1 and U2904 cells entirely
included proteins involved in ribosome biogenesis (DDX56, MRTO4, RPF2, RSL24D1, and
SDAD1). Concurrently, most of the hub proteins identified in Ri-1 and U2904 cells are
related to ribosome biogenesis and rRNA processing, suggesting similarity of these two DL-
BCL cell lines in response to hypoxia. In turn, 13 of the U2932 hub proteins were involved in
the cell cycle (mainly mitosis), e.g., CDCA5, CDC23, and CDC45. Importantly, CHEK1 and
RRM2 hubs were annotated to the p53 signaling pathway. The selection of hub proteins,
which are different for each cell line, additionally confirmed that the response to hypoxia
and physioxia is cell line specific; however, the same molecular pathways are differentially
regulated in the dataset, Ri-1, U2904, and U2932. DLBCLs are biologically highly heteroge-
neous tumors; thus, the reason behind the difference in hypoxic and physioxic proteomes of
Ri-1, U2932, and U2904 cells, may be due to the metabolic differences between the three cell
lines. Similarly, previous gene expression profiling studies revealed differences in several
DLBCL cell lines, in their dependencies on metabolic pathways [5,23,90]. Concurrently,
the similarity between Ri-1 and U2904 in response to hypoxia was highlighted, which
may be associated with the presence of a MYC rearrangement. U2904 and Ri-1 are quickly
proliferating lymphomas with MYC gene rearrangement. MYC is a key regulator of cellular
metabolism, proliferation, and survival. It is estimated that MYC as a transcription factor
can control about 15% of all human genes by inducing or enhancing the expression of
previously active genes [91]. Notably, the adaptation to chronic hypoxic stress occurs in
part by MYC degradation [92], which leads to changes in the expression of several MYC
downstream targets [93].

5. Conclusions

To summarize, this report is the first to investigate the influence of decreased oxygen
concentration on the global proteomes of DLBCLB-NHL cell lines. Our proteomic data
allowed us to define DLBCL phenotypes under hypoxia and physioxia, showing that
hypoxia-related response in lymphoproliferative malignancies is complex and highly
heterogeneous. However, we were able to indicate several pathways and notable proteins
commonly affected by hypoxia in DLBCL. It remains to be investigated whether changes
in the proteomes of DLBCL under normoxia and physioxia have functional consequences
on lymphoma development and progression, with potential importance for the design
of novel treatments. The functional significance of the identified hypoxia-responsive
protein targets and pathways must be confirmed in the subsequent biochemical assays.
Concurrently we established that the magnitude of hypoxia-driven global changes in
the lymphoma proteomes depends on the oxygen concentration used for comparisons;
thus, the selection of proper experimental conditions when studying hypoxia should be
considered. Finally, given the importance and benefits of maintaining physiological oxygen
levels, there is a need to establish more relevant oxygen concentration in vitro studies,
especially in potentially life-saving therapies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10082025/s1, Figure S1: The heatmaps of the correlation coefficients of protein intensities
after normalization showing reproducibility between biological replicates of U2932 proteomes under
hypoxia (H, 1% of O2), physioxia (P, 5% of O2), and normoxia (N, 21% of O2). Scale bar represents the
range of the correlation coefficients (R) displayed. Figure S2: Cytoscape-based ClueGo/CluePedia
pathway visualization of (A) upregulated and (B) downregulated proteins in hypoxic Ri-1 cell line
(1% of O2). The enriched pathways were obtained from the Gene Ontology–Biological Processes
database. The size of the nodes corresponds to the significance of the pathway, Figure S3: The top
20 hub proteins identified in (A) Ri-1, (B) U2904, and (C) U2932 cell lines under physioxia (5% of O2)
based on the highest Degree score. Analyzed and generated by cytoHubba App of Cytoscape. Red
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and green nodes represent up- and downregulated proteins, respectively, Table S1: Excel file with
protein identification data for Ri-1, U2932, and U2904 cell line under hypoxia (1% of O2), physioxia
(5% of O2), and normoxia (21% of O2), Table S2: Excel file with differentially abundant proteins
(DAPs) identified in Ri-1, U2904, and U2932 cell line under hypoxia (1% of O2), and physioxia (5%
of O2) compared with standard culturing under 21% of oxygen, Table S3: DAPs overlapping in
particular cell lines under hypoxia (1% of O2) and physioxia (5% of O2). DAPs commonly identified
in all cell lines, Table S4: Details of Cytoscape-based ClueGO pathway analysis of DAPs. Enriched
pathways were obtained from the Gene Ontology–Biological Processes database.
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