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Abstract: The ovine critical-sized defect model provides a robust preclinical model for testing tissue-
engineered constructs for use in the treatment of non-union bone fractures and severe trauma. A
critical question in cell-based therapies is understanding the optimal therapeutic cell dose. Key to
defining the dose and ensuring successful outcomes is understanding the fate of implanted cells, e.g.,
viability, bio-distribution and exogenous infiltration post-implantation. This study evaluates such
parameters in an ovine critical-sized defect model 2 and 7 days post-implantation. The fate of cell dose
and behaviour post-implantation when combined with nanomedicine approaches for multi-model
tracking and remote control using external magnetic fields is also addressed. Autologous STRO-4
selected mesenchymal stromal cells (MSCs) were labelled with a fluorescent lipophilic dye (CM-Dil),
functionalised magnetic nanoparticles (MNPs) and delivered to the site within a naturally derived
bone extracellular matrix (ECM) gel. Encapsulated cells were implanted within a critical-sized
defect in an ovine medial femoral condyle and exposed to dynamic gradients of external magnetic
fields for 1 h per day. Sheep were sacrificed at 2 and 7 days post-initial surgery where ECM was
harvested. STRO-4-positive (STRO-4+) stromal cells expressed osteocalcin and survived within
the harvested gels at day 2 and day 7 with a 50% loss at day 2 and a further 45% loss at 7 days.
CD45-positive leucocytes were also observed in addition to endogenous stromal cells. No elevation
in serum C-reactive protein (CRP) or non-haem iron levels was observed following implantation in
groups containing MNPs with or without magnetic field gradients. The current study demonstrates
how numbers of therapeutic cells reduce substantially after implantation in the repair site. Cell
death is accompanied by enhanced leucocyte invasion, but not by inflammatory blood marker levels.
Crucially, a proportion of implanted STRO-4+ stromal cells expressed osteocalcin, which is indicative
of osteogenic differentiation. Furthermore, MNP labelling did not alter cell number or result in a
further deleterious impact on stromal cells following implantation.

Keywords: preclinical ovine models; cell viability; magnetic nanoparticles; bone repair; mesenchymal
stromal cells; osteogenesis

1. Introduction

The clinical adoption of regenerative cell-based therapies requires the methodical
and regulated progression from bench to bedside before ultimately receiving clinical
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approval. Animal models are in place to not only address safety concerns, but also to assess
the efficacy of the therapy prior to clinical trials [1]. The development of a bone tissue-
engineered product relies on orthopaedic pre-clinical animal models of bone injury/repair
implemented to test the efficacy and potency of a new therapy by the degree and quality of
repair [2].

Skeletal bone defects resulting from trauma, tumour resection and disease, including
osteoporosis, require immediate clinical intervention to promote good healing and restora-
tion of function. Routine clinical protocols are successful in achieving full repair in 90% of
cases within 6 months of treatment; however, in certain cases and often with no anticipation
of the outcome, the defect will fail to reach a complete union, developing into clinically
defined non-union bone fractures [3]. This subsequently introduces a host of challenges
not only to the patient directly but also indirectly to healthcare providers and society, thus
driving research towards bone tissue engineering solutions. Tissue engineering strategies
typically involve the combined application of biomaterials or scaffolds to support cell
delivery, provide structural support or physically stimulate bone repair. These biomaterials
can be applied with or without stem/progenitor cells such as mesenchymal stromal cells
and can include growth factors to trigger the complex process of repair [4].

Magnetic nanoparticle (MNP)-based technologies are new multimodal tools designed to
achieve therapeutic functions in cell-based orthopaedic therapies, such as tracking, targeting
and activation [5–9]. One such novel technology is the use of MNPs to deliver functional
mechanical cues directly to cells in vivo, which has been shown to regulate cell differentiation
and downstream signalling [1,10,11]. Magnetic Ion Channel Activation (MICA) defines a
novel bio-magnetic approach designed to remotely deliver mechanical stimuli directly to
individual cells, both in vitro and in vivo, providing a cell remote control platform, which
has been shown to enhance bone formation in pre-clinical ovine models [12]. MNPs can be
functionalised with biomolecules to specifically bind different cell membrane receptor targets.
One such target, the mechano-sensitive ion channel TREK-1, has been shown to regulate bone
stem cell differentiation into bone cell precursors in vitro [13]. Bound MNPs respond to the
application of an oscillating external magnetic field, resulting in remote receptor activation
and enhanced osteogenic differentiation [14,15].

The ovine critical-sized bone defect (CSBD) model provides a solid basis for testing
bone tissue engineered products for use in the treatment of non-union fractures and severe
trauma [16]. This is defined as the smallest defect that will not spontaneously heal during
the lifetime of the animal [17,18]. The mechanisms of fracture healing are well documented
in the literature but, in brief, involve the initiation of an inflammatory response with
the tightly regulated interplay of multiple cell types, various cytokines, chemokines and
growth factors that are all triggered within the first hours of injury and sustained for several
weeks post-injury [19]. Tissue engineered products, often containing therapeutic stem and
progenitor cells, would typically be exposed to this complex inflammatory environment
with a limited nutrient supply, as the product is usually inserted at the time of injury [20,21].

A key question in the development of a new bone tissue engineering strategy is
to define the dose of cells required within the construct. The majority of large animal
bone repair studies are typically run for 3 and 12 months to evaluate medium- and long-
term repair. To date, little is known of the short-term events occurring at the time of
implantation. Understanding the early fate of implanted cells will help to elucidate the role
of stem cell therapies and appropriate dosage to help address issues of cell viability and
bio-distribution, endogenous cellular infiltration and the impact of this environment on the
long-term outcomes of a study [22–24]. This study aims to evaluate such parameters in an
ovine critical-sized defect model with and without the presence of magnetic particles and
magnetic fields to understand early events potentially impacting the long-term success of
the orthopaedic cell-based therapies.



Cells 2021, 10, 1776 3 of 16

2. Materials and Methods

Reagents were purchased from Sigma Aldrich, UK unless otherwise specified.

2.1. Animal Experiments

Methods were conducted as described previously [25] in accordance with the UK
Home Office Regulations and protocols approved by the University of Nottingham Animal
Welfare and Ethical Review Body. For all surgeries, animals were placed in lateral recum-
bency to allow access to the sternum and medial aspect of both hind legs. Eighteen healthy,
English Mule ewes aged 2–4 years were used and assigned randomly to each treatment
group. Details of experimental groups are outlined in Table 1.

Table 1. Details of the exerimental groups.

Group Cells MNPs Magnet CM-Dil Stain Number of Defects Time Point

1 (MNPs + magnet) + + + Yes 6 2 days
2 (Cell only) + − − Yes 6 2 days

3 (MNPs − magnet) + + − Yes 6 2 days
4 (MNPs + magnet) + + + Yes 6 7 days

5 (Cell only) + − − Yes 6 7 days
6 (MNPs − magnet) + + − Yes 6 7 days

Autologous mesenchymal stromal cells were isolated by bone marrow aspiration
from the sternum of anaesthetised animals, as described previously [25]. The multi-
lineage differentiation capacity of these cells was demonstrated in a previously published
study [25]. Three weeks post-initial bone marrow harvest, a single cylindrical defect
measuring 8 mm in diameter and 15 mm in depth was created in the cancellous bone region
of the medial femoral condyle in the left and right hind leg of each animal. Pre-set ECM
constructs containing magnetic nanoparticle-labelled and unlabelled mesenchymal stromal
cells were immediately implanted within the defect using the customised delivery device,
as described in a previous study [25]. Magnetic cuffs, as described previously [10], were
fitted 24 h post-surgery and worn for 3 h per day until sacrifice. Sheep were sacrificed at
either 2 days or 7 days post-op by an overdose of pentobarbital administered intravenously.
At this point, implanted ECM constructs were harvested from the defect of sacrificed sheep,
transferred directly to collection media (αMEM, 10% FBS, 1% L-glutamine and 1% AA) to
maintain cell viability and transported on ice. Gel dimensions were determined by digital
callipers and the presence of the implanted cells was determined by dissection fluorescent
microscope. The remaining femoral condyles were then immediately trimmed and fixed in
10% neutral buffered formalin for a further 7 days prior to histological analysis.

2.2. Selection of STRO-4-Positive MSCs

STRO-4 selection of MSCs has previously been shown to result in enriched colony-
forming fibroblasts and enhanced multi-lineage capacity in both human and ovine donors [26].
For this reason, STRO-4-positive MSCs were selected prior to expansion, as described previ-
ously [25]. In brief, the bone marrow aspirate was treated with red blood cell lysis buffer to iso-
late the mononuclear cell fraction. Cells were then incubated with the STRO-4 IgG hybridoma
(20 µg/mL; Adelaide University) for 30 min, then with 200 µL of the magnetic-activated cell
sorting (MACS) anti-mouse IgG MicroBeads (Miltenyi Biotec, Bisley, UK) (30 min, 4 ◦C) prior
to MACS separation. Finally, STRO-4 ovine MSCs (oMSCs) were collected and plated in
expansion media and maintained at 37 ◦C for 1 week before further media changes. Cells
were cultured under standard cell culturing conditions in αMEM for on-going experiments.

2.3. CM-Dil Labelling

In order to track the implanted cells, they were labelled with a fluorescent dye, CM-
Dil, prior to ECM encapsulation, as described previously [25]. Briefly, oMSCs were re-
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suspended and incubated in the working solution (3 mM) of CM-Dil for five minutes at
37 ◦C, and then for an additional 15 min at 4 ◦C, in the dark.

2.4. MNP Labelling of STRO-4-Positive oMSCs

oMSCs, at 80–90% confluence, were collected, counted and washed in PBS to remove
any residual FBS. Cells were then re-suspended in the MNP labelling solution, which
consisted of serum-free media (αMEM containing 1% L-glutamine and 1% antibiotic and
anti-mycotic) and TREK-1-functionalised MNPs (Nanomag, Micromod, 1 mg/mL, Ros-
tock, Germany). A cell labelling ratio of 25 µg MNPs per 106 cells with 1 µL liposomal
transfection reagent DOTAP (1 µg/mL) was maintained throughout. Cells were labelled
in suspend for 3 h at 37 ◦C and unbound MNPs removed by PBS wash and centrifuga-
tion (1000 rpm; 5 min). The corresponding unlabelled cell groups were simultaneously
incubated in SFM only.

2.5. Encapsulation of oMSCs within an ECM Gel Construct for In Vivo Delivery

Preparation of the ECM digest, formed from bovine tibiae, and the resulting ECM
gel (12.5 mg/mL) are described in a previously published article [27]. This concentration
was previously determined to be optimal for the release of gels from the mould and
their subsequent insertion into the defect site. Briefly, 5 × 106 MNP-labelled or -unlabelled
oMSCs from each donor were re-suspended in a 20% HEPES solution and thoroughly mixed
with the ECM digest. The subsequent gel mixture was then transferred to a customised
sterile delivery device complementing the dimensions of defect. The gelation occurred
at 37 ◦C for 1 h before hydrating with SFM. Pre-set constructs were maintained at 37 ◦C
and implanted the following day. Donor-matched in vitro controls seeded with unlabelled
oMSCs were also prepared and maintained in culture for the duration of the study. SFM in
control groups was changed to expansion media at the time of in vivo implantation.

2.6. Assessment of Cellular Viability by LDH Staining

Viability was assessed via lactate dehydrogenase (LDH) staining, as described previ-
ously [25]. Briefly, frozen sections (16 µm) were incubated with staining solution for 30 min
at 37 ◦C. Slides were mounted with Hydromount and imaged (Nikon Eclipse, Ti-S, Minato
City, Tokyo, Japan). Implanted cells were identified by red fluorescence (CM-Dil staining)
and viable cells by blue staining (indicating the presence of the active LDH enzyme) under
bright field settings. Ten random field of views were imaged per section in a total of
five sections. Viability was evaluated with ImageJ software (Wayne Rasband, National
Institutes of Health, Bathesda, MD, USA) by quantifying the proportion of dual LDH and
CM-Dil staining relative to total CM-Dil staining.

2.7. Histology

Frozen sections were fixed in 10% formalin and stained for haematoxylin and eosin
(H&E) and Prussian blue. To stain for H&E, sections were treated with haematoxylin
Gill number 3 for 4 min followed by a 0.3% acid alcohol wash, rinsed in water and then
briefly treated with Scott’s tap water (dH2O with 0.2% sodium hydrogen carbonate and
2% magnesium sulphate). Finally, an alcohol-based Eosin dye was added for 2 min and
sections were immediately washed in tap water. Stained sections were mounted in an
aqueous-based mounting media (Aqua-Mount) and preserved for long-term imaging. To
stain and identify the presence of MNPs, a Prussian blue stain was implemented. Here, a
solution consisting of 20% aqueous hydrochloric acid (HCl) and 10% aqueous potassium
hexacyanoferrate was added to each section for 20 min. The presence of MNPs is identified
as bright blue staining when imaged with bright field microscopy.

2.8. Immunocytochemistry

Sample sections (12 µm) were fixed prior to antigen retrieval (0.1% trypsin made up
in 1% calcium chloride, 10 min incubation at 37 ◦C). Sections were subsequently blocked
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(3% BSA; 1 h at RT). Primary antibodies, shown in Table 2, were added and incubated at
4 ◦C, overnight. Upon thorough washing, secondary antibodies were added and incubated
for 2 h. Finally, sections were washed, treated with DAPI to stain for nuclei and mounted
with Fluoromount. Sections were imaged using the Cytation 5 imaging system. The
expression of osteocalcin was quantified with ImageJ by measuring the area occupied by
red fluorescence in images taken from three or four different regions of each slide. Cell
number was also quantified with ImageJ using CM-Dil identify individual cells from the
same regions. The osteocalcin area was then normalised to cell number.

Table 2. Details of the antibodies used for immunocytochemistry.

Primary Antibody Product Code Secondary Antibody

Anti-Stro-4 (20 µg/mL) Gift from Professor Andrew Zannettino Invitrogen, A21236 (10 µg/mL)
Anti-CD45 (10 µg/mL) WS0544B-100 (Kingfisher Biotech) Invitrogen, A21236 (10 µg/mL)
Anti-dextran (1 µg/mL) 60026 (Stemcell Technologies) Invitrogen, A21236 (10 µg/mL)

Anti-osteocalcin ab13420 (Abcam) Invitrogen, A21236 (10 µg/mL)

2.9. Quantification of C-Reactive Protein Levels by ELISA

CRP (Neo biolabs) and non-haem iron (Randox) levels were determined by enzyme-
linked immunosorbent assay (ELISA) to assess the immune response associated with MNPs
and bone ECM implantation and circulating non-haem iron, which is an indication of MNP
degradation. Serum was collected from each animal at sacrifice at either 2 or 7 days post-
cell implantation and compared to pre-implantation levels. A total of 10 mL of blood was
collected from the jugular vein in untreated 20 mL falcon tubes (no anticoagulant) from each
sheep prior to cell delivery (day 0) and upon sacrifice (days 2 and 7). Serum was collected
by allowing blood to coagulate overnight at 4 ◦C, followed by centrifugation at 2000× g for
30 min. The CRP ELISA was conducted according to manufacturer’s instructions.

2.10. Statistical Analysis

All statistical analyses were performed using GraphPad Prism version 7.00 for Win-
dows (GraphPad Software, San Diego, CA, USA). A regular two-way ANOVA, followed by
Dunnett’s multiple comparisons test with Tukey correction, was used to compare the dif-
ferences in cell viability. A one-way ANOVA, followed by Dunnett’s multiple comparisons
test with Tukey correction, was used to compare differences in osteocalcin expression.

3. Results
3.1. Implants Remained Intact with No Degradation Observed at Either 2 or 7 Days
Post-Implantation

Animals were sacrificed at either 2 or 7 days post-implantation. The long-term fate
of implanted cells was examined in a previous study [25]. Upon sacrifice, joints were
re-opened for total examination and removal of the implanted construct for further exami-
nation (Figure 1). A haematoma was observed at the defect site, completely encapsulating
the implanted construct in all groups and at both time points (Figure 1A). The hydrogel
construct remained intact and the dimensions unchanged (6.44 ± 0.68 × 14.83 ± 1.2 mm)
when compared to the initial pre-implantation in vitro control dimensions (8 × 15 mm),
with no observed differences between time points (Figure 1B). Finally, whole-mount fluo-
rescent microscopy confirmed the presence of implanted CM-Dil-labelled oMSCs, as seen
by the red fluorescence in all groups (Figure 1C).
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Figure 1. Examination of the implanted construct at 2 and 7 days post-implantation. (A) Visualisation of the clot (black
circle and arrows) at the site of the defect. (B) Quantification of hydrogel dimensions once removed and compared to initial
in vitro dimensions. (C) Gross evaluation of the removed hydrogel constructs from experimental groups (cell only, MNPs
+magnet, MNPs −magnet) with accompanying whole mount fluorescent microscopy with implanted oMSCs are identified
in red. Scale = 2 mm.

3.2. Significant Loss in Cell Viability Determined at 7 Days Post-Implantation

LDH is an enzyme present in all living cells responsible for catalysing the reaction,
resulting in the blue staining of viable CM-Dil-labelled cells (Figure 2A). Enhanced LDH
staining was observed in the in vitro control groups that decreased over time during
in vivo treatment in all groups (cells, MNPs +magnet, MNPs −magnet). Quantification of
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LDH-stained cells revealed a mean 50% loss in cell viability (p < 0.001) at day 2 and a mean
90–95% loss across all groups at day 7 compared to the corresponding time point-matched
in vitro control, with no influence of MNP labelling nor magnetic activation on cell viability
(Figure 2B).
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Figure 2. Assessment of oMSC viability at 2 and 7 days post-implantation. (A) LDH-stained cryo-sectioned samples of
the extracted in vivo construct and time point-matched in vitro controls. Blue staining is indicative of viable oMSCs as
determined by the LDH reaction, while red fluorescent staining identifies the CM-Dil-positive implanted oMSCs. The
viability of implanted cells was determined by the co-localisation of blue and red fluorescent stains. (B) Quantification of
cellular viability for all in vivo groups (cells, MNPs +magnet, MNPs −magnet) was undertaken and compared to time
point-matched in vitro controls. Data are presented as the average viability (proportion of duel LDH:CM-Dil-labelled cells
relative to total CM-Dil-labelled cells) for five random areas per section. Significance was determined by a two-way ANOVA
statistical test, where *** is p < 0.001 and **** is p < 0.0001. Scale bar =100 µm.
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3.3. No Adverse Inflammatory Response and No Elevation in Non-Haem Iron Level Detected at
Days 2 and 7

CRP (Figure 3A) and non-haem iron (Figure 3B) levels were measured on day 0
(pre-cell implantation) and upon sacrifice on either day 2 or day 7. No deviation from
baseline levels (Day 0, pre-implantation levels) for CRP were detected, suggesting an
absence of adverse reactions as a result of either the surgery or the presence of the ECM
hydrogel/MNPs (Figure 3A). Furthermore, no elevation in non-haem iron levels were
detected relative to baseline levels, indicating that the MNPs had not degraded with the
release of iron to normal blood circulation levels (Figure 3B).
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and upon sacrifice at either day 2 or day 7. Data are expressed for individual sheep and presented by experimental sheep
identifier numbers (414–433).
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3.4. Cellular Infiltration within the ECM Construct Is Observed for All Groups

The presence of endogenous cellular material, likely to have migrated into the ECM
construct, is observed for all groups across both time points (2 and 7 days), as evidenced with
H&E staining, where the presence of cells is shown by purple staining (Figure 4). While cells
appear evenly distributed at day 2, while evidence of cells accumulating within collagen-
rich self-assembled pockets within the ECM is observed at day 7 (Figure 4B, white arrow).
No observable difference between treatment groups was recorded. Characterisation of the
infiltrated cell population identifies the majority of cells as being CD45-positive, typically
a pan leucocyte marker and attributed to the initial inflammatory response (Figure 5A).
Although the presence of these cells persisted for the duration of the experiment (7 days),
levels appeared markedly reduced at day 7 compared to day 2 (Figure 5A). Furthermore, the
presence of endogenous mesenchymal stromal cells was observed across all groups and both
time points, as evidenced by STRO-4 staining (Figure 5B). This staining is key in identifying
endogenous stromal mesenchymal stromal cells, as the presence of the CM-Dil-labelled cells
essentially discounts the implanted or exogenous cell population. The presence of MNPs
was further determined by either immunohistochemistry by staining the dextran shell of
the particle (Figure 6A) or with Prussian blue stain, which binds to the inner iron oxide core
(Figure 6B). MNPs were observed distributed throughout the ECM matrix, and at higher
magnifications, co-localisation of the red, anti-dextran stain of the MNP with the orange CM-
Dil-labelled oMSCs could be seen. These observations were further validated by Prussian blue
staining, which stains the iron oxide core blue. In Figure 6B, intense blue staining was detected
within a population of CM-Dil-labelled oMSCs, illustrating that at 7 days post-implantation,
therapeutic oMSCs retain the MNP label.
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MNPs −magnet) at day 2 (A) and day 7 (B). Cell nuclei depicted by purple staining and extracellular matrix by pink
staining. White arrow showing the pockets of cell accumulation. Scale bar = 100 µm.
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Figure 5. Characterisation of cell infiltration by immunohistochemistry staining for (A) CD45 and (B) STRO-4 for represen-
tative samples at day 2 (Ai) and day 7 (Aii) for the following groups: cell only, MNPs +magnet and MNPs −magnet. DAPI
(blue staining) was used for the cell nuclei, CM-Dil (orange fluorescence) identifies implanted oMSCs, whilst the presence
of CD45- or STRO-4-positive cells are depicted by red fluorescence. A red arrow indicates an example of STRO-4-positive
endogenous cell. An orange arrow indicates an example of the implanted CM-Dil-positive cell. Scale bar = 100 µm (5A) and
5000 µm (5B).
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(cell only, MNPs +magnet, MNPs −magnet) 7 days post-implantation. Co-localisation of 
osteocalcin with CM-Dil-labelled cells (Figure 7A) suggests that implanted oMSCs are re-
sponsible for the production of this protein and indicates they have differentiated towards 
an osteogenic phenotype. Quantification of osteocalcin expression using at least three im-
ages taken from different regions for each sample shows that the total expression was 
similar across all three groups (Figure 7B). When normalised to the cell number, however, 
the MNPs +magnet sample demonstrated significantly greater expression than both the 
cell-only group (p < 0.05) and the MNPs −magnet control group (p < 0.0001) (Figure 7C). 

Figure 6. Assessment of MNP degradation in vivo MNPs are composed of an iron oxide core with a
dextran coating. (A) Immunohistochemistry for dextran (Red Fluorescence). (B) Prussian blue stain-
ing for the iron oxide core (Blue staining). Implanted oMSCs are identified by the orange membrane-
bound stain attributed to the CM-Dil dye. Representative day 7 sample. Scale bar = 100 µm.

3.5. Osteocalcin Expression by Implanted Cells Is Observed in Day 7 ECM Constructs from All
Three Groups

Expression of the bone matrix protein osteocalcin was observed in all three groups
(cell only, MNPs +magnet, MNPs −magnet) 7 days post-implantation. Co-localisation
of osteocalcin with CM-Dil-labelled cells (Figure 7A) suggests that implanted oMSCs
are responsible for the production of this protein and indicates they have differentiated
towards an osteogenic phenotype. Quantification of osteocalcin expression using at least
three images taken from different regions for each sample shows that the total expression
was similar across all three groups (Figure 7B). When normalised to the cell number,
however, the MNPs +magnet sample demonstrated significantly greater expression than
both the cell-only group (p < 0.05) and the MNPs −magnet control group (p < 0.0001)
(Figure 7C).
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tifies implanted oMSCs, whilst the presence of osteocalcin is depicted by red fluorescence. (B) Quantification of osteocalcin 
expression from images taken from multiple regions of each sample. (C) Quantification of osteocalcin expression normal-
ised to cell number, as determined by the number of CM-Dil-positive cells in each image. Significance was determined by 
a one-way ANOVA statistical test, where * is p < 0.05, *** is p < 0.001 and is **** is p < 0.0001. One sample per group with 
3–4 images per sample (n = 3–4). Scale bar = 200 µM. 
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Creation of a bone defect in any animal model is perceived by the body as an injury, 

thereby triggering a cascade of fracture repair events. Implantation of a bone tissue-engi-
neered product at this stage following injury will require an interaction between this heal-
ing environment and the implanted tissue. The healing process is initiated with an imme-
diate inflammatory response alongside the formation of a haematoma (as a result of blood 
vessel disruption upon injury) which is essential in enabling bone formation, followed by 
the recruitment of immune and mesenchymal stromal cells [28,29]. In this study, we report 
the presence and formation of a haematoma encapsulating the ECM implant in all groups 
and at both time points, in line with this healing process. At this point, levels of inflam-
matory mediators, such as the interleukins-1, -6, -11 and -18 (IL-1, IL-6, IL-11, IL-18) and 
tumour necrosis factor-α (TNF-α), are significantly elevated and effectively work to re-
cruit inflammatory cells [19]. These factors subsequently work to recruit mesenchymal 
stromal cells and have been known to influence the differentiation and proliferation of 
stem cells [19,30]. 

The inflammatory response typically peaks 24 h post-injury and is expected to be 
completed approximately 7 days later. CD45, a transmembrane glycoprotein, is associated 

Figure 7. Osteocalcin expression is observed in day 7 extracted hydrogel constructs for all groups (cell only, MNPs +magnet,
MNPs −magnet). (A) Osteocalcin representative staining at day 7 for all samples. CM-Dil (orange fluorescence) identifies
implanted oMSCs, whilst the presence of osteocalcin is depicted by red fluorescence. (B) Quantification of osteocalcin
expression from images taken from multiple regions of each sample. (C) Quantification of osteocalcin expression normalised
to cell number, as determined by the number of CM-Dil-positive cells in each image. Significance was determined by a
one-way ANOVA statistical test, where * is p < 0.05, *** is p < 0.001 and is **** is p < 0.0001. One sample per group with
3–4 images per sample (n = 3–4). Scale bar = 200 µM.

4. Discussion

Creation of a bone defect in any animal model is perceived by the body as an injury,
thereby triggering a cascade of fracture repair events. Implantation of a bone tissue-
engineered product at this stage following injury will require an interaction between this
healing environment and the implanted tissue. The healing process is initiated with an
immediate inflammatory response alongside the formation of a haematoma (as a result
of blood vessel disruption upon injury) which is essential in enabling bone formation,
followed by the recruitment of immune and mesenchymal stromal cells [28,29]. In this
study, we report the presence and formation of a haematoma encapsulating the ECM
implant in all groups and at both time points, in line with this healing process. At this
point, levels of inflammatory mediators, such as the interleukins-1, -6, -11 and -18 (IL-1,



Cells 2021, 10, 1776 13 of 16

IL-6, IL-11, IL-18) and tumour necrosis factor-α (TNF-α), are significantly elevated and
effectively work to recruit inflammatory cells [19]. These factors subsequently work to
recruit mesenchymal stromal cells and have been known to influence the differentiation
and proliferation of stem cells [19,30].

The inflammatory response typically peaks 24 h post-injury and is expected to be
completed approximately 7 days later. CD45, a transmembrane glycoprotein, is associated
with leukocytes and white blood cells or immune cells, including macrophages and mono-
cytes, which form part of the inflammatory response to injury [5]. Evidence of enhanced
infiltration of CD45-positive cells at 2 days post-implantation correlates with these timed
events. Interestingly, CD45-positive cells are seen to decline by day 7, irrespective of the
treatment group. Our results show a similar trend of CD45 infiltration in the cell-only and
both MNP-labelled cells groups. These results suggest that there is no elevated immune
response either, as a result of the addition of MNPs to cells or the influence of an external
dynamic magnetic field. This was further validated by quantifying C-reactive protein
levels, a blood marker of inflammation, in all sheep. In our study, levels remain below 120
µg/mL, a diagnostic requirement for systemic inflammatory responses in sheep. These
data provide further evidence for the safety of utilising MNPs in vivo with and without
assisted magnetic external fields during therapy. The migration of endogenous mesenchy-
mal stromal cells is also a key event at these early time points [28]. Here, we demonstrate
the recruitment of endogenous mesenchymal stromal cells as part of the healing process
with the infiltration of STO-4 positive cells (which are not CM-Dil-labelled) observed in all
ECM constructs regardless of treatment groups.

Translating regenerative cell-based therapies to pre-clinical studies and beyond is
associated with significant hurdles directly impacting therapeutic outcomes. A key element
in defining the success in these therapies is refining the dosage of stem cells delivered to the
site, which has impacts across multiple clinical indications being treated. Understanding
the percentage of stem cells which remain viable post-delivery and are capable of generating
new bone tissue to fill the repair site will aid in determining the number of cells required
for the therapy [31]. Reports have shown that as much as 99% of cell viability is lost within
24 h of delivery in extreme cardiac therapy applications, whilst other studies reported
that “only a few cells” survive at the site of implantation for osteoarthritic stem-cell-based
therapies [32,33]. Other pre-clinical studies have further shown that fewer than 5% of
injected cells remain at the delivery site within days of implantation [34]. Of course, the
animal model, type of injury, stem cell type, mode of delivery and delivery material will
affect overall survival and clearance rates. In this pre-clinical model of a critical-sized defect,
a significant drop in the survival of donor cells is also observed over 7 days. Interestingly,
this is irrespective of treatment group, with no further implications of the MNP label nor
magnetic activation, at the timeframes examined, on cellular viability in vivo. Furthermore,
we are confident in reporting that within this system, we observe no significant clearance of
exogenous, implanted cells. This dramatic loss in cell viability can be attributed to several
factors primarily associated with delivering cells within a harsh microenvironment, where
nutrient and oxygen supply may be limited and upregulation of chronic inflammatory
mediators and increased oxidative stress mechanisms are observed [31,35]. Anoikis is
another potential mechanism of cell death in vivo associated with the loss of anchorage-
dependent attachment to the ECM [31]. In this study, we suggest that anoikis may not be
the cause of cell death, as the viability in in vitro controls is not impaired, which implies
that cells are attaching and interacting with the hydrogel effectively. This was further
validated in vitro on day 7, where we observed the creation of self-assembled ECM/cell
clusters, where cells were beginning to remodel the ECM hydrogel. What is not clear is
if there is therapeutic benefit from these delivered cells at the initial stages of therapy in
terms of cell signalling, which may enhance migration of endogenous cells to the site of
repair. Future work should focus on optimising the gel constitution to determine if changes
to ECM can improve the viability of implanted cells.
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Mechanotransduction is a highly complex process by which a physical force or series
of mechanical stimuli are converted to a set of biochemical signals resulting in controlled
cellular responses with a particular emphasis on bone homeostasis and repair [36]. This has
spurred the development of novel in vitro technologies to provide mechanical stimuli to
effectively trigger mechanotransduction pathways to drive and control osteogenesis in vitro
for more efficient production of bone tissue engineering products [37]. We have developed
a novel platform technology, where MNPs are used to remotely deliver mechanical stimuli
to the mechano-receptor TREK-1, resulting in activation and downstream signalling via
an external magnetic array [38]. The MNPs implemented in this study are composed
of an iron oxide core and coated with dextran for improved biocompatibility. Overall,
MNPs exhibit superparamagnetic properties, suggesting that there is relatively minimal
risk (at least over the timeframes examined) of in vivo agglomeration, while enabling
efficient manipulation with an external magnetic field. Toxicity and safety are, of course,
major concerns in the implementation of MNPs in any biological application. In our
study, there is no loss of cell viability, which could be attributed to the MNP label or
the application of an external oscillating magnetic field on the MNP-tagged cells within
the timeframes examined. Our results agree with other work showing that the use of
MNPs in conjunction with stem cells has little or no effect on the proliferation and viability
of cells [1,7]. In vitro and ex vivo studies have demonstrated the potential for remote
controlled stem cell differentiation [14,39–41]. A number of targets including PDGF, TREK-
1, RGD and Wnt have been explored as actuators of mechanotransduction pathways in
MSCs for bone tissue engineering purposes [39,42,43]. A large animal translational study
reported an improvement in bone repair in a critical-sized defect in the medial femoral
condyle of a sheep [25]. In this study, we confirm these long-term studies at earlier stages
of repair and indicate that further work is needed to study the appropriate cell dosing for
therapeutic applications.

5. Conclusions

Our study demonstrates how therapeutic cells are substantially reduced in number
after implantation in the repair site in all experimental groups. Cell death is accompanied
with enhanced leucocyte invasion but not with inflammatory blood marker levels. STRO+
cells are maintained with some levels of osteocalcin expression. MNP labelling, with or
without external magnetic fields, does not alter cell number or result in further deleterious
impact on cells following implantation.
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