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Abstract: Cilia are microtubule-based hair-like organelles that extend from the cell surface. However,
the existence and distribution of cilia in each organ and tissue at the postnatal stage in vivo remain
largely unknown. In this study, we defined cilia distribution and arrangement and measured the
ciliary lengths and the percentage of ciliated cells in different organs and tissues in vivo by using
cilium dual reporter-expressing transgenic mice. Cilia were identified by the presence of ARL13B
with an mCherry+ signal, and the cilium basal body was identified by the presence of Centrin2
with a GFP+ signal. Here, we provide in vivo evidence that chondrocytes and cells throughout
bones have cilia. Most importantly, we reveal that: 1. primary cilia are present in hepatocytes; 2. no
cilia but many centrioles are distributed on the apical cell surface in the gallbladder, intestine, and
thyroid epithelia; 3. cilia on the cerebral cortex are well oriented, pointing to the center of the brain;
4. ARL13B+ inclusion is evident in the thyroid and islets of Langerhans; and 5. approximately 2%
of cilia show irregular movement in nucleus pulposus extracellular fluid. This study reveals the
existence and distribution of cilia and centrioles in different tissues and organs, and provides new
insights for further comprehensive study of ciliary function in these organs and tissues.

Keywords: primary cilia; centrin; ARL13B; nucleus pulposus; brain

1. Introduction

Cilia are microtubule-based organelles that were first discovered by Leeuwenhoek
in approximately 1675. Most types of cells only possess one cilium, named a primary
cilium or monocilium, but some cells possess ciliary bundles that consist of 200–300 cilia
per cell, named motile cilia, that enable shift of fluids or mucus along the surface of the
ciliated cells. Primary cilium is usually immotile which has 9 + 0 axonemal structure,
with nine outer microtubule doublets, while motile cilia are motile with 9 + 2 axonemal
structure consisting of nine outer microtubule doublets and two centrally-located singlet
microtubules. Basal body forms the base of the cilium and arises from the mother centriole
of the centrosome. Most proximal part of cilium is so-called transition zone of unique
ultrastructural organization. Although cilia have been investigated for many years, not all
cell types or tissues have been studied for the presence of cilia, and how cilia are distributed
and arranged in different organs and tissues in vivo remains largely unknown. To further
identify cells with cilia, we tested for the presence of cilia and characterized the distribution
of cilia in different organs and tissues by using a unique cilium double-reporter transgenic
mouse model [1]. In this model, the ciliary protein ARL13B is fused with the monomeric
red fluorescent protein mCherry, and the centriolar protein Centrin2 is fused with GFP

Cells 2021, 10, 1623. https://doi.org/10.3390/cells10071623 https://www.mdpi.com/journal/cells

https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-7126-6901
https://doi.org/10.3390/cells10071623
https://doi.org/10.3390/cells10071623
https://doi.org/10.3390/cells10071623
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cells10071623
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells10071623?type=check_update&version=1


Cells 2021, 10, 1623 2 of 15

to mark the cilium basal body. ARL13B was originally identified in genetic screenings
as a protein essential for ciliated organ integrity and neural tube patterning [2]. It is a
ciliary small GTPase protein that is located on cilia [3] and, therefore, has been used as
a cilium marker in various mono- and multi-ciliated tissues [1,3]. In humans, mutations
of ARL13B cause Joubert syndrome, a ciliopathy characterized by brain malformations,
combined with polydactyly and renal cyst formation [4,5]. Centrioles are essential for
spatially precise execution of cell division [6]. The ARL13B-mCherry;Centrin2-GFP cilium
dual-reporter transgenic mouse line has been proven to exhibit successful labeling of cilia
with mCherry and labeling of basal bodies with GFP, and the mice are viable and fertile
without disruption of normal ciliary function [1].

Here, by using this unique cilium dual reporter-expressing transgenic mouse model,
we analyzed the existence and distribution of cilia and centrioles in different tissues and
organ systems. Our findings provide the first evidence on this topic and lay a foundation
for further comprehensive study of ciliary function in the organs and tissues analyzed in
this study.

2. Materials and Methods
2.1. Mice

All procedures for housing and breeding animals and collecting animal tissue were
performed following the animal protocols approved by the Institutional Animal Care
and Use Committee (IACUC) of the University of Pennsylvania in accordance with the
IACUC’s relevant guidelines and regulations. ARL13B-mCherry; Centrin2-GFP cilium
dual reporter-expressing transgenic mice [1] were purchased from Jackson Laboratory
(Stock No: 027967, Bar Harbor, ME, USA). The ARL13B-mCherry; Centrin 2-GFP mice were
generated from mice with a mixed background of FVB and C3H strains. Four-week-old
male ARL13B-mCherry; Centrin2-GFP mice were used for this study.

2.2. Genotyping

Genomic DNA was isolated from tail tips by proteinase K digestion and extracted with
a NucleoSpin tissue kit (Macherey-Nagel) according to the manufacturer’s instructions.
PCR was performed using primers for ARL13B-mCherry (5-CTA GGC CAC AGA ATT
GAA AGA TCT-3, 5-GTA GGT GGA AAT TCT AGC ATC ATC C-3) and Centrin2-GFP
(5-TGA ACG AAA TCT TCC CAG TTT CA-3, 5-ACT TCA AGA TCC GCC ACA ACA T-3).

2.3. Preparation of Frozen Sections and Observation of Cilia

Mouse organs or soft tissues from 4-week-old ARL13B-mCherry; Centrin2-GFP cilium
dual reporter-expressing transgenic mice (n = 6) were fixed with 10% neutral buffered
formalin for 1–2 h at 4 ◦C [7,8]. Mouse femurs and intervertebral discs from between the
third and fifth vertebrae in the lumbar spine and between the fifth and sixth coccygeal
vertebrae (n = 6) were excised, fixed with 10% neutral buffered formalin, and decalcified
in 10% ethylenediaminetetraacetic acid (EDTA) for 2–3 weeks at 4 ◦C. All harvested tis-
sues were embedded in optimum cutting temperature (OCT) compound and sectioned
using a standard microtome (Cryostat 29 cryotome, CM1950, Leica), and 6-µm sections
were prepared. The coverslips were mounted with Fluoroshield (F6057, Sigma–Aldrich,
St. Louis, MO, USA).

2.4. Immunofluorescence Staining

Tissue sections with a thickness of 6 µm were incubated with proteinase K (20 µg/mL,
D3001-2-5, Zymo Research) for 10 min at room temperature. Subsequently, the sections
were blocked in 5% normal goat serum for 1 h (10000C, Thermo Fisher Scientific, Swedes-
boro, NJ, USA) in PBS-T (0.4% Triton X-100 in PBS) and incubated with antibodies against
acetylated tubulin (1:100, T6793, Sigma, St. Louis, MO, USA) or ARL13B (1:100, 17711-1-AP,
Proteintech, Rosemont, IL, USA) in blocking buffer at 4 ◦C overnight. The tissue sections
were washed 3 times with PBS. The tissues were incubated with Alexa Fluor 647-conjugated
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anti-mouse (1:200, A-21236, Invitrogen, Carlsbad, CA, USA) or anti-rabbit (1:200, sc-516251,
Santa Cruz, CA, USA) secondary antibodies at 4 ◦C for 1 h. The coverslips were mounted
with Fluoroshield (F6057, Sigma–Aldrich, St. Louis, MO, USA).

2.5. Quantitative Analysis of the Ciliary Number and Length

Primary cilia were identified by the juxtaposition of ARL13B signals (red) to centrin2
signals (green). To quantify the ciliary number and length, Z-stacked images from multiple
fields were collected. The ciliary length was determined by tracing a line across the length
of the primary cilium in a 3D Z-stack with ImageJ software [9]. Each representative ciliary
region measured in tissues or organs consisted of at least 1000 cells (40× magnification).
Ciliary length and orientation were assessed in a blinded fashion by two of the authors.
The ciliated cells in each image were counted under a microscope. The cell numbers were
determined by DAP nuclear staining. For muscle cells, we identified single cells by both
DAPI and centrin2-GFP staining (usually, each cell has a pair of centrioles). Some cilia
were oriented along the long axis of the nucleus. At least 30 images were assessed. For 3D
reconstruction of cilia, Amira® software was used (Template Graphics Software; Visage
Imaging, San Diego, California, USA). To limit measurement error, for each cilium, the
average of three measurements was used for statistical analysis. The percentage of ciliated
cells was calculated from the ratio of ciliated cells to total cells observed in each sample
(under 40× magnification; the analysis was performed with five sections collected from
each sample). The organs and tissues of six mice were evaluated.

2.6. Time-Lapse Observations of Cilia in Living Nucleus Pulposus (NP) Tissue

For analysis of the NP, intervertebral discs were dissected between the fifth and sixth
coccygeal vertebrae of 4-week-old ARL13B-mCherry; Centrin2-GFP cilium dual reporter-
expressing transgenic mice and then immediately placed on slides for live imaging under a
microscope. All images were visualized and videorecorded using a Leica DMI6000 inverted
epifluorescence microscope (DMI6000B, Leica) with a Leica DFC365FX monochrome digital
camera in conjunction with LAS-X acquisition software (Leica).

3. Results
3.1. Cilia Are Present in Different Tissues of the Respiratory and Circulatory Systems

Using the described genetic mouse model, we first confirmed that mCherry marks
cilia in mouse tissues (Figures S1 and S2) via immunofluorescence staining of ARL13B and
acetylated tubulin in tracheal tissue.

Then, we examined the patterns of centrioles and cilia in respiratory system com-
ponents, including the trachea and bronchioles. In the trachea, consistent with previous
observations [10], multiple mCherry+ cilia with GFP+ basal bodies were present on almost
the entire airway epithelium. In tracheal cartilage, mCherry+ primary cilia were detected
in 72.2 ± 1% of chondrocytes, and the length of primary cilia varied between 3 and 5 µm,
consistent with the number and length of primary cilia in chondrocytes of articular carti-
lage [11] (Figure 1A) (Table 1). In bronchioles, mCherry+ cilia with GFP+ centrioles were
detected on the entire epithelium (Figure 1B). Moreover, 24.7 ± 1.6% of smooth muscle
cells surrounding the bronchiolar epithelium presented mCherry+ primary cilia.
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Figure 1. Cilia are present in different tissues of the respiratory system, circulatory system and immune system. (A) Trachea,
(B) bronchioles, (C) heart, (D) artery, (E) spleen, (F) thymus. White arrow, cilium with an ARL13B-mCherry+ axoneme and
Centrin2-GFP+ basal body. Yellow arrow, cell with only ARL13B-mCherry. Red arrow, cell with only Centrin2-GFP. Green,
Centrin2-GFP. Red, ARL13B-mCherry. Blue, DAPI. Scale bar, 10 µm.

Table 1. The cilia in each organ or tissues.

Motile Cilia(%) Primary Cilia(%) Ciliary Length
(µm) Orientation

Trachea Epithelium 100% - 5.0–7.0 Point to airway

Cartilage - 72.2 ± 1 3.0–5.0 N/A

Bronchioles Epithelia 100% - 5.0–7.0 Pointing to airway

Smooth muscle - 24.7 ± 1.6 3.0–5.0 N/A

Heart - 8.7 ± 0.6 1.0–3.0 N/A

Arteries Endothelium - 6 ± 0.1 0.5–2.0 The long axis of
epithelia nuclear

Immune system Spleen - 13.4 ± 0.9 3.0–6.0 N/A

Thymus - 20.3 ± 0.9 3.0–6.0 N/A

Liver Hepatocytes - 8.2 ± 0.3 0.5–2.0 N/A

Cholangiocytes - 43.5 ± 2 5.0–7.0 N/A

Intestine - 9.8 ± 0.6 3.0–5.0 N/A

Gallbladder Epithelia - 16.1 ± 0.8 1.5–3.0 N/A

Smooth muscle - 9.1 ± 0.4 3.0–5.0 The long axis of
nuclear

Stomach Mucosa - 5.9 ± 0.2 0.5–3.0 N/A

Submucosa - 14 ± 0.7 3.0–5.0 N/A

Muscularis externa - 9.1 ± 0.3 0.5–3.0 N/A

Serosa - 21.2 ± 0.6 3.0–5.0 The long axis of
nuclear
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Table 1. Cont.

Motile Cilia(%) Primary Cilia(%) Ciliary Length
(µm) Orientation

Esophagus Squamous
epithelium - 7 ± 0.1 3.0–5.0 The long axis of

epithelia nuclear

Submucosa - 7.4 ± 0.1 0.5–3.0 The long axis of
nuclear

Muscularis externa - 9 ± 0.2 0.5–3.0 N/A

Kidneys Glomeruli in
kidney - 9.6 ± 0.4 1.5–3.0 N/A

Proximal
convoluted tubules - 23.9 ± 0.6 1.5–3.0 Toward the lumen

of the tubules

Distal convoluted
tubules - 12.6 ± 0.2 1.5–3.0 N/A

Collecting tubules - 54.5 ± 3.8 10.0–5.0 Same direction as
fluid

Bladder Connective tissues - 31.8 ± 0.8 5.0–7.0 N/A

Testes Leyding cells - 23.0 ± 1.3 3.0–10.0 N/A

Spermatogenic
cells - 10.9 ± 1 0.5–2.0 N/A

Bone Osteoblasts - 86.8 ± 3 3.0–3.5 Long axis of
nuclear

Osteocytes - 81 ± 2.9 2.5–3.0 Long axis of
nuclear

Cartilage Growth plate - 68.9 ± 4.1 2.0–4
Long axis of the

growth plate
chondrocyte

Artcular cartilage - 49.6 ± 1.5 2.0–4.0
Long axis of the
artcular cartilage

chondrocyte

Intervertebral discs Nucleus pulposus - 33.2 ± 0.4 0.5–15.0 N/A

Annulus fibrosus - 36.1 ± 1.9 0.5–3.5

Aligned parallel to
the long axis of the
aunulus fibrosus

cells

Skin Hair follicles - 33.4 ± 1.1 1.5–5.0 N/A

Reticular dermis 52.8 ± 0.9 1.5–5.0 N/A

Adipose tissue - 18.7 ± 0.5 3.0–6.0 N/A

Sutures - 85.5 ± 1.1 5.0–7.0 Long axis of the
nuclear

Brain Cerebellum cortex - 19.3 ± 0.8 0.5–3.0 N/A

Cerebellum - 73.9 ± 3.7 0.5–3.0 N/A

Midbrain - 9.6 ± 0.1 0.5–3.0 N/A

Cerebral cortex - 91.7 ± 3.8 0.5–3.0 Pointing to centre
of brain

Endocrine system Thyroid - 23.9 ± 2.2 0.5–2.5 N/A

Adrenal gland - 7.3 ± 1.2 3.0–7.0 N/A

Islet of Langerhans - 21.1 ± 1.6 5.5–15.0 N/A
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Primary cilia have been reported to be present in the heart and arteries in a previous
study [12,13]. We found that the frequency of mCherry+ cilia in myocytes was 8.7 ± 0.6%,
and the ciliary length ranged from 1 to 3 µm. Most interestingly, small puncta of ARL13B-
mCherry+ accumulated in some myocytes (Figure 1C). In the arteries, the frequency of
ciliated endothelial cells was 6 ± 0.1%, and the ciliary length ranged from 0.5 to 2 µm. The
profiles of primary ciliary axonemes in endothelial cells were parallel along the long axis of
the cell and projected into the surrounding extracellular matrix (ECM) at a range of angles.

3.2. Primary Cilia Are Present in Different Organs of the Immune System

The spleen contains two types of tissues: white pulp and red pulp. Red pulp is
composed of venous sinuses and splenic cords. White pulp mostly consists of immune
cells [14]. The thymus is an immune organ in humans that produces dendritic cells,
macrophages, and mature thymocytes. It has been reported that lymphocytes are one of
the few cell types that do not possess cilia [15]. Consistent with this finding, we found
that the majority of cells in the spleen and thymus did not have ARL13B-mCherry+ cilia.
However, unexpectedly, we newly discovered that mCherry+ primary cilia existed in both
spleen cells and thymocytes. The frequency of primary cilia in spleen cells was 13.4 ± 0.9%,
while it was 20.3 ± 0.9% in thymus cells. In addition, the length of the primary cilia was
3–6 µm in the spleen and thymus (Figure 1E,F) (Table 1). It will be interesting to further
investigate the functions of these cilia in specific immune cell types and in the immune
system as a whole.

3.3. Cilia Are Present in Different Organs of the Digestive System, Including Hepatocytes

It has been reported that no primary cilia are present on hepatocytes [16]. Hepatocytes
are polygonal in shape, and their cell membrane can come in contact with either sinusoids
(on the sinusoidal face) or neighboring hepatocytes (on the lateral faces) [17]. Our mor-
phological analysis revealed that 8.2 ± 0.3% of hepatocytes had mCherry+ primary cilia
and that the ciliary length was 0.5–2 µm. Interestingly, small puncta of ARL13B-mCherry+
particles were detected in some hepatocytes (Figure 2A,B). Cholangiocytes are epithelial
cells in the bile duct, and primary cilia in these cells have been reported to extend from
the apical plasma membranes into the ductal lumen [16]. Consistent with the findings of
previous studies [16], the frequency of ciliated cells in our study was 43.5 ± 2%, and the
length of the primary cilia ranged from 5 to 7 µm (Figure 2A). In the gallbladder, ARL13B-
mCherry+ primary cilia were present on 16.1 ± 0.8% of epithelial cells and 9.1 ± 0.4% of
smooth muscle cells (Figure 2C). The primary ciliary length ranged from 1.5 to 3 µm in the
epithelial cells and 3 to 5 µm in the smooth muscle cells (Table 1). Notably, many cells in the
gallbladder epithelium had no cilia but displayed Centrin2-GFP-labeled centrioles on the
apical cell surface. Accumulation of ARL13B-mCherry+ particles was observed in gallblad-
der epithelial cells (Figure 2C). Primary cilia in the gastric epithelium have been reported
previously [18]. Structurally, the stomach wall is composed of four layers. We found that
each layer had some ciliated cells. The ciliary length ranged from 0.5 to 3 µm in the mucosa
and muscularis externa and from 0.5 to 5 µm in the submucosa and serosa. Primary cilia
were detected in 5.9 ± 0.2%, 14 ± 0.7%, 9.1 ± 0.3%, and 21.2 ± 0.6% of the cells in the
mucosa, submucosa, muscularis externa, and serosa, respectively (Table 1). Interestingly,
numerous ARL13B-mCherry+ particles were deposited in some epithelial cells and formed
a well-organized pattern in the mucosal layer (Figure 2D). To the best of our knowledge,
cilia in the esophagus have never been investigated. We found that the ciliary length ranged
from 3 to 5 µm in squamous epithelial cells and from 0.5 to 3 µm in the submucosa and
muscularis externa cells (Figure 2E). Primary cilia were detected in 7 ± 0.1%, 7.4 ± 0.1%,
and 9 ± 0.2% of squamous epithelial cells, submucosal cells and muscularis externa cells,
respectively (Table 1). Additionally, accumulation of ARL13B-mCherry+ particles was
observed in some submucosal cells (Figure 2E). The intestine plays an essential role by
absorbing water, vitamins, and electrolytes from waste material [19]. Interestingly, similar
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to the pattern in gallbladder epithelial cells, a large number of Centrin2-GFP+ particles
were located on the apical cell surface in the intestinal epithelium (Figure 2F).

Figure 2. Cilia are present in different organs of the digestive system. (A,B) Hepatocytes and intrahepatic bile ducts in
the liver, (C) gallbladder, (D) stomach, (E) esophagus, and (F) intestine. White arrow, cilium with an ARL13B-mCherry+
axoneme and Centrin2-GFP+ basal body. Yellow arrow, cell with only ARL13B-mCherry. Red arrow, cell with only with
Centrin2-GFP. Green, Centrin2-GFP. Red, ARL13B-mCherry. Blue, DAPI. Scale bar, 10 µm.

3.4. Cilia Are Present in Different Organs in the Urinary and Reproductive System

Although primary cilia in the kidney have been extensively investigated [20], the
distributions and features of cilia in the kidney remain unclear. Our results showed that
ARL13B-mCherry+ cilia were present and that the ciliary length ranged from 1.5 to 3 µm
in the glomerulus, proximal convoluted tubules and distal convoluted tubules and from 10
to 15 µm in the collecting tubules. Primary cilia were observed in 9.6 ± 0.4%, 23.9 ± 0.6%,
12.6 ± 0.2%, and 54.5 ± 3.8% of the cells in the glomerulus, proximal convoluted tubules,
distal collecting tubules, and collecting tubules, respectively (Figure 3A–C) (Table 1). The
epithelium in proximal convoluted tubules and distal convoluted tubules exhibited shorter
cilia with an average ciliary length of 0.5–3 µm (Figure 3B). The proximal tubule consists
of polarized monolayer cells, which are characterized by a brush border [21]. Through
morphological analysis [21], we found large quantities of ARL13B-mCherry+ signals with a
well-organized pattern (with cilia facing the tubule lumens) in proximal convoluted tubules
(Figure 3B), suggesting that cilia may have a function in secretion or absorption. The cilia in
collecting tubules were much longer than those in proximal tubules and were well oriented
in one direction (Figure 3C). The collecting tubules transport urine and absorb water in the
kidneys. Few studies have investigated cilia on bladder epithelial cells [22]. Approximately
17.4 ± 0.7% of mCherry-expressing primary cilia (Figure 3D) were observed in transitional
epithelial cells, and the length of the primary cilia was 1–3 µm. Many ARL13B-mCherry+
particles were present in the transitional epithelial cells, which were near the lacunae
(Figure 3D). ARL13B-mCherry+ primary cilia were found in 31.8 ± 0.8% of the cells in the
musculoskeletals underneath the epithelium, and the ciliary length varied from 5 to 7 µm
(Figure 3D,E).
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Figure 3. Cilia are present in different organs in the urinary and reproductive system. (A) Kidney glomerulus, (B) kidney
proximal convoluted tubules and distal convoluted tubules, (C) kidney collecting tubules, (D,E) bladder, and (F) testes.
White arrow, cilium with an ARL13B-mCherry+ axoneme and Centrin2-GFP+ basal body. Yellow arrow, cell with only
ARL13B-mCherry. Green, Centrin2-GFP. Red, ARL13B-mCherry. Blue, DAPI. Scale bar, 10 µm.

Cilia have been reported to be present in testes in several studies [23,24]. We found
that both primary cilia and ARL13B-mCherry+ particles were present in Leydig cells. The
percentages of primary ciliated cells were 23 ± 1.3% among Leydig cells and 10.9 ± 1%
among spermatogenic cells, and the ciliary length was 3–10 µm in the Leydig cells and
0.5–2 µm in the spermatogenic cells. Most of the primary ciliary axonemes in the Leydig
cells were parallel to the long axis of the nucleus (Figure 3F).

3.5. Ciliary Arrangement and Patterns in the Cerebral Cortex of the Brain

It has been reported that the mean ciliary length varies across brain regions, ranging
from 2.1 to 9.4 µm across 23 regions of the central nervous system [25]. Our results showed
various ciliary lengths in different regions (Figure 4A). ARL13B-mCherry+ primary cilia
were present in 19.3 ± 0.8%, 73.9 ± 3.7%, 9.6 ± 0.1%, and 91.7 ± 3.8% of the cells in the
mouse cerebellar cortex (Figure 4B), cerebellum (Figure 4C), midbrain (Figure 4D), and
cerebral cortex (Figure 4E–G), respectively, and the ciliary lengths varied from 0.5 to 3 µm
(Table 1). Cilia were short in the midbrain and cerebral cortex, but some mCherry+ particles
were detected in the cytoplasm of the midbrain (Figure 4D). Most interestingly, the cilia in
the some regions (Figure 4E,G) of the cerebral cortex were well oriented, with all the cilia
pointing to the middle of the brain. This is the first study to show the specific orientation
of cilia in the parenchyma, which may suggest a novel function of cilia in the brain that
has not yet been elucidated. It will be interesting to investigate and identify the cell type
(neurons or glial cells) associated with these featured cilia and to determine the functions
of these cilia in the brain.
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1 
 

 
Figure 4. The cilia in the cerebral cortex are well, pointing to the center of the brain. (A) Sagittal sections of the brain,
(B) cerebellar cortex, (C) cerebellum, (D) midbrain, and (E–G) cerebral cortex. Many ARL13B+ particles are visible in (F).
White arrow, cilium with axoneme and basal body. Yellow arrow, localization of ARL13B. Red arrow, cells with only
Centrin2. Green, Centrin2-GFP. Red, ARL13B-mCherry. Blue, DAPI. Scale bar, 10 µm.

3.6. Cilia Are Present in Different Organs in the Musculoskeletal System

Osteoblasts, the main bone-forming cells, are derived from mesenchymal progenitors,
and are characterized by the production of alkaline phosphatase, osteocalcin, and type I
collagen. A small subset of osteoblasts are trapped in the bone matrix to become osteocytes.
Consistent with our previous studies in which an antibody against acetylated tubulin was
used for cilium detection, the length of ARL13B-mCherry+ primary cilia varied from 3
to 3.5 µm in osteoblasts and 2.5 to 3 µm in osteocytes [26]. The percentage of primary
ciliated cells was 86.8 ± 3% in osteoblasts and 81 ± 2.9% in osteocytes (Table 1). Most
ciliary axonemes in osteoblasts and osteocytes were parallel to the long axis of the nucleus
(Figure 5A).

Primary cilia in chondrocytes have been investigated by many studies [11,27]. In
this study, ARL13B-mCherry+ primary cilia were detected in 68.9 ± 4.1% of growth plate
chondrocytes and 49.6 ± 1.5% of articular cartilage chondrocytes. The ciliary length ranged
from 2 to 4 µm (Table 1). The orientation of the primary cilia in chondrocytes has also
been investigated previously [11]. Through our observations, some ciliary axonemes in
articular cartilage chondrocytes were observed to be parallel to the long axis of the nucleus
(Figure 5B,C).

In intervertebral discs, the length of ARL13B-mCherry+ primary cilia was 0.5–15 µm
in the nucleus pulposus (NP) and 0.5–3.5 µm in the annulus fibrosis (AF). Approxi-
mately 33.62 ± 0.4% of NP cells and 36.1 ± 1.9% of AF cells were ciliated in the third
and fourth lumbar intervertebral discs of the mice (Figure 5D,E). The NP is composed
of a proteoglycan-and-water gel that is loosely held together by an irregular network of
type II collagen and elastin fibers. Recent studies have suggested that NP cells are derived
from the embryonic node and notochord [28]. To analyze whether cilia in NP cells in the
postnatal stage can move similarly to those in embryonic notochord cells, we isolated whole
NPs from intervertebral discs between the fifth and sixth coccygeal vertebrae in the tail and
observed and recorded live images of ciliary movement with a microscope. Surprisingly,
approximately 2% of the cilia showed irregular movement in the NP extracellular fluid,
which is different from the clockwise movement of primary cilia in embryonic notochord
cells [29] (supplementary Videos S1 and S2). Interestingly, we observed that the primary
cilia in the AF were located on the inner sides of the cells and were always oriented in one
direction parallel to the long axis of the nucleus (Figure 5E).
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Figure 5. Cilia are present in different organs in the musculoskeletal system. (A) Bone tissue from femur, (B) growth plate
from tibia, (C) articular cartilage, (D) NP in intervertebral disc, (E) AF in intervertebral disc, (F) skin, (G) adipose tissue, and
(H) suture. White arrow, cilium with an axoneme and basal body. Yellow arrow, localization of ARL13B. Red arrow, cell
with only Centrin2. Green, Centrin2-GFP. Red, ARL13B-mCherry. Blue, DAPI. Scale bar, 10 µm.

In the skin, approximately 33.4 ± 1.1% of hair follicle cells and 52.8 ± 0.9% of reticular
dermal cells were ciliated (Figure 5F). The ciliary length in the hair follicles and reticu-
lar dermis varied from 1.5 to 5 µm. ARL13B-mCherry+ primary cilia were present on
18.7 ± 0.5% of adipocytes in adipose tissues, and the ciliary length ranged from 3 to 6 µm,
which is consistent with previous observations [30] (Figure 5G) (Table 1).

The junctures between the bones of the skull where the bones are held tightly together
by fibrous tissue are called sutures. It has been reported that sutures are important for
calvarial bone development and maintenance [31]. Approximately 85.5 ± 1.1% of the cells
in the sutures possessed ARL13B-mCherry+ primary cilia, and the ciliary length varied
from 5 to 7 µm (Figure 5H) (Table 1).

3.7. ARL13B+ Inclusions Are Present in the Thyroid and Islets of Langerhans

Given that cilia project into the extracellular environment and have the ability to con-
centrate signaling cascade proteins in the ciliary compartment and membrane, primary cilia
are thought to regulate endocrine pathways [32]. However, the features and functions of
cilia in the endocrine system are largely unknown. Our results showed that approximately
23.9 ± 2.2% of thyroid epithelial cells possessed ARL13B-mCherry+ primary cilia, and the
ciliary length varied from 0.5 to 2.5 µm [33] (Figure 6A) (Table 1). ARL13B-mCherry+ pri-
mary cilia were present on 7.3 ± 1.2% of adrenal gland epithelial cells, and the ciliary length
varied from 3 to 7 µm [34]. Some ARL13B-mCherry+ particles also accumulated in areas of
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the adrenal gland epithelium (Figure 6B). The percentage of ARL13B-mCherry+ primary
cilia in the islets of Langerhans in the pancreas was 21.1 ± 1.6%, and the ciliary length
varied from 5.5 to 15 µm [35] (Figure 6C). Most interestingly, ARL13B-mCherry+ inclusions
were observed in some cells of the thyroid colloid (Figure 6D) and islet (Figure 6E).

Figure 6. ARL13B+ inclusions are present in the thyroid and islets of Langerhans. (A) Thyroid, (B) adrenal gland, (C) islets
of Langerhans, (D) thyroid cells with ARL13B-mCherry+ inclusions (E) cells in islets of Langerhans with ARL13B-mCherry+
inclusions. White arrow, cilium with an axoneme and basal body. Yellow arrow, cell with ARL13B-mCherry+ inclusions or
particles. Blue, DAPI. Green, Centrin2-GFP. Red, ARL13B-mCherry. Scale bar, 10 µm.

4. Discussion

We identified cilia in different organs and tissues by using ARL13B-mCherry; Centrin2-
GFP cilium dual reporter-expressing transgenic mice. This study reveals the existence and
distribution of cilia and centrioles in different tissues and organs and provides new insights
for further comprehensive study of ciliary function in these organs and tissues.

Interestingly, we found that a few motile cilia in NP cells of intervertebral discs
moved around the extracellular fluid in an irregular way. The NP is reportedly derived
from the embryonic node and notochord. Cilia in the embryonic node have attracted the
interest of developmental biologists, who have hypothesized that leftward-directed fluid
flow is essential for left-right (LR) axis determination in mice. In agreement with this
hypothesis, we found that approximately 2% of cilia showed irregular movement in NP
extracellular fluid; such movement is different from the clockwise movement of primary
cilia in embryonic notochord cells. NP is a hydrated, gel-like structure, which enable
movement of the spine via deformation and alteration of the shape of the intervertebral
disc during compression, tilting, and twisting motions [36]. Our previous study showed
that ciliary length varied widely in the NP, ranging from 0.5 to 15 µm, and that eliminating
cilia from NP cells caused the gel-like matrix in the NP to become less compact and to be
markedly reduced [37]. In the epithelium of the airway, multiciliate cells have synchronized
cilia that beat to move mucus over the epithelial surface [38]. In the brain, ‘ependymal
flow’ of cerebrospinal fluid (CSF) is generated by multi-ciliated cells lining the ventricles
that move signaling molecules through the central nervous system and are essential for the
migration of young neurons produced in adult subventricular tissues [39]. In the urinary
and reproductive system, the single flagellum of a sperm may propel the whole cell body
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through the surrounding liquid [40]. However, the function of motile cilia in the NP is
unclear, and further investigation is needed.

It has previously been reported that cilia are undetectable on hepatocytes [16]. Using a
cilium dual reporter-expressing mouse model, we found that a small group of hepatocytes
were ciliated. Among ciliopathies, liver cysts and fibrosis are common pathological changes,
suggesting that primary cilia are essential to the normal function of the liver [41].

The gallbladder, intestine, and thyroid epithelia play important roles in secretion and
absorption. Recently, the centrosomes of natural killer (NK) and invariant NK T (iNKT) cells
(cytolytic cells of the innate immune system) have been reported to play important roles
in the direct secretion of lysosomes into immunological synapses [42,43], suggesting that
centrosomes may be key participants in cell secretion. In support of centriole importance,
we observed many Centrin2-GFP-labeled centrioles without cilia in the epithelia of the
gallbladder, intestine, and thyroid. The similar features and distributions of cilia and
Centrin2 in organs with robust secretion and absorption functions indicate that centrioles
may play important roles in secretion independent of cilia.

ARL13B has been reported to localize specifically to cilia and is regarded as a marker
for cilia [2]. Our results revealed that ARL13B-mCherry+ particles were present in the
esophageal submucosa, kidney proximal convoluted tubule epithelium, thyroid, islets,
bladder transitional epithelium, and some cells in the brain. These findings suggest that
ARL13B may play an important role in cell or organ function independent of cilia [44]. Pri-
mary cilia in neurons have often been regarded as rare vestigial curiosities [22]. However,
neuronal cilia are now gaining recognition as ubiquitous organelles in the mammalian
brain, raising speculation about ciliary functions. Several markers have been used to stain
cilia in different regions of the brain, and the characteristics of cilia have been reported
to vary in different brain regions [45]. Surprisingly, we found, for the first time, that the
ARL13B-mCherry+ neuronal cilia in the cerebral cortex were well oriented toward the
center of the brain (supplementary Figure S3). The central nervous system develops from
a neural tube that grows from a single layer of neural progenitor cells. The patterning or
formation of distinct regions of the central nervous system is achieved through progressive
divisions along the dorsoventral and rostrocaudal axes of neural progenitor domains.
Morphogens secreted by discrete populations of cells form concentration gradients along
those axes, and the gradients specify different fates of neural progenitors, thereby pat-
terning the central nervous system [46]. A hypomorphic mutation in the cilium Ift88
gene can cause severe disorganization of telencephalic structures, resulting in malformed
dorsomedial structures (cortical hem, hippocampal primordium, and choroid plexus),
incomplete divisions between the dorsal and ventral (pallial and subpallial) forebrain,
and between the telencephalon and diencephalon, and the formation of rosette-shaped
heterotopias with central lumens. These phenotypes are highly similar to those observed
in Hh gene-mutant mice [46]. As signal transduction centers (especially for Hh signaling),
well-oriented neuronal cilia may play important roles during signaling gradient formation
or brain pattern maintenance.

Cilia are regarded as secretory organelles in many tissues [47]. Endocrine organs,
including the islets and thyroid, have robust secretion functions. However, few studies
have reported cilia in these organs [34]. Our results showed that some ARL13B-mCherry+
primary cilia were present in the islets of Langerhans and that the ciliary length varied from
10 to 15 µm. These results suggest that cilia may play important roles in pancreatic function.
One study has supported this idea, revealing that cilia loss can always be detected in
diabetes patients [48]. Our recent study also confirmed that diabetes induces cilia loss in all
ciliated cells [27]. Moreover, ARL13B-mCherry+ inclusions were observed in some tubules
of islets and the thyroid colloid, indicating that the ARL13B protein can be secreted by cells.
Notably, ciliopathy is diagnosed by whole-exome sequencing, which is an expensive and
time-consuming process [49]. Further study is needed to determine whether the serum
levels of cilium-related proteins, such as ARL13B, could be detected to diagnose ciliopathy
in the future.
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5. Conclusions

In summary, our study reveals new information regarding cilia, centrioles, and the
distributions and orientations of these organelles and suggests the possible secretion of
particles from different organs and tissues in a mouse system. The findings of this study lay
a foundation facilitating further studies on the roles and functions of cilia in different organs
and provide insights for the development of new diagnostic and therapeutic strategies for
Joubert syndrome and other ciliopathies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10071623/s1, Figure S1: Antibody costaining of ARL13B and DAPI confirmed the
specific targeting of cilia in ARL13B-mCherry; Centrin2-GFP mouse tracheal tissue, Figure S2:
Immunostaining for acetylated tubulin in the trachea confirmed that ARL13B is a reliable marker for
cilia in the ARL13B-mCherry; Centrin2-GFP mouse model, Figure S3: Schematic diagram of cilium
distribution in the mouse brain, Vedio S1: The representative vedio to show the cilia rotation in
nucleus puplposus tissues, Vedio S2: The representative vedio to show the cilia rotation in nucleus
puplposus tissues.
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