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Abstract: Sperm swimming performance affects male fertilization success, particularly in species
with high sperm competition. Understanding how sperm morphology impacts swimming perfor-
mance is therefore important. Sperm swimming speed is hypothesized to increase with total sperm
length, relative flagellum length (with the flagellum generating forward thrust), and relative mid-
piece length (as the midpiece contains the mitochondria). We tested these hypotheses and tested for
divergence in sperm traits in five island populations of Canary Islands chiffchaff (Phylloscopus ca-
nariensis). We confirmed incipient mitochondrial DNA differentiation between Gran Canaria and
the other islands. Sperm swimming speed correlated negatively with total sperm length, did not
correlate with relative flagellum length, and correlated negatively with relative midpiece length (for
Gran Canaria only). The proportion of motile cells increased with relative flagellum length on Gran
Canaria only. Sperm morphology was similar across islands. We thus add to a growing number of
studies on passerine birds that do not support sperm morphology-swimming speed hypotheses.
We suggest that the swimming mechanics of passerine sperm are sufficiently different from mam-
malian sperm that predictions from mammalian hydrodynamic models should no longer be applied
for this taxon. While both sperm morphology and sperm swimming speed are likely under selection
in passerines, the relationship between them requires further elucidation.

Keywords: sperm morphology; sperm velocity; sperm motility; Macaronesia; chiffchaff species
complex

1. Introduction

In 1970, Parker [1] introduced the idea of sperm competition, namely, that when mul-
tiple males copulate with a female in one reproductive bout, their sperm compete to
achieve fertilization. As a response to sperm competition, males invest in sperm and ejac-
ulate phenotypes that improve fertilization success [2-5]. One such adaptation is faster
sperm swimming speed, which increases fertilization success in a range of taxa [6-8]. Un-
derstanding the physiological basis of sperm swimming speed has thus become an im-
portant target for research on species with high sperm competition. Given the recurring
biological theme that form and function are linked, a growing number of studies have
sought to identify how sperm cell morphology affects swimming speed (e.g., [9-13]).

Early studies focused on the hypothesis that the total length of the sperm cell corre-
lates positively with swimming performance; this hypothesis was proposed in part to ex-
plain the observation that species with more sperm competition have longer sperm cells
(e.g., [14]). However, hydrodynamic models do not support this hypothesis [15]. Instead,
models suggest that swimming performance should be more directly impacted by the

Cells 2021, 10, 1358. https://doi.org/10.3390/cells10061358

www.mdpi.com/journal/cells



Cells 2021, 10, 1358

2 of 15

relative length of the flagellum (which produces forward thrust in the models by beating
back-and-forth or in a helical motion) compared to the head (which is thought to only
produce drag, proportional to its surface area, [15]). This hypothesis is based on a large
body of literature on hydrodynamic models that recognize that, at the scale and speed of
sperm cells, viscosity has a vastly greater effect than inertia, such that a cell almost in-
stantly stops making forward progress when it ceases actively swimming [15-17]. Several
comparative [18,19] and intraspecific [20,21] studies support the hypothesis that a higher
flagellum:head ratio increases swimming speed, although contradictory patterns have
also been found [11,22].

In addition to hydrodynamic considerations, energy availability is likely to be im-
portant for sperm swimming speed and may correlate with sperm morphology [23]. In-
deed, rodent species with higher sperm adenosine triphosphate (ATP) content have faster-
swimming sperm [24]. In sperm, ATP can be generated via glycolysis (which can poten-
tially occur along the entire length of the flagellum) and/or by oxidative phosphorylation
in the mitochondria of the midpiece, with the relative contribution of the two mechanisms
being unclear [25]. Assuming that most ATP is generated by oxidative phosphorylation,
ATP content and therefore sperm swimming speed are predicted to increase with increas-
ing midpiece volume [23]. For species with long midpieces, such as birds in the infraorder
Passerides [26], midpiece length has been used as an indicator of volume, such that a rel-
atively long midpiece is predicted to support faster-swimming sperm cells [27]. In birds,
support for the links between midpiece length, ATP content, and sperm swimming speed
is limited. The midpiece—speed correlation has been found in some studies [27-29] but not
others [11,30]. Other studies find no evidence for a positive correlation between midpiece
length and ATP content [31,32] or between ATP content and swimming speed [31-33].

In addition to relationships between sperm morphology and swimming speed,
where mechanical and physiological links have been explicitly hypothesized, several
studies have investigated the relationship between the proportion of motile cells and
sperm morphology [11,21,29]. Although several studies find significant associations
[21,29], the basis of the relationship is not clear. The proportion of motile cells can show a
different pattern than sperm swimming speed in responding to experimental treatments
[34,35] or in correlations with sperm morphology [29]. The proportion of motile cells thus
appears to be at least somewhat independent from the swimming speed of the motile cells.
However, assuming that the number of motile cells inseminated affects the probability of
fertilization, the proportion of motile cells in an ejaculate appears to be an important meas-
ure to consider [4,6].

Sperm form—function relationships thus remain an area of active research for many
taxa, and particularly for passerine birds. Sperm swim differently in passerines compared
to other birds and animals, with the flagellum remaining relatively straight and the cell
progressing by spinning around its long axis, similar to a drill [36]. In the absence of spe-
cific hydrodynamic models of this style of swimming, researchers have thus far relied on
predictions from generalized models, with varying results (e.g., [18,22]). Both sperm mor-
phology and swimming speed appear to be under selection in birds [8,37-42]. Species
where females more frequently copulate with multiple males have faster [22] and longer
sperm cells [18,43], with less variation within and among males in total sperm length [44—
47]. Total sperm length varies at least seven-fold across the group (41.5 to 287.6 um;
[18,48]).

Here, we test the association between sperm form and function in the Canary Islands
chiffchaff (Phylloscopus canariensis), an endemic species currently found on five of the Ca-
nary Islands but extinct from the rest [49]. Specifically, we test whether sperm swimming
speed and the proportion of motile cells correlate with total sperm length, the relative
length of the flagellum compared to the head, and the relative length of the midpiece com-
pared to total sperm length within each island population, and whether these correlations
differ among islands. We a priori chose to test these morphological features’ relation to
sperm swimming performance because of their strong representation in the literature
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and/or the clearly elucidated mechanical or physiological basis for the hypothesized
form—function relationship. Further, we test whether sperm morphology differs across is-
lands (as it does in two other Canary Islands endemics: [50,51]), and we confirm the phy-
logenetic differentiation of the population on Gran Canaria relative to the other islands
[52].

2. Materials and Methods
2.1. Field Procedures

Males (n = 114) were caught on the five Canary Islands where the species currently
occurs, using mist nets and conspecific playback during the breeding seasons of 2009,
2010, and 2011 (Table S1). The birds were sampled for blood by brachial venipuncture,
sampled for sperm by cloacal massage [53], and fitted with uniquely numbered aluminum
rings before being released in their territories. Not all samples were obtained from all
males (Table S1), and sperm swimming performance was assessed only in March and
April of 2010 and 2011.

For in vitro sperm motility recordings in the field, the ejaculate was immediately di-
luted in 40-100 pL (depending on the volume of the ejaculate) pre-heated (40 °C) Dul-
becco’s Modified Eagle Medium (Advanced D-MEM, Invitrogen, Carlsbad, CA, USA).
Within 30 s after ejaculation, 4.9 pL of the diluted ejaculate was pipetted onto a pre-heated
standard microscope slide for sperm analysis (20 um-depth 2-chamber, Leja, Nieuw-
Vennep, The Netherlands), mounted on a MiniTherm slide warmer (Hamilton Thorne Bi-
osciences, Beverly MA, USA), and kept at a constant temperature of 40 °C. Sperm motility
was then recorded for 30 s using a digital video camera (HDR-HCIE, PAL, Sony, Tokyo,
Japan) mounted on an upright microscope (CX41, Olympus, Tokyo, Japan), with a total
magnification of 400x. We recorded six independent locations for each slide to increase
the number of sperm measured for each male. The remaining sperm sample was fixed in
a 5% formaldehyde solution for later analyses of sperm morphology. For eight males in
2010 and 2011, ejaculate quality was insufficient for video analysis. Two males were sam-
pled twice. For the male sampled in 2009 and 2011, we here include sperm only from the
2011 sampling event, when velocity was measured. For the male sampled in 2010 and
2011, we arbitrarily chose to include the data from 2010, though results were similar with
the 2011 sample (not shown, but online dataset includes both captures).

2.2. Sperm Analysis

To measure sperm morphology (n = 107 males), a droplet (approx. 15 uL) of the
sperm-formaldehyde solution was placed on a microscope slide and air dried. Spermato-
zoa were examined using a digital light microscope (Leica DM6000 B, Leica Microsystems,
Heerbrugg, Switzerland) at a magnification of 160x and photographed with a digital cam-
era (DFC420, Leica Microsystems, Switzerland). We measured the length (+0.3 um) of the
head, midpiece, and tail (the midpiece-free end of the flagellum) of 5-23 (mean + SD 12.0
+1.5) intact spermatozoa per male using Leica Application Suite (v. 2.6.0, Leica Microsys-
tems, Switzerland). Flagellum length was calculated as the sum of the midpiece and tail
lengths. Total sperm length was calculated as the sum of head and flagellum. Most meas-
urements (1 = 99 males) were taken by one person (TL), with samples from Tenerife in
2009 (n = 8 males) measured by another person. We have previously demonstrated that
measurement repeatability of sperm length is very high and that ten spermatozoa per in-
dividual are sufficient to accurately estimate individuals’ mean sperm lengths [54]. We
calculated the coefficients of variation in total sperm length within males (CVwm) and
among males (CVam) using the equation (SD/mean)*100*(1 + 1/(4n)), to correct for small
sample sizes [55].

To analyze the sperm motility recordings, we used computer-assisted sperm analysis
(HTM-CEROS sperm tracker, CEROS version 12, Hamilton Thorne Biosciences, USA)
with a frame rate of 50 Hz and 25 frames (i.e., sperm cells were tracked for 0.5 s) for each
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of the six filming locations (n = 73 males). Each analysis location was visually examined,
and cell detection parameters were adjusted using the two interactive quality control
plots. Cell detection parameters thus varied slightly between recordings; minimum con-
trast ranged from 50-100, and minimum cell detection size ranged from 6-10 pixels. Mo-
tile objects with elongation > 50 were considered to be non-sperm objects and excluded
from all analyses. We recorded the average path velocity (VAP), straight line velocity
(VSL), and curvilinear velocity (VCL) of individual cells, as well as the proportion of mo-
tile sperm for each male. VAP, VSL, and VCL were all highly inter-correlated (1 =73 males,
all r > 0.98, all p <0.0001) and gave similar results, so we report only the VCL estimate,
which gives the actual point-to-point tracked velocity. Spermatozoa with VAP <30 yum s
and VSL < than 25 um s were considered static or drifting and counted as non-motile.
For analyses of sperm swimming speed, we excluded non-motile sperm, sperm tracked
for less than 10 frames, tracks with straightness score (VSL/VAP*100) below 90 or linearity
score (VSL/VCL*100) below 60, non-continuous tracks, and tracks for which the maximum
frame-to-frame movement exceeded the average frame-to-frame movement by 4 SD for
the same track. The latter restrictions successfully deleted occasional tracking errors in the
software. For each of 73 males (Table S1), we analyzed VCL from 25 to 419 (mean 174.64
+ 89.5 SD) unique sperm cells in total.

2.3. Statistical Analysis on Sperm

To assess the relationship between sperm morphology and swimming speed, we
used the VCL data from individual sperm tracks as the response variable and the mean
morphological measures of the male as the predictor (total sperm length, flagellum:head
ratio, and midpiece length), in a linear mixed model with male identity as a random effect
and island as a fixed effect. Note that this approach ignores sperm morphological varia-
tion within males (in contrast to the approach of [9]; video image quality was insufficient
in this study to use that approach). Preliminary analysis indicated that sperm swimming
speed varied among islands and over time, so we centered morphological variables within
sampling events (island-year combinations, each lasting less than a week) to remove the
effect of these potential confounds [56]. Note that only one person measured sperm mor-
phology within this data subset, so correction for measurer was not necessary. Initially,
island was included as an interaction with each morphological feature, to test whether
form—function relationships differed across islands. These interaction terms were re-
moved if they were not significant (p > 0.05, [57]). Multicollinearity was not problematic
in the final model, as the variance inflation factor was <3 for main effects not involved in
interaction terms [57]. Results were highly similar if we instead constructed separate mod-
els for each of the morphological variables (using the ratio of the midpiece:total sperm
length rather than midpiece length controlling for total length as a covariate) or if we used
mean values rather than data from individual cells (data not shown). Significance was
assessed using Sattherthwaite’s degrees of freedom in ImerTest [58,59].

For the proportion of motile cells, we constructed a generalized linear mixed model
with a binomial error structure. The three morphological variables, sperm swimming
speed (centered within sampling events), and island were fixed effects; male identity was
a random effect; and the number of motile cells compared to immotile cells was the re-
sponse variable (i.e., equivalent to the proportion of motile cells, combined with the
cbind() function). A model including all pairwise interactions between island and other
predictors did not converge, so we instead used a forward selection procedure, using like-
lihood ratio tests to compare a simple model (with main effects and previously-found sig-
nificant pairwise interactions) to more complex models (including additional pairwise in-
teractions between island and other predictors). Note that ImerTest does not analyze out-
put from generalized linear mixed models, and Ime4 does not estimate degrees of free-
dom, so a test across all levels of island does not return a p-value in this framework; a
likelihood ratio test comparison of models with and without the main effect of island is
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not feasible, since island was involved in a significant interaction. We also assessed a sim-
pler model structure using log-transformed proportion of motile cells as the response var-
iable, with all pairwise interactions as predictors in the initial model, followed by back-
wards removal of interactions. Here, we weighted observations by the total number of
cells in the recording.

To compare sperm morphology across islands, we constructed a separate mixed
model for each morphological variable, with male identity and measurer as random ef-
fects, and data on individual cells as the response variable. We compared within-male
variation in total sperm length across islands in a linear mixed model using the standard
deviation in total sperm length as the response variable, island as the predictor, total
sperm length as a covariate, and measurer as a random effect [60]; this approach avoids
the complications of interpreting ratios [61]. The relationship between sperm swimming
speed and relative midpiece length differed for one island compared to the others (see
results). We therefore tested whether the correlation between midpiece length and total
sperm length differed across islands. To distinguish between-individual and within-indi-
vidual relationships, we centered the predictor variable for each individual male [62]. The
model included a random effect of male identity and fixed effects of the male’s mean total
sperm length, the cell’s deviation in total sperm length compared to that male’s mean, and
island. We initially included an interaction term of island with each of these morphologi-
cal predictors, and we removed the interaction if it was not significant (p > 0.05). To sim-
plify this model, we included only the 99 males with sperm measured by TL. Finally, we
compared the among-male variation in sperm total length across islands using a Levene’s
test, using the average measurement per male rather than measures of individual cells. As
an alternate approach using data on individual cells, we tested whether allowing each
island to have different variance in total sperm length (using the varldent function)
showed improved model fit compared to one where all islands were constrained to have
the same variance, using nlme [63]. Results were similar (not shown). All statistics were
performed in R (Vienna, Austria).

Sperm measures vary across the breeding season in some species [64-68] but not all
(e.g., [53]). However, our sampling scheme did not allow us to assess or control for such
effects here. That is, islands were sampled in brief, non-overlapping visits, each lasting
less than one week; these visits were unevenly distributed among islands and years. Fur-
thermore, the timing of breeding in the Canary Islands varies depending on elevation and
climate [49], such that including day of the year as a covariate would not effectively cap-
ture breeding season trends across our field sites. Because our primary interest is the
form—function relationship within each island, with data collected over short time spans
per island, date effects are unlikely to affect our results.

2.4. Genetic Analyses

We sequenced the mitochondrial cytochrome c oxidase subunit I (COI) gene for 49 males
(Table S1). DNA was extracted using a commercial spin column kit (E.Z.N.A. DNA Kit;
Omega Bio-Tek, Norcross, GA, USA), following the manufacturers’ protocol. The first part
(655 bp) of the COI gene was amplified in PCR reaction volumes of 12.5 uL, containing
dH20, 1x PCR bulffer, 2.5 mM magnesium, 0.05 mM dNTP, 0.1 pM forward and reverse
primer, 0.3 U Platinum Tag DNA polymerase (ThermoFisher Scientific, Waltham, MA,
USA), and approximately 50 ng DNA template. Amplification conditions were 94 °C for
2 min, 35 cycles of 94 °C for 30 s, 55 °C for 30 s, and 72 °C for 45 s, followed by a final
elongation step of 72 °C for 10 min. In order to confirm amplification success, 2 pL of the
PCR product was electrophoresed in 1% agarose. The remaining PCR product was puri-
fied by ethanol precipitation and sequenced using BigDye Terminator v 3.1 Cycle Se-
quencing kit (Applied Biosystems, Waltham, MA, USA). The sequencing products were
analyzed on an ABI Prism 3100 Genetic Analyzer (Applied Biosystems). Sequences were
manually edited in CodonCode Aligner 3.7.1. (CodonCode Corporation, Centerville, MA,
USA) and aligned using ClustalW. All sequences are available in the dataset DS-NOCIC
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at the Barcode of Life Database (BOLD) website (www.boldsystems.org, accessed 25
March 2021), with associated sample and primer information, and have been uploaded to
GenBank. Translation from nucleotide to amino acid sequences of the analyzed regions in
Mega v5.10 revealed no stop codons or frame shift mutations, and there were no system-
atic double peaks in the COI region, indicating an absence of pseudogenes. We created a
minimum spanning network with all unique haplotypes using the package of Pegas [69]
based on our COI sequences, as well as performing a combined analysis including se-
quences from [52].

3. Results
3.1. Sperm Morphology—Function Relationships

Ejaculates with relatively long sperm showed lower swimming speeds in the Canary
Islands chiffchaff (Figure 1A, Fio92 = 8.83, p = 0.004, estimated effect + SE, —1.88 + 0.63),
and this relationship did not differ significantly among islands (interaction term, Fas7.46 =
0.41, p = 0.80, removed from the model). The mean flagellum:head ratio was not signifi-
cantly related to swimming speed (Figure 1B, Fis190= 1.24, p = 0.27; interaction term not
significant, Fas350 = 0.35, p = 0.84, removed from model). The relationship between sperm
swimming speed and the mean relative length of the midpiece differed significantly
across islands (Figure 1C, interaction term Fue204 = 3.61, p = 0.01). Ejaculates with relatively
long midpiece, controlling for total length as a covariate, showed lower swimming speed
in the Gran Canaria sample (-3.87 + 1.27, t =-3.05, p = 0.003) and higher speed on La Palma
(244 £ 1.11, t = 2.19, p = 0.03), while the relationship was not significantly different from
zero for other islands (Itl <0.41, p > 0.68).

The proportion of motile cells did not relate to total sperm length (z = 0.02, p = 0.98),
midpiece length (z =1.63, p = 0.10), or VCL (z = 0.09, p = 0.93). The relationship between
proportion of motile cells and the flagellum:head ratio differed across islands (likelihood
ratio test for interaction term, y2 =14.35, p = 0.006, Figure 1D). This relationship was sig-
nificantly positive for Gran Canaria (2.72 + 0.83, Z = 3.27, p = 0.001) and not significant for
other islands (estimates between -1.05 and 0.44, p > 0.07). In the simpler, fixed-effects
model using log-transformed proportion of motile cells, the interaction between island
and flagellum:head ratio approached significance (F9.47 = 2.44, p = 0.052).
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Figure 1. Relationship between sperm morphology and swimming performance for Canary Islands chiffchaffs. (A) Total
sperm length (um) versus sperm swimming speed, (B) flagellum:head ratio versus sperm swimming speed, (C) mid-
piece:total sperm length ratio versus swimming speed, (D) flagellum:head ratio versus the proportion of motile cells.
Average values per male are shown, though statistics used curvilinear velocity (VCL, um/s) and motility data from indi-
vidual cells. Islands of sampling: El Hierro: solid line, 7 = 21 males. Gran Canaria: dashed line, # = 13 males. La Gomera:
dotted, n =9 males. La Palma: dot, single dash, n =22 males. Tenerife: dot, several dashes, n =8 males.

3.2. Among-Island Comparison of Sperm Phenotype and Genetic Divergence

Mean sperm morphology did not significantly differ among islands (F <1.5, p > 0.2,
Table 1), nor did within- and among-male variation in total sperm length (F <1.9, p> 0.1,
Table 1). Across all individuals, the CVam was 1.87.

Sperm midpiece length was significantly positively correlated with total sperm
length among individuals (Fi929 = 20.12, p < 0.001, 0.47 + 0.11) and within ejaculates
(F1110086 = 228.43, p < 0.001, 0.55 + 0.04; note that each individual contributed only a single
ejaculate). These relationships did not differ across islands (interaction terms F < 1.9, p >
0.12, removed from model).

Swimming speed differed across islands (Fasie0 = 6.57, p < 0.001, in models also in-
cluding morphological covariates). After controlling for other effects, swimming speed
was low on La Palma (pairwise comparisons to all other islands: t > 2.7, p < 0.009), with
comparisons among other islands being non-significant (It <1.2, p >0.25; Table 1). In the
mixed effects model, the proportion of motile cells was lower on La Palma than on El
Hierro or Gran Canaria (z > 2.5, p < 0.01), but was not significantly different for other
comparisons among islands (z < 1.65, p >0.10; Table 1; overall island effect F =2.99, p-value
not available due to limitations in estimating degrees of freedom in package Ime4). In the
simpler fixed effects model, the overall effect of island on the proportion of motile cells
was not significant (Fa3477=2.15, p = 0.09).

Table 1. Mean * SD values and statistical comparisons for sperm morphological and motility measurements for the five

Canary Islands.

Island (n Males Morphology, Motility)
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. . Gran Canaria La Palma . ANOVA or
Sperm Trait El Hierro (23, 21) (30, 13) La Gomera (11, 9) 22, 22) Tenerife (19, 8) Levene’s Test
Totalspermlength 1)\ 19., 910 114524155 11485:221  11419£203  11410:292 07 =035
(pm) p=0.86
Fa,10025 = 0.98,
F:H 5.90+0.21 5.89+0.18 5.82+0.27 5.80+0.21 5.66 +0.35 pm042
Midpiece length o0 o5 5 75 87.07 +1.96 86.40 +2.43 85.40 +1.85 83.61 +6.20 Fusoos =142,
(m) p=023
Fa9715=0.83,
CVum 1.46 = 0.66 1.52 +0.63 1.39+0.78 1.44+0.34 1.37 +0.44 »o051
CVam 1.86 1.37 1.97 1.8 2.59 Faao2 =181,
p=0.13
Fi6157=7.49,
VCL (um/s) 106.77 + 8.50 105.99 + 12.50 10622+7.85  9641+1159  111.44+8.07 < 0,001
. . Fa,3477=2.15,
Proportion motile  0.83 £ 0.06 0.82+0.10 0.81+0.07 0.75+0.13 0.81 +0.07 y0.09

F:H, ratio of the length of the flagellum to the head. CV, coefficient of variation in total sperm length within (CVwm) or
among males (CVam). VCL, sperm swimming speed, curvilinear velocity. Values here are the averages across the mean per
male, while most statistics were performed on cell-level data controlling for male identity. The comparison of CVwm used
standard deviation as the response variable, controlling for mean total sperm length as a covariate. Statistical comparisons
across islands for VCL and proportion motile are from models that also included morphological covariates.

Within the birds sampled in this study, the Gran Canaria population shared no mi-
tochondrial haplotypes with other islands (Figure 2). However, two birds sampled by II-
lera et al. [52] on Tenerife shared their haplotype with three birds we sampled on Gran
Canaria (Tables S2 and S3, Figure S1). Among the other islands, our haplotypes showed
high similarity (Figure 2), and haplotypes were intermixed among islands in the combined
dataset with Illera et al.’s [52] (Figure S1).

El Hierro La Palma
Gran Canaria * Tenerife
La Gomera

Figure 2. Minimum spanning network of 22 COI haplotypes from 49 individual Canary Islands chiffchaffs sampled in this
study, with color indicating the island where the individual was captured. The sizes of the circles are proportional to the
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haplotype frequencies (smallest circle = 1 individual). Numbers of mutational steps are indicated along the lines connect-
ing haplotypes.

4. Discussion
4.1. Sperm Morphology—Motility Relationships in Passerines

Results from the Canary Islands chiffchaff do not support predicted form—function
relationships derived from fluid dynamic models of sperm swimming. In the Canary Is-
lands chiffchaff, ejaculates with longer sperm showed slower swimming speeds, and the
mean flagellum:head ratio was not significantly related to swimming speed. If total sperm
length or the flagellum:head ratio directly influenced sperm swimming speed through
hydrodynamic effects, these morphological variables should be consistently correlated
with swimming speed across species and studies (as also argued by [12]). Contradicting
this expectation, correlations can vary substantially among species, with total sperm
length being significantly negatively (this study, [70]) or significantly positively [71] cor-
related with swimming speed, or uncorrelated [13]. Similarly, the flagellum:head ratio can
be significantly negatively [11] or positively [32] related to swimming speed, or show no
significant relationship (e.g., this study). Correlations can also differ between populations
of the same species [11,21], within the same populations before and after a social manip-
ulation [71], and among individuals of the same population with different social domi-
nance status [12]. Comparative studies across species also give varying results depending
on the dataset, with some studies finding the predicted relationships [18] and many others
finding no significant relationships between these three morphological measures and
swimming speed [22,33,72]. Differences in protocols for collecting and measuring sperm
morphology and swimming speed can complicate the comparison of results across studies
[73]. However, protocol differences are not sufficient to explain the variation we see here,
since several studies use the same protocol on different populations or at different time
points and observe different results [12,71]. Moreover, individuals whose sperm swims
relatively quickly in one experimental medium tend to also swim quickly in other media
[34,74], suggesting that a morphology—speed relationship present in one medium might
also be expected in the other(s), as seen in [11]. Although additional insights may be ob-
tained by correlating the speed and morphology of individual sperm cells [9], overall,
empirical studies in passerines do not provide support for sperm morphology-motility
relationships predicted from hydrodynamic models of mammalian-like sperm [15,17].

In addition to this lack of empirical support, passerine sperm swimming mechanics
appear to violate the assumptions of those hydrodynamic models. Passerine sperm swims
by spinning around its long axis like a drill [36], while hydrodynamic models assume that
the flagellum bends, whipping back and forth or around, to create thrust [15,17]. A fun-
damental difference in the hydrodynamics of a spiraling cell and a non-spiraling cell is
suggested by experimental work in bacteria, which have used mechanical [75] or genetic
[76] engineering to create spiral-shaped and non-spiral-shaped bacteria, finding that
swimming speed differs depending on shape. Hydrodynamic modelling of a crescent-
shaped bacteria even suggests that such a cell body can contribute to forward thrust [77],
contrasting to hydrodynamic models of sperm where the sperm head (equivalent to the
bacterial cell body) only causes drag [17]. Indeed, in passerines, a membrane projects from
and wraps helically around the sperm head, and may help the cell to establish the spin by
which it moves [72]. Sperm swimming speed increases with the width of this membrane
(as well as with acrosome length and width) to intermediate values, while slowing with
more extreme values [72]. The combination of a fundamentally different mechanism of
swimming, and the absence of clear empirical support for previous models of sperm
swimming in passerines, indicates that these hypotheses should no longer be applied to
passerines.

4.2. Sperm Morphology—Motility Relationships in the Canary Islands Chiffchaff
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Mean total sperm length was negatively associated with swimming speed on all of
the Canary Islands. Because of the inconsistency in observed morphology—-swimming
speed correlations across passerine species, this association appears more likely to be ex-
plained by an unmeasured, correlated variable than by a direct, hydrodynamic linkage
between form and function. The unmeasured correlate could, for example, be a compo-
nent of the seminal fluid; variation in seminal fluid is thought to explain the rapid changes
in sperm mobility in response to the social environment in chickens [78], highlighting the
potential for non-sperm components of the ejaculate to modify the swimming perfor-
mance of the cells. Such variation in seminal fluid may also explain the relationships be-
tween sperm morphology and the proportion of motile cells observed for Gran Canaria in
this study and in previous studies [21,29]. Further work is required to identify the covari-
ate that underlies the relationship between total sperm length and swimming velocity in
the Canary Islands chiffchaff, and between morphology and the proportion of motile cells
more generally.

Two sperm form—function relationships differed on Gran Canaria relative to other
islands, which is of particular interest since Gran Canaria is genetically differentiated from
the other islands ([52] and this study). Specifically, the relationship between the propor-
tion of motile cells and the flagellum:head ratio was significantly positive, and the rela-
tionship between sperm swimming speed and mean relative midpiece length was signif-
icantly negative, only on Gran Canaria. Midpiece length is hypothesized to affect sperm
swimming speed via an impact on ATP availability [23,27]. However, ATP content is not
consistently positively associated with midpiece length and sperm swimming speed
across studies [31-33]. Variation in midpiece thickness, in the density of mitochondrial
cristae, and in efficiency of ATP transport from the site of production to its location of use
all may contribute to inconsistencies in the relationship between midpiece length and
swimming speed [25,79]. While these possibilities were not assessed, we found no evi-
dence at a gross morphological scale that the relationship between total sperm length and
midpiece length differed for Gran Canaria. Our results suggest that selective pressure on
sperm may differ on this island, consistent with this population being in an early stage of
differentiation from the other islands [52]; it is also plausible that mitochondrial function
differs on this island, affecting sperm midpiece performance.

4.3. Sperm Evolution in the Canary Islands Chiffchaff

Sperm morphology was relatively similar across all islands, with total sperm length
being at most only about 1% divergent between islands. The degree of intraspecific diver-
gence in total sperm length varies substantially among species with, for example, the blue-
throat Luscinia svecica showing 11.6% divergence among subspecies, and several species
showing about 3% intraspecific divergence ([80] and references therein). Sperm morphol-
ogy is expected to evolve more quickly in species with higher levels of multiple mating
by females [43], and the Canary Islands chiffchaff likely has substantial levels of multiple
mating. That is, among-male variation in total sperm length can be used to predict extra-
pair paternity rates, since it correlates negatively with extra-pair paternity [46,81]. Using
the calculator provided by [44], the predicted level of extra-pair paternity in Canary Is-
lands chiffchaffs is 25%; this value is similar to the 23-33% of offspring sired by extra-pair
males in the most closely related species with paternity data to our knowledge (Phyllosco-
pus trochilus; [82,83]). Selective pressure on sperm due to sperm competition may therefore
be substantial in this species, although the timescale for among-island divergence may be
limited. Though chiffchaffs are estimated to have colonized the Canary Islands about 2.28
million years ago [84], with genetic divergence from P. sindianus and P. collybita estimated
at about 0.5 Ma [85], the signature of genetic differentiation among Canary Islands chiff-
chaffs is more recent (estimated at about 29,900 years [52]).

Alternatively, evolution of sperm morphology may be constrained in the Canary Is-
lands chiffchaff. Though the cause of the negative relationship between total sperm length
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and swimming speed is unclear, there appears to be a tradeoff between these two varia-
bles, as is frequently hypothesized among traits affecting fertilization success under
sperm competition (also including, e.g., sperm size, number of sperm ejaculated, and
sperm longevity; [4,6]). In passerines, total sperm length and swimming speed may inde-
pendently increase fertilization success (e.g., potentially affecting compatibility with the
female’s sperm storage tubules [86-88] and relating to the ability to cross the hostile vag-
inal environment [37,38]). Producing longer sperm and producing faster-swimming
sperm may both be relatively energetically costly, thus causing males to trade off invest-
ment into one trait against investment into the other [4,6]. Note that other patterns may
also be possible depending on among-male variation in resource availability and alloca-
tion to reproduction (e.g., [89,90]) and allocation to sperm competition vs. other reproduc-
tive traits (e.g., [91,92]). If males cannot simultaneously increase both sperm swimming
speed and total sperm length, there may be antagonistic selection on these traits that helps
explain the lack of differentiation in total sperm length across the Canary Islands chiff-
chaffs. If this relationship extends beyond this species, it may also help explain why total
sperm length is currently relatively static throughout the Phylloscopidae [93] and why
sperm morphological differentiation between subspecies was not observed in P. trochilus
[94].

5. Conclusions

Results from the Canary Islands chiffchaff do not support the most common hypoth-
eses linking sperm morphology to swimming speed, and, indeed, overall support for
these hypotheses in passerine birds is weak. These hypotheses were generated from hy-
drodynamic models of a fundamentally different mechanism of swimming. While they
represented a reasonable starting point in the absence of models directly relevant to pas-
serine sperm swimming mechanics, the accumulated evidence strongly suggests a need
to move beyond these coarse morphological measures in order to understand how pas-
serine sperm morphology affects swimming speed. In addition, differentiation in the re-
lationships between sperm form and function on Gran Canaria relative to other islands
corroborates the genetic differentiation of this population and raises the possibility of a
different selective regime for the sperm of Canary Islands chiffchaffs on this island. Both
sperm morphology and sperm swimming performance are likely to be under selection
due to sperm competition in passerines, but the link between them is not yet well under-
stood.

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/cells10061358/s1, Figure S1: Minimum spanning network of Canary Islands chiffchaffs
COI sequences, combining this study with data from Illera et al. [52], Table S1: Overview of Canary
Islands chiffchaff samples, Table 52: Assignment of individuals to haplogroups, Table S3: Summary
of haplogroup frequencies among islands, Table S4: Sperm morphology data, Table S5: Sperm mo-
tility data.
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