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Abstract: Multiparametric MRI (mpMRI) and targeted biopsy of the prostate enhance the tumor
detection rate. However, the prediction of clinically significant prostate cancer (PCa) is still limited.
Our study tested the additional value of serum levels of selected miRNAs in combination with clinical
and mpMRI information for PCa prediction and classification. A total of 289 patients underwent
targeted mpMRI-ultrasound fusion-guided prostate biopsy complemented by systematic biopsy.
Serum miRNA levels of miRNAs (miR-141, miR-375, miR-21-5p, miR-320b, miR-210-3p, let-7c, and
miR-486) were determined by quantitative PCR. Detection of any PCa and of significant PCa were
the outcome variables. The patient age, pre-biopsy PSA level, previous biopsy procedure, PI-RADS
score, and serum miRNA levels were covariates for regularized binary logistic regression models.
The addition of miRNA expression of miR-486 and let-7c to the baseline model, containing only
clinical parameters, increased the predictive accuracy. Particularly in patients with PI-RADS ≤3, we
determined a sensitivity for detecting significant PCa (Gleason score ≥ 7a corresponding to Grade
group ≥2) of 95.2%, and an NPV for absence of significant PCa of 97.1%. This accuracy could be
useful to support patient counseling in selected cases.
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1. Introduction

Multiparametric magnetic resonance imaging (mpMRI) and targeted biopsy of tumor-
suspicious lesions have become established diagnostic tools for the detection of prostate
cancer (PCa) [1], since ultrasound-guided biopsy alone misses approximately 25–30% of
PCa cases [2,3]. MpMRI has demonstrated a higher sensitivity and specificity for the
detection of PCa [4] and is widely accepted among healthcare practitioners [5].

An increasing amount of published data has shown that targeted MRI-ultrasound
fusion-guided biopsies have the potential to reduce the diagnosis of insignificant PCa
and to enhance the detection rate of clinically significant PCa while reducing the number
of biopsies, as the Prostate Imaging Reporting and Data System (PI-RADS) has a good
diagnostic accuracy and correlation with PCa aggressiveness [6,7]. Clinical parameters,
such as the pre-biopsy serum PSA level and mpMRI of the prostate, represent the basis of
the clinical information used for decision making and patient counseling.

Nevertheless, in clinical practice, the diagnosis of PCa is accompanied by various
uncertainties. Therefore, additional factors, not only enhancing the prediction of tumor
presence but also tumor classification, are an important clinical need. We have previously
shown that miRNAs are consistently deregulated in PCa and, by regulating their cognate
protein targets, contribute to prostatic carcinogenesis [8,9]. Moreover, we and others
could demonstrate that miRNAs derived from whole blood [10] or blood serum [11–14]
can serve as biomarkers with the potential to differentiate PCa patients from patients
with benign prostatic hyperplasia. However, it is not fully understood whether different
miRNAs originate from tumor cells or if they are rather a response of the host organism
to the presence of PCa [15]. Therefore, we set up a prospective MRI-guided biopsy study
supplemented with serum-miRNA-analysis to evaluate the additional predictive value of
the miRNA analysis to the clinical factors. Hereby, the addition of serum-based miRNA
analysis to the clinical routine factors was able to enhance the predictive values of the
mathematical models for predicting significant PCa.

2. Materials and Methods
2.1. Study Population

For the discovery cohort, a total of 80 consecutive patients with suspicion of PCa were
recruited between January 2015 and July 2016. Patients were referred to the University
Hospital Erlangen for targeted MRI-ultrasound fusion-guided prostate biopsy, which was
complemented by systematic biopsy. Prostate mpMRIs were performed on 3T devices
(Siemens Medical Solutions, Erlangen, Germany). All image sets were examined by an
experienced radiologist and were scored according to PI-RADS V2.0. A combined targeted
and systematic 12-core transrectal MRI-ultrasound fusion-guided biopsy was performed
using the General Electric LOGIQ E9 (GE Healthcare, Solingen, Germany) system. Suspi-
cious regions (PI-RADS scores 3, 4, 5) were biopsied specifically and non-suspicious regions
(PI-RADS scores 1, 2) systematically. Written informed consent was obtained before biopsy
and the study was performed according to the Declaration of Helsinki. Ethical approval
was provided by the ethics institutional review board of the University Hospital Erlangen
(No. 3755, dated February 2008).

For the validation cohort, a total of 209 consecutive patients with suspicion of PCa were
recruited between January and December 2015. Patients were referred to the University
Hospital Dresden for targeted MRI-ultrasound fusion-guided prostate biopsy. Prostate
mpMRIs were performed on 3T devices (Siemens Medical Solutions, Erlangen, Germany).
All image sets were examined by two experienced radiologists and scored according to
PI-RADS V.2.0. At this study site, the BioJet-System (d&k Technologies, Barum, Germany)
was used for MRI-ultrasound fusion-guided biopsy as described previously [16]. Briefly,
fusion-guided prostate biopsy was performed in a transperineal approach, taking at least
two cores per lesion. Lesions classified as PI-RADS ≥2 were biopsied in a targeted fashion.
Subsequently, every patient underwent a transrectal 12-core systematic biopsy. Written
informed consent was obtained before biopsy. Ethical approval was provided by the ethics



Cells 2021, 10, 1315 3 of 11

institutional review board of the Technische Universität Dresden (No. EK194092004, dated
July 2009).

According to the EAU guidelines, both diagnostic procedures are regarded as equal in
their diagnostic performance [17]. The clinical end points examined were histologically
confirmed PCa and clinically significant PCa (csPCa), defined as Gleason score ≥7a (corre-
sponding to Grade group ≥2). We followed a holistic approach with histologic diagnosis
as the final outcome. In clinical practice, it is not relevant if significant PCa was found in a
targeted or non-targeted biopsy core.

2.2. Blood Sampling and RNA Isolation

Before biopsy, venous blood was drawn into coagulation tubes (Sarstedt, Nümbrecht,
Germany) and further processed within two hours. Serum was prepared from the coagu-
lated blood by centrifugation (2000 g for 10 min) and samples were stored in aliquots at
−80 ◦C. Serum miRNAs were prepared from 200 µL of serum with the miRCURY RNA
Isolation Kit for biofluids (Exiqon, Vedbaek, Denmark) in the discovery cohort and the
miRNA plasma kit (Promega, Madison, WI, USA) using an automated Maxwell RSC
device (Promega) in the validation cohort, according to the respective manufacturer’s
recommendations.

2.3. Quantitative PCR

Synthesis of cDNA and subsequent quantification of miRNAs was conducted using
TaqMan reverse transcription reagents and miRNA-specific TaqMan microRNA Expression
Assays for miR-21-5p (ID: 000397), miR-141-3p (ID: 000463), miR-210-3p (ID: 000512), miR-
320b (ID: 002844), miR-375-3p (ID: 000564), miR-486-5p (ID: 001278) let-7c-5p (ID: 000379),
and miR-16-5p as reference (ID: 000391) (Thermo Scientific, Darmstadt, Germany) according
to the manufacturer’s recommendations. Briefly, a constant volume of 4 µl of isolated
serum RNA was reverse transcribed in a total volume of 15 µl using a customized pool
of the respective miRNA-specific stem-loop primers and the TaqMan MicroRNA Reverse
Transcription Kit (Thermo Scientific). The resulting cDNA was pre-amplified for 12 cycles
using pooled miRNA-specific primer-probe sets and the TaqMan PreAmp Mastermix
(Thermo Scientific). Quantitative PCR reactions were performed in a LightCycler 480
Real-Time PCR System (Roche Diagnostics, Mannheim, Germany) in a total volume of
10 µL containing 1 µL of pre-amplified cDNA (1:5 pre-diluted), 0.5 µL of miRNA specific
primer-probe sets, 5 µL of the GoTaq probe qPCR master mix (Promega) and 3.5 µL of
nuclease-free water. All reactions were measured in duplicate with the following conditions:
initial denaturation at 95 ◦C for 10 min followed by 45 cycles at 95 ◦C for 15 s and 60 ◦C
for 60 s. Threshold cycles (Ct) were determined by the second derivative method and
then averaged. For relative quantification, every sample was analyzed for the endogenous
reference miRNA miR-16-5p. Baseline and threshold settings were constant across the
complete experimental series. Reactions were regarded as valid when the threshold cycle Ct
of miR-16-5p was within the range of 13–23. Expression levels were calculated by applying
the ∆Ct method [18], given as the ∆Ct between reference and test miRNA. By using the
normfinder script, we could confirm that in our patient cohort, miR-16-5p gene expression
is stable enough to be considered as a reference gene (normfinder stability value 0.08). Any
reactions that did not show any amplification were manually set to Ct 40 if the Ct of the
reference miRNA miR-16-5p of the respective sample was within the range of 13–23. All
reactions were performed blinded to the study end points.

2.4. Statistical Methods

Differences in the clinical factors and serum miRNA expression values were analyzed
using chi-square (factor variables) or nonparametric Mann–Whitney (continuous variables)
statistical tests. The predictive modeling was performed using regularized generalized
logistic regression modeling as implemented in the glmnet package for R. A fitted prob-
ability of 50% was used as the cut-off for assigning the binomial group labels. Receiver
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operator characteristics (ROC) were calculated using the pROC package. For the estimation
of the benefit of predictive models we used the decision curve analysis method [19]. The
net expected regret difference and individual thresholds of 20 clinical urologists were
calculated based on the regret theory as described [20]. To determine reference gene sta-
bility, we used the normfinder script [21]). All calculations were performed with the R
statistical framework Ver. 3.2.1 (R Foundation for Statistical Computing, Vienna, Austria.
http://www.R-project.org/).

3. Results

We acquired a total of 289 patients consisting of a discovery cohort (n = 80) and a
validation cohort (n = 209) undergoing targeted MRI-ultrasound fusion-guided prostate
biopsy. The patients’ characteristics and univariate association of the characteristics with
the clinical end points PCa and significant PCa with a Gleason score ≥7a are summarized
in Table 1; a detailed summary of tumor diagnosis within PI-RADS lesions is shown in
Supplementary Table S1. We have found csPCa both in systematic and in targeted biopsies.
There were differences in the distribution of the number of patients undergoing primary
or repeat MRI-ultrasound fusion-guided biopsy and the distribution of PI-RADS scores
(both p < 0.001; chi-squared test) between the discovery and the validation cohort, whereas
patient age, pre-biopsy PSA level, PCa detection rates, and the distribution of biopsy
Gleason scores were not significantly different between the two patient cohorts.

As part of a variable selection process, we tested whether individual miRNAs are able
to improve the accuracy of tumor prediction, when introduced into a regularized binary
logistic regression model. One miRNA, miR-21-5p, failed to pass our internal quality
control during data pre-processing and thus was omitted from further analyses.

In the discovery cohort (n = 80), two patients who were tumor-negative in the mpMRI-
ultrasound fusion-guided biopsy already had an earlier diagnosis of PCa and were therefore
regarded as tumor-positive in this analysis. Each miRNA was added separately to the
baseline model and model characteristics were determined (Table 2; upper part). Four out
of the seven miRNAs (miR-210-3p, miR-375-3p, miR-486-5p, and let-7c-5p) provided an
advantage over the baseline model, quantified by either a gain in PPV/NPV or an increase
in the area under the ROC curve (AUC).

We then applied the established regression models to the validation cohort (n = 209),
and observed that all four identified miRNAs (miR-210-3p, miR-375-3p miR-486-5p, and
let-7c-5p) also resulted in a gain in predictive accuracy in the independent validation cohort
(Table 2; lower part).

Next, we tested the classification capabilities of the multivariate predictive model. The
model consisting of clinical variables (patient age, pre-biopsy PSA level, previous biopsy
procedure, and highest PI-RADS score) and miRNAs (miR-210-3p, miR-375-3p, miR-486-5p
and let-7c-5p) achieved a PPV of 70.9% and an NPV of 68.6%. Detailed information about
the model and the predictive performance is provided in Supplementary Table S2. The
calibration plot of the regression model is shown in Supplementary Figure S1.

Finally, we explored the possibility to utilize clinical information and miRNA expres-
sion values to construct a binary regression model to discriminate between tumor-free or
insignificant (Gleason score 6 corresponding to Grade group 1) and csPCa. This information
might become especially useful in patients with lesions of PI-RADS ≤3 when clinicians
have to decide whether to perform a biopsy or not. Two patients with confirmed PCa had
a tumor-free biopsy result and were excluded from this analysis. We focused this approach
on the patient subgroup with lesions of PI-RADS 1, 2, or 3, resulting in a final cohort size
of 89. It is noteworthy that 21 of these patients were diagnosed with a csPCa of Gleason
score ≥7a. Moreover, we noticed that two miRNAs (miR-210-3p and miR-375-3p) were
present at rather low levels in patient serum, thereby resulting in a considerable number
of “undetected” results. Therefore, in order to define a miRNA panel with a potential
applicability in routine laboratory practice, we decided to further reduce the incorporated
miRNA markers. The final predictive model was constructed using 3 clinical variables

http://www.R-project.org/
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(patient age, pre-biopsy PSA level, and previous biopsy procedure) and two miRNAs
(miR-486-5p and let-7c-5p).

Table 1. Patients’ characteristics and univariate association of individual variables with clinical end points.

Parameter Discovery
Cohort (n = 80)

Validation
Cohort (n = 209)

Complete Cohort
(n = 289)

Clinical end Point: PCa
P; Relative Risk (95%CI)

Clinical end Point:
Significant PCa

P; Relative Risk (95%CI)

Patient age; median
(IQR) 66 (59.5–72.25) 65 (60–71) 66 (60–72) <0.01

1.08 (1.05–1.21)
<0.01

1.08 (1.05–1.12)
Pre-biopsy PSA level

(ng/mL; median, IQR) 8.2 (6.8–12.5) 8.2 (6.0–13.2) 8.19 (6.1–13.1) <0.01
1.06 (1.03–1.07)

<0.01
1.08 (1.04–1.13)

Previous biopsy; N (%) 0.35
1.28 (0.76–2.17)

0.22
1.39 (0.82–2.35)

No 34 (42.5) 44 (21.0) 78 (27.0)
Yes 46 (57.5) 165 (79.0) 211 (73.0)

Highest PI-RADS
score; N (%)

<0.01
2.07 (1.55–2.79)

<0.01
2.39 (1.76–3.33)

1 1 (1.3) 0 (0) 1 (0.4)
2 0 (0) 24 (11.5) 24 (8.3)
3 8 (10.0) 57 (27.3) 65 (22.5)
4 49 (61.2) 84 (40.2) 133 (46.0)
5 22 (27.5) 44 (21.0) 66 (22.8)

Biopsy Gleason score
(GS); N (%) n.c. n.c.

Tumor free 38 (47.5) 103 (49.3) 141 (48.8)
6 9 (11.2) 17 (8.1) 26 (9.0)

7a (GS3+4) 16 (20.0) 49 (23.4) 65 (22.5)
7b (GS4+3) 9 (11.2) 9 (4.3) 18 (6.2)

8 2 (2.5) 11 (5.3) 13 (4.5)
9 5 (6.3) 20 (9.6) 25 (8.7)
10 1 (1.3) 0 (0) 1 (0.3)

Targeted biopsy cores;
median (IQR) 3 (2–4) 6 (4–7) 5 (3–6) 0.12

0.93 (0.85–1.03)
0.98

0.98 (0.89–1.08)
Systematic biopsy

cores; median (IQR) 9 (8–11) 12 (12–12) 12 (11–12) 0.49
0.99 (0.91–1.08)

0.80
0.99 (0.91–1.08)

Tumor status; N (%) n.c. n.c.
No tumor 36 (45.0) 103 (49.3) 139 (48.1)

Tumor 44 1 (55.0) 106 (50.7) 150 1 (51.9)
∆Ct miR-141-3p;

median (IQR) 18.4 (15.2–18.4) 16.7 (15.0–19.6) 16.9 (15.1–20.3) 0.46
1.03 (0.96–1.10)

0.97
1.00 (0.93–1.08)

∆Ct miR-375-5p;
median (IQR) 16.5 (14.4–19.1) 14.7 (13.4–19.2) 15.3 (13.6–19.2) 0.31

1.04 (0.97–1.11)
0.92

0.99 (0.93–1.06)
∆Ct miR-21-5p;
median (IQR) 9.2 (8.8–9.8) 7.4 (7.0–8.0) 7.9 (7.2–8.8) 0.74

1.03 (0.87–1.21)
0.61

0.96 (0.80–1.13)
∆Ct miR-320b; median

(IQR) 9.8 (8.6–10.7) 10.2 (9.8–10.7) 10.2 (9.8–10.7) 0.18
0.89 (0.74–1.05)

0.18
0.88 (0.74–1.05)

∆Ct miR-210-3p;
median (IQR) 12.8 (12.3–14.8) 12.7 (11.9–13.7) 12.7 (12.1–13.8) 0.36

0.97 (0.89–1.04)
0.22

0.95 (0.88–1.03)
∆Ct let-7c-5p; median

(IQR) 11.1 (10.7–11.5) 11.7 (11.1–12.5) 11.5 (11.0–12.2) 0.14
1.12 (0.97–1.32)

0.39
1.07 (0.92–1.23)

∆Ct miR-486-5p;
median (IQR) 3.2 (2.8–3.5) 3.1 (2.8–3.4) 3.1 (2.8–3.5) 0.482

1.15 (0.78–1.79)
0.70

0.92 (0.60–1.37)

IQR—interquartile range; 1 Two patients with a tumour-free biopsy had histologically confirmed prostate cancer; n.c.—not calculated.

The highest Youden index was determined at a cut-off of 14%. To determine if this
cut-off value of 14% represents a clinically reasonable threshold value, we interviewed 20
clinical decision makers and calculated individual threshold cut-off values [20] based on
personal experience. The median of individual threshold values was 12% (interquartile
range 8–28%). This demonstrated that our predictive model is able to provide additional
information within a range of threshold values that are applicable in clinical practice.

By classifying at a cut-off value of 14%, a total of 20 of the 21 csPCa cases were correctly
identified. This high sensitivity of 95.2% of csPCa cases identified was accompanied by
an NPV of 97.1% for the absence of csPCa. Detailed information about the predictive
mathematical model and the predictive performance is provided in Table 3. The calibration
plot of the regression model is shown in Supplementary Figure S2 and a receiver–operator
curve comparison with the baseline model is given in Supplementary Figure S3. A decision
curve analysis was used to quantify the benefit of applying the predictive model. At the
specified threshold of 14% risk, the net benefit of the model accounts to 16.1% (Figure 1).
Following a related method, the regret theory, we sought to more exactly determine the
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range of threshold values where our predictive model might provide a benefit for patients.
Following the published equations [20], we calculated the Net Expected Regret Difference.
Up to a threshold cut-off of 6%, our model does not provide a benefit over the strategy
of biopsy all patients and above a cut-off of 98%, it does not provide a benefit over the
strategy of biopsy no patient. Between 7% and 97%, our model provided a benefit over
both extreme strategies (Figure 2 and Supplementary Table S3).

Table 2. Predictive performance of clinical parameters and miRNAs in the discovery and validation cohorts.

Model Establishment: Discovery Cohort

Parameters of the Model

Clinical parameters miRNA PPV (%) NPV (%) Sensitivity (%) Specificity (%) AUC

Age, PSA, Prev. biopsy, PI-RADS 66.0 66.7 79.5 50.0 0.684
Age, PSA, Prev. biopsy, PI-RADS miR-141-3p 64.8 65.3 79.5 52.7 0.684
Age, PSA, Prev. biopsy, PI-RADS miR-375-3p 64.8 65.3 79.5 52.8 0.689
Age, PSA, Prev. biopsy, PI-RADS miR-21-5p 68.0 66.7 77.3 55.5 0.718
Age, PSA, Prev. biopsy, PI-RADS miR-320b 64.1 62.9 77.3 52.8 0.681
Age, PSA, Prev. biopsy, PI-RADS miR-210-3p 67.3 67.8 79.5 52.8 0.689
Age, PSA, Prev. biopsy, PI-RADS let-7c-5p 86.0 68.7 77.3 61.1 0.707
Age, PSA, Prev. biopsy, PI-RADS miR-486-5p 70.8 66.7 77.3 55.5 0.697

Model Validation: Validation Cohort
Parameters of the Model

Clinical parameters miRNA PPV (%) NPV (%) Sensitivity (%) Specificity (%) AUC
Age, PSA, Prev. biopsy, PI-RADS 65.4 65.6 67.9 63.1 0.732
Age, PSA, Prev. biopsy, PI-RADS miR-141-3p 66.7 60.3 67.9 65.0 0.734
Age, PSA, Prev. biopsy, PI-RADS miR-375-3p 68.1 68.7 70.8 66.0 0.736
Age, PSA, Prev. biopsy, PI-RADS miR-21-5p 75.6 54.6 26.4 91.3 0.702
Age, PSA, Prev. biopsy, PI-RADS miR-320b 69.3 66.7 66.0 66.7 0.737
Age, PSA, Prev. biopsy, PI-RADS miR-210-3p 65.1 65.9 68.9 62.1 0.733
Age, PSA, Prev. biopsy, PI-RADS let-7c-5p 63.8 66.7 71.7 58.3 0.734
Age, PSA, Prev. biopsy, PI-RADS miR-486-5p 65.7 58.7 65.1 65.0 0.719

Table 3. Comparison of pathological and predicted outcome; covariates and regression coefficients of the regression model
for predicting significant PCa in patients with PI-RADS scores 1, 2, and 3. For binomial classification, the optimized
threshold of 14% risk was used.

Predicted Disease Status

Tumor-
free/Gleason

6
Gleason 7a–10

Pathological disease status Tumor-free/Gleason 6 * 33 35 Specificity 48.5%
Gleason 7a–10 * 1 20 Sensitivity 95.2%

NPV 97.1% PPV 36.4%
Covariate Model coefficient
Intercept −6.47144586

Patient age 0.06001647
Pre-biopsy PSA level 0.09607283

Previous biopsy procedure −1.36328590
miR-486-5p −0.52307176

let-7c-5p 0.30509631

* Tumor-free/Gleason 6 corresponding to Tumor-free/Grade group 1; Gleason 7a-10 corresponding to Grade groups ≥2.
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Figure 1. Decision curve analysis. The net benefit of using the mathematical models for biopsy
indication instead of the extreme strategies is shown. Model3 includes PSA level, patient age and
previous biopsy status, model3.2 includes PSA level, patient age, previous biopsy status, and the
expression levels of miR-486 and let-7c. Model3.2 provides a benefit over the extreme strategies of
recommending a biopsy in all patients or recommending a biopsy for no patient within a threshold
range of 7% to 97%.

Figure 2. Expected Regret Difference. The net Expected Regret Difference of using the model3.2
for biopsy indication in pair-wise comparison. Within a threshold range of 7% and 97%, our model
provided a benefit over both extreme strategies.

4. Discussion

A recent nationwide survey among clinicians in Germany underscores the widespread
acceptance of mpMRI and targeted prostatic biopsies [5]. Despite the gain in diagnostic
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accuracy by mpMRI, there is still an on-going effort to utilize this information for risk
classification. However, the combination of clinical parameters and mpMRI is a promising
tool to reduce unnecessary prostate biopsies [22]. Here, we tested the additional predic-
tive value of miRNAs incorporated in a regression model to predict PCa detection and
tumor aggressiveness prior to mpMRI-ultrasound fusion-guided biopsy. MiRNAs were
selected because of their differential expression in PCa tissue compared to non-malignant
prostatic tissue [8,9]. Our study shows that it is possible to enhance the prediction of PCa
detection by adding serum miRNA expression levels to clinical data and the PI-RADS
score. However, up to now, there is a strong suggestion that PI-RADS 3 lesions should also
be biopsied [5,23], because they might harbor significant PCa ranging from 12% [24] to
34% in current cohorts [25], even though other studies show only a limited incidence of
significant PCa [26]. Yang et al. utilized mpMRI imaging information and routine clinical
parameters for modeling cancer risk particularly in patients with PI-RADS 3 lesions and
suggested their model for the reduction of unnecessary biopsies [27]. Interestingly, our
mathematical models performed very well at identifying patients with csPCa of Gleason
score ≥7a especially in the subgroup of patients with lesions of PI-RADS ≤3. We could
identify patients with csPCa with a sensitivity of 95.2% while at the same time predicting
the absence of csPCa with an NPV of 97.1% These properties of the model might be of high
interest for clinicians to identify those patients that can be spared a prostate biopsy (high
NPV) while still being able to detect the majority of significant PCa cases (high sensitivity).

Interestingly, none of the incorporated serum-miRNAs was significantly associated
with PCa diagnosis or Gleason score by itself, although all the measured miRNAs have
been described to be differentially expressed in PCa tissue and are suggested to play a role
in prostatic carcinogenesis [8,9,12,28–31]. Moreover, we showed in previous studies that
clinical parameters, such as the pre-biopsy PSA level, Gleason score, or TNM status, have
only a limited impact on the overall abundance of miRNAs in the patients’ blood [10].

Molecular tests, such as the PCA3 test and others, have the potential to enhance
such predictive models. Fenstermaker et al. demonstrated that a positive PCA3 test
was associated with PCa detection in MRI-ultrasound fusion-guided targeted biopsies
in patients with visible lesions in the primary setting of PCa detection [32]. However,
the impact in highly suspicious lesions was limited in their study. They propose to test
the value of the PCA3 test particularly in patients with low or equivocal PCa probability
after mpMRI. With the proposed cut-off of 35, the PCA3 test exhibited a sensitivity of 62%
and 73% as well as a NPV of 88% and 91% in patients with lesions of PI-RADS 2 and 3,
respectively [32]. In the setting of primary, not mpMRI fusion-supported prostate biopsies,
several studies evaluated molecular tests such as the PCA3 test or the prostate health index
(PHI) and their abilities to predict the diagnostic outcome. Thereby, the PHI performed
better than PSA alone with sensitivities ranging from 74–94% and specificities ranging
from 49–72% [33,34]. In future studies, prostate volume, PSA density, number, and the
exact localization of the MRI foci might be considered as well. In addition, in a future
prospective clinical trial a centralized pathology review and a centralized radiological
review are necessary.

One of the most recent molecular diagnostic tests described is the STHLM3 model [35].
This model combines several plasma protein biomarkers, genetic polymorphisms, and
clinical information. The STHLM3 model could identify a population where the tumor
detection rate reached more than 50% [35]. Nevertheless, in our highly selected patient
cohort, our mathematical model correctly predicted a PCa diagnosis in 72% of cases.

5. Conclusions

In summary, our findings demonstrate that the addition of miRNA expression in-
formation to MRI imaging and clinical data is able to enhance the tumor prediction rate.
Particularly for patients with PI-RADS ≤3 lesions, the miRNA-supported predictive models
perform very well at predicting a clinically significant PCa.
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