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Abstract: CYP17A1 is a cytochrome P450 enzyme that has 17-alpha-hydroxylase and C17,20-lyase 
activities. Cyp17a11 deficiency is associated with high body mass and visceral fat deposition in ath-
erosclerotic female ApoE knockout (KO, d/d or -/-) mice. In the present study, we aimed to investi-
gate the effects of diet and Cyp17a1 genotype on the gut microbiome. Female Cyp17a1 (d/d) x ApoE 
(d/d) (DKO) and ApoE (d/d) (controls) were fed either standard chow or a Western-type diet 
(WTD), and we demonstrated the effects of genetics and diet on the body mass of the mice and 
composition of their gut microbiome. We found a significantly lower alpha diversity after account-
ing for the ecological network structure in DKO mice and WTD-fed mice compared with chow-fed 
ApoE(d/d). Furthermore, we found a strong significant positive association of the Firmicutes vs. Bac-
teroidota ratio with body mass and the circulating total cholesterol and triglyceride concentrations 
of the mice when feeding the WTD, independent of the Cyp17a1 genotype. Further pathway enrich-
ment and network analyses revealed a substantial effect of Cyp17a1 genotype on associated cardio-
vascular and obesity-related pathways involving aspartate and L-arginine. Future studies are re-
quired to validate these findings and further investigate the role of aspartate/L-arginine pathways 
in the obesity and body fat distribution in our mouse model. 

Keywords: Cyp17a1; Mouse; Knockout; Microbiota; Obesity; Disorders of Sex Development; Coro-
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1. Introduction 
Coronary artery disease (CAD), secondary to atherosclerosis, is the most frequent 

cause of morbidity and mortality worldwide [1]. Large-scale genetic studies have success-
fully identified loci that are associated with CAD, many of which have unknown physio-
logical roles. One of the commonly reported genomic loci, which has been shown to be 
associated with CAD in several independent genome-wide association studies, is located 
on chr10p24.32. The same locus is associated with myocardial infarction [2], hypertension 
[3–8], and arterial stiffness in patients with diabetes [9], as well as with the visceral and 
subcutaneous fat masses [10]. This locus harbors the CYP17A1 gene. 
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The CYP17A1 enzyme plays a crucial role in the steroidogenic pathway that is respon-
sible for the synthesis of glucocorticoids, mineralocorticoids, androgens, estrogens, and pro-
gestins. Mutations in this gene are associated with congenital adrenal hyperplasia (CAH), a 
rare inherited disorder that affects both sexes [11–13]. Children and adolescents with CAH 
are at a high risk of obesity, owing to 21-hydroxylase deficiency [14]. We have generated 
mice that are deficient in CYP17A1, and in contrast to the results of a previous study [15], 
our knockout (KO) mice survived and displayed disorders/differences in sex development 
(DSDs) [16]. The CYP17A1-deficient female mice exhibited high body mass and vis-
ceral/subcutaneous fat deposition [16]. High CYP17A1 expression in the visceral adipose 
tissue of obese individuals was also recently reported by Ronquillo and co-workers [17]. 
Thus, there is strong evidence for the role of CYP17A1 in obesity and fat deposition. 

The importance of the microbiota in human health and disease is well established. 
Gut dysbiosis is associated with many metabolic diseases, including obesity and cardio-
vascular diseases [18–22]. Previous studies have also demonstrated an association be-
tween some CYP family members (CYP7A1 and CYP17A1), gut bacteria, and atheroscle-
rosis [23–26]. Castaner et al. reviewed the evidence on the association between intestinal 
microbiota and obesity and, lastly, the gut microbiota profiles in obesity [27]. Stanislawski 
et al. published recently how the gut microbiota-obesity relationship varied across heter-
ogeneous Western populations and suggested that gut microbiota phenotypes of obesity 
may differ with race/ethnicity [28]. Furthermore, gut microbiota correlates with dietary or 
socioeconomic status [28]. Gut bacteria have been documented as an important contribu-
tor to the development of atherosclerosis [29–31]. Sanchez-Rodriguez and co-workers re-
viewed the implication of gut microbiota in the development of atherosclerosis and re-
lated cardiovascular diseases and examined its beneficial aspect as a therapeutic target in 
the prevention of cardiovascular diseases [32]. 

We have provided evidence that CYP17A1 is associated with obesity and atheroscle-
rosis in our previous study, but the relationship between CYP17A1 and the gut microbiota 
remains unclear. The Cyp17A1 heterozygous mice were backcrossed to the commonly 
used atherogenic ApoE (Apolipoprotein E) deficient genetic background to induce ather-
osclerosis and obesity when feeding a Western-type diet (WTD) [16]. 

In the present study, we aimed to determine the effects of diet and Cyp17a1 genotype 
on the composition of the microbiota in a mouse model of atherosclerosis (ApoE KO). 

2. Materials and Methods 
2.1. Animal Feeding and Collection of Samples 

This study was approved by the German Animal Studies Committee of Schleswig-
Holstein and was conducted in compliance with international guidelines. Two groups of 
female mice, with genotypes Cyp17a1(d/d) × ApoE(d/d) and ApoE(d/d), were studied. The 
symbol “d” stands for deletion and is similar to KO or “−“. From the age of 10 weeks, mice 
were fed either a standard chow diet (chow) or a Western-type diet (WTD) containing 
0.2% cholesterol and 21.2% fat (TD.88137; ssniff Spezialdiäten GmbH, Soest, Germany) for 
8 weeks. The mice were maintained under controlled conditions of temperature (23°C), 
humidity (40–60%), and lighting (12 h/12 h light/dark cycle). After 8 weeks of diet-feeding, 
the mice were euthanized using an overdose of isoflurane inhalation, followed by cervical 
dislocation, and then perfused with phosphate-buffered saline, pH 7.4 (Lonza, Cologne, 
Germany). Blood samples were collected to study the lipid profiles of the mice, as de-
scribed previously [16]. The body mass and visceral fat mass were determined as previ-
ously described [16]. Finally, the caeca of the mice containing feces were collected, and tail 
biopsies were obtained for re-genotyping. All the samples collected were stored at −80 °C 
until further analysis. 
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2.2. DNA Isolation, PCR, and 16S rRNA Sequencing 
Bacterial DNA isolation and sequencing were performed as reported previously [33]. 

Briefly, the cecal samples were collected, and DNA was isolated using a Power Soil DNA 
Isolation KIT (Qiagen, Hilden, Germany), according to the manufacturer’s protocol. Spe-
cific primers targeting the V1-V2 hypervariable region (27F-338R) of the bacterial 16S 
rRNA genes were used to amplify these sequences by PCR, using a similar reaction mix 
to that published previously [33]. PCR products were analyzed on 1.5% agarose gels and 
visualized using Sybr Green II, and then individual DNA bands were pooled to create 
approximately equimolar sub-pools and purified. These sub-pools were mixed in equimo-
lar amounts and stored at −20 °C until sequencing, which was performed on the Illumina 
MiSeq platform using v3 chemistry. 

2.3. Sequence Processing and Data Analysis 
Demultiplexed raw sequencing data (fastq format) were processed into amplicon se-

quence variants (ASVs) using DADA2 (v1.18.0) [34]. Briefly, forward reads were trimmed 
to 280 bp and reverse reads to 260 bp, the expected error rate was assigned the value 2, 
and size selection was set to 280–343 bp. Furthermore, chimeric sequences were removed. 
Taxonomic assignment was performed using DECIPHER (v2.18.1) [35], with GTDB r89 
[36] as the reference database. Potential contaminants were removed using the frequency 
method, as implemented in the R package decontam (v1.10.0) [37], with the threshold set 
to 0.1. Nine ASVs were identified as contaminants and removed. ASVs not belonging to 
the kingdom Bacteria or with unassigned phylum were excluded from further analysis. 

2.4. Statistical Analysis 
ASV data and covariates were imported into R (v4.0.3; https://cran.r-pro-

ject.org/bin/windows/base/, accessed on 12.11.2020). Alpha diversity, based on non-nor-
malized counts, was estimated using DivNet (v0.3.6; sample-wise and community-wise 
Shannon diversity) [38], and richness was estimated using breakaway (v4.7.2) [39]. Differ-
ences in alpha diversity were calculated using the betta function (breakaway v4.7.2) [40] 
to provide richness and sample-wise estimates and testHypothesis (DivNet) for commu-
nity-wise estimates, respectively. To assess beta diversity, Aitchison distance was applied. 
Briefly, data were centered log-ratio transformed (clr), and distances were calculated us-
ing Euclidean distance. Permutational multivariate analysis of variance using distance 
matrices (PERMANOVA) was used to analyze differences in beta diversity (adonis func-
tion, as implemented in the vegan package v2.5-7, with 99,999 permutations). Differential 
abundance analysis was performed using analysis of compositions of microbiomes with 
bias correction (ANCOMBC package v1.0.2 [41]; 10,000 iterations, zero cut-off 0.9, Benja-
mini–Hochberg correction to adjust for multiple hypothesis testing). The R package mi-
crobiomeMarker (v0.01.9000) was used to perform linear discriminant analysis coupled 
with effect size (LEfSe) [42] using 1000 bootstrap iterations with correction for multiple 
testing, and the results were restricted to phylum and genus level. 

To retrieve functional profiles for the ASV data, sequences and abundance tables 
were used as inputs for PICRUSt2 [43]. The results were visualized using Aitchison dis-
tance, and differentially abundant KEGG identifiers were identified using ALDEx2 
(v1.22.0) [44]. The annotation of the KEGG identifiers was performed using KEGGREST 
(v1.30.1), and effect sizes were estimated using Hedge’s g statistic (dabestr v0.3.0). Enrich-
ment analysis for Gene Ontology (GO) Biological Processes was performed using enrichR 
(v3.0). 

Correlation network inference on clr-normalized abundances was performed using 
the SparCC [45] approach, as implemented in the R package NetCoMi (v1.0.2) [46], and 
significant edges were selected using Student’s t-test. Community structures were esti-
mated using greedy optimization of modularity, hub node detection was performed using 
a threshold of 0.8, and quantitative assessment of the network was performed using a 
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permutation approach (100,000 bootstraps) with an adaptive Benjamini–Hochberg correc-
tion to adjust p-values for multiple testing. 

For linear regression analysis, lm_robust (estimatr package v0.30.2) was used. Visual-
ization of the microbiome analyses were performed using ggplot2 (v3.3.3), ggpubr 
(v0.4.0), and patchwork (v1.1.1); the R packages phyloseq (v1.34.0) [47] and tidyverse 
(v1.3.0) were used for data handling. 

3. Results 
We have previously shown an association of Cyp17a1 KO with obesity in female mice 

[16]. Here, we asked whether the Cyp17a1 KO affects gut microbial diversity and composition. 

3.1. Cyp17a1 KO Is Associated with High Body Mass and Fat Volume 
Female Cyp17a1 KO mice exhibited much higher body mass and fat volume than their 

wild-type (WT) littermates when chow-fed (Figure 1), and these differences were more 
marked after feeding the mice a WTD; characteristics of mice are presented in Table S1. 

 
Figure 1. Characteristics of female Cypa17a1 control and knockout mice. Comparison between ApoE KO control (+/+) and dou-
ble knockout (d/d) mice for bodyweight (A,C), and body fat (B,D) with respect to diet (chow and Western-type diet; WTD). 

3.2. Microbial Diversity 
A total of 22 female mice were studied (Control ApoE(d/d) mice: n = 5 chow and n = 

6 WTD; double knockout (DKO) Cyp17a1(d/d) × ApoE(d/d): n = 5 chow and n = 6 WTD), 
which yielded 480 ASVs for further analysis. The number of contigs ranged between 4971 
and 23,547 (mean: 14,219; SD 5166). Alpha diversity was assessed using species richness 
and the Shannon index. For species richness, no significant correlation with the number 
of contigs per sample was identified (F1,20 = 0.8536, R2adj = 0.0226, p = 0.3665). Furthermore, 
no significant differences in species richness were identified (Figure 2A, betta test, p > 0.05) 
versus ApoE(d/d) controls consuming a chow diet. To further investigate alpha diversity, 
we estimated the Shannon index sample-wise, with the assumption that the taxa in a com-
munity form an ecological network [40]. Control WTD-fed mice and WTD DKO mice 
showed significantly lower Shannon diversity (p = 0.005, difference −0.4446, SE 0.1593 and 
p = 0.004, difference = −0.4546, SE 0.1593; respectively) than control chow-fed mice, 
whereas chow-fed DKO mice showed a similar Shannon diversity (p = 0.962) to chow-fed 
control mice (Figure 2B). Community-wise estimates of the Shannon index generated sim-
ilar results (Figure 2C), with lower diversity in both WTD-fed groups (Control: p < 0.001, 
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difference −0.8927; DKO: p < 0.001, difference −0.6500) and no difference between the chow 
KO group (p = 0.643) and chow-fed controls. 

 
Figure 2. The effect of diet and genotype on diversity (alpha and beta). Estimated species richness and Shannon diversity 
(both alpha diversity measurements) are shown in panels (A,B) for each sample, grouped by genotype and diet. Panel (C) 
shows the community-wise estimate of Shannon diversity per genotype and diet. Beta diversity was estimated using 
Aitchison distance, and the results are shown in a principal coordinate analysis plot (D); light colors refer to controls (d/d) 
and dark colors to double knockouts (+/+); blue refers to chow-fed mice and orange to WTD-fed mice. Axis 1 (x-axis) 
explains 23.0% and Axis 2 (y-axis) 10.4% of the total variance, respectively. 

The bacterial composition of the four groups (beta diversity) was compared using 
Aitchison distance. We found a significant effect of diet on beta diversity (PERMANOVA, 
p = 1.0 × 10−5, R2 = 0.2193), which accounted for about 22% of the observed variation in 
bacterial composition, but no effect of genotype (p = 0.3112, R2 = 0.0414) and no interaction 
between genotype and diet (p = 0.2934, R2 = 0.0420). Projections of the first and second 
principal coordinates are shown in Figure. 2D. 

3.3. Abundance of Each Taxon 
The mean abundances of all the phyla and the top 19 genera identified are shown in 

Figure 3A,B. To find out alterations associated with diet and genotype, linear discriminant 
analysis coupled with effect size (LEfSe) was performed, and the results were restricted 
to phylum and genus level, resulting in 11 features with LDA scores > 2.0 (padj < 0.05). 
Control chow-fed mice showed an increase in the genus Lactobacillus, whereas control 
WTD mice showed higher abundances of the phyla Firmicutes, and Firmicutes A and the 
genus Romboutsia. Chow-fed KO mice showed higher abundances of the phylum Proteo-
bacteria and the genera CO1, Duncaniella, Lactobacillus H, Muribaculum, and Parasutterella; 
WTD-fed KO mice showed enrichment in the genus Kineothrix. The results are shown in 
Table S2 and Figure S1. 

Next, differential abundance analysis was performed using chow-fed control mice as 
a reference to investigate changes in composition due to diet and genotype using analysis 
of compositions of microbiomes with bias correction (ANCOMBC). Results showed that 
in comparison to control chow-fed mice, the phylum Bacteroidota was significantly less 
abundant (padj = 0.0351) and the phylum Firmicutes A was significantly more abundant 
(padj = 0.0351) in control WTD-fed mice; and the phylum Deferribacterota was significantly 
less abundant in chow-fed DKO mice (padj = 0.0010). Some genera showed similar trends 



Cells 2021, 10, 1292 6 of 13 
 

 

when control WTD-fed mice were compared with chow mice, regardless of their geno-
type. The genera with lower abundances in WTD-fed mice were CAG-475, COE1, Duncan-
iella, Lactobacillus, Muribaculum, and Rs-D84 (padj < 0.05), whereas Faecalibaculum and Rom-
boutsia were significantly more abundant (padj < 0.05) in these mice. None of the genera 
significantly differed in abundance between the DKO groups and WT chow-fed groups. 
All the phyla, families, and genera that were evaluated are listed in Table S3. To further 
evaluate the contribution of the identified differences in the abundance of phyla, the ratios 
of the abundances of Firmicutes and Bacteroidota (GTDB taxonomy; NCBI taxonomy name: 
Bacteroidetes) were calculated. There was a significant difference in this ratio among the 
four groups (Kruskal–Wallis test, p = 0.0063), and post hoc testing (pairwise Wilcoxon tests 
with Benjamini–Hochberg correction) revealed that the difference was due to diet, rather 
than genotype (Chow+/+ vs. WTD+/+ padj = 0.026, Chow+/+ vs WTDd/d padj = 0.035, Chowd/d vs. 
WTD+/+ padj = 0.026, all remaining comparisons padj > 0.05, Figure 3C). Furthermore, there 
was a significant correlation between the ratio and the circulating total cholesterol con-
centration of the mice (F1,20 = 9.768, R2adj = 0.3213, p = 0.0053; Figure 3D). 

 
Figure 3. Taxonomic differences and Firmicutes vs. Bacteroidota ratio. Taxonomic composition for 
each genotype and feeding regime are shown for phylum (A) and genus (B) level; the y-axis shows 
the proportion of mapped contigs. For genus composition, the top 19 genera are shown, and the 
remaining genera were binned together into ‘Other’ (grey color). (C) shows the log2-scaled Firmic-
utes vs. Bacteroidota ratio per genotype and diet. The relationship of the log2-scaled Firmicutes vs. 
Bacteroidota ratio and measured total cholesterol is shown in (D); the blue line refers to the fit of 
the linear model, and the shaded area denotes the 95% confidence interval of the linear fit. 
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3.4. Functional Profiling 
To assess the potential metagenomic effects of diet and genotype, we used PICRUSt2 

to infer gene identity from the 16S data. After clr-transformation of the predicted KEGG 
identifiers, we found an effect of diet (PERMANOVA, p = 4.3 × 10−4, R2 = 0.1459) but not 
genotype (PERMANOVA, p = 0.1373, R2 = 0.0680), and no interaction between diet and 
genotype (p = 0.6745, R2 = 0.0326). This finding is consistent with the findings of the 16S 
analysis shown above. The effects of diet and genotype were further analyzed using a 
linear regression model against the first six principal coordinates (PC1–PC6, which ex-
plained 73.3% of the total variance), and we found that PC2 strongly correlated with diet 
(p = 4.9 × 10−5) and that PC5 tended to be affected by diet (p = 0.0566) (Figure 4A). 

 
Figure 4. Functional profiling of the gut microbiome. Redundancy analysis plots of clr-transformed functional profiles (esti-
mated by PICRUSt2) are shown in panel (A); light colors refer to controls (d/d) and dark colors to double knockouts (+/+); 
blue refers to chow-fed mice and orange to WTD-fed mice. Axis 1 (x-axis) explains 26.1% and Axis 2 (y-axis) 17.9% of the total 
variance observed, respectively. Gardner-Altman (effect size) plots for Arginine-related KEGG IDs for WTD-fed mice are 
shown in (B,C). Effect size (unpaired Hedges’ g) distribution is indicated by the grey area (estimated using 10,000 bootstrap 
iterations), and a 95% confidence interval is illustrated by a straight black line. Enrichment of Gene Ontology (GO) terms (p 
< 0.05) for WTD-fed mice is shown in panel (D). Orange dots refer to terms enriched in knockout mice, blue to enriched terms 
in controls. Combined enrichment scores (c) are shown on the x-axis (c = log(p) * z, where p refers to the p-value from Fisher 
exact test and z is the z-score computed by assessing the deviation from the expected rank). 

The effect of diet was further examined to identify differential abundant KEGG iden-
tifiers in WTD- and chow-fed mice using ALDEx2. In total 107 KEGG identifiers were 
upregulated and 77 downregulated in WTD-fed mice (padj < 0.05, estimated absolute effect 
size > 0.8). Enrichment analysis of up- and downregulated KEGG identifiers against the 
GO Biological Process database identified immune response (GO:0033006), regulation of 
leukocyte degranulation (GO:0043300) and tyrosine phosphorylation of STAT protein 
(GO:0007260) as upregulated GO-terms in WTD mice, whereas terms related to virus re-
sponse as downregulated (Figure S2). 

To investigate the potential effects of genotype, independently of diet, data from the 
mice fed the WTD were analyzed. Differential abundance analysis showed 34 upregulated 
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and 68 downregulated KEGG identifiers in the KO vs. the control mice (estimated abso-
lute effect size > 0.8). Enrichment analysis against the GO Biological Process database of 
differentially abundant KEGG identifiers revealed (t)RNA-splicing to be upregulated in 
the KO mice, whereas protein repair and nucleotide-related metabolic processes were 
downregulated (p < 0.05; Figure 4D). Differentially abundant KEGG identifiers were fur-
ther annotated for KEGG pathways, and arginine-related pathways were selected to esti-
mate the size of the genotype effect. The KO mice showed a lower abundance of arginine-
related pathways (Hedge’s g = −1.3; Figure 4B,C). 

3.5. Network Analysis of the Expression Profiles 
Bacteria and their metabolic products do not act as single entities in the gut or body. 

We aimed to identify differences in the interaction network between control and DKO 
mice, regardless of the diet fed. To this end, we inferred a correlation network from com-
positional data, using the top 100 KEGG identifiers with the highest variance according to 
the PICRUSt2 predictions using SparCC, and significant edges were selected using Stu-
dent’s t-test (p < 0.05). The resulting networks for control and DKO mice showed no dif-
ferences in community modularity (cluster) (three in both groups), but the clustering be-
tween the two genotypes significantly differed (adjusted Rand index = 0.349; two-tailed t-
test p < 0.001). Furthermore, in the control mice, three hub nodes (K00928: aspartate kinase, 
K01537: P-type Ca2+ transporter type 2C, and K07095: uncharacterized protein) were 
identified, whereas the DKO mouse network had no hub nodes. The global network prop-
erties (clustering coefficient, modularity, mean path length, vertex, and edge connectivity) 
were similar for the genotypes (p > 0.05), but the centrality of the two graphs, based on the 
shortest paths (betweenness centrality), was found to significantly differ (p = 0.0351) (Fig-
ure 5A-B). On the basis of the permutations (100,000 bootstraps), we constructed a differ-
ential network, and significantly correlated node pairs were selected (adaptive Benjamini-
Hochberg corrected p < 0.01) that showed differentially associated KEGG identifiers for 
the control and DKO mice. Interestingly, more KEGG identifiers were positively associ-
ated with DKO than control mice (Figure 5C). 

 
Figure 5. Network analysis of functional profiles. SparCC networks of clr transformed KEGG terms (top 100 terms with 
the highest variation) for both genotypes regardless of their feeding regime are shown in (A) for controls and (B) for double 
knockout mice, respectively. Orange lines denote positive associations, blue lines negative associations; strength of corre-
lations is depicted by the thickness of lines. Estimated clusters of KEGG IDs are shown in blue, red, and yellow, and hub 
nodes are shown in bold font (controls only). The differential network is shown in panel (C), with opposite associations 
marked in blue (positive in controls and negative in double knockouts) and orange (negative in controls and positive in 
double knockouts). 
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4. Discussion 
In addition to the conventional risk factors for CAD, recent studies have identified 

the contribution of gut bacteria to its etiology and pathogenesis [25,48–50]. Indeed, gut 
dysbiosis appears to be involved in the pathogenesis of many metabolic diseases, includ-
ing obesity and cardiovascular diseases [18–22]. Furthermore, a diet rich in fat is known 
to alter the gut microbiome, which to some extent mediates such a diet’s obesogenic effect 
[51], and a recent study showed an association between the gut microbiota and the con-
sumption of an atherogenic diet by mice [52]. In this context, we bred Cyp17a1-deficient 
mice on an atherogenic ApoE KO genetic background to study the role of this gene and a 
WTD on lipid metabolism and obesity [16]. In our recent study, we showed that CYP17A1 
is associated with an obesity and atherosclerosis phenotype [16], but the influence of 
CYP17A1 on the gut bacteria and the consequences of such interaction for obesity were 
unclear. Therefore, in the present study, we aimed to determine the effect of diet and 
Cyp17a1-deficiency on the gut microbiota and to relate the findings to the obesity pheno-
type in these mice. 

WTD-feeding was associated with an increase in the number of bacteria belonging to 
the phylum Firmicutes, independent of the Cyp17a1 genotype of the mice. This finding is 
consistent with that of a very recent study that provided compelling evidence that Firmic-
utes bacteria are enriched in atherosclerotic ApoE KO mice consuming a Western diet [52]. 
Furthermore, the larger number of Firmicutes was reported to be associated with a greater 
generation of metabolic endotoxins, which cause chronic inflammation [53]. However, 
further studies are required to identify a causal link between the abundance of key micro-
bial taxa and metabolic endpoints, which might involve gut microbial transplantation into 
germ-free mice, an established method in mice and other species. 

Pathway enrichment analysis revealed that Cyp17a1 KO mice have a lower abun-
dance of arginine-related pathways. The role of L-arginine in cardiovascular disease is 
well established; however, the identified effects are in the opposite direction to those that 
might have been expected from a therapeutic point of view. Several studies have shown 
a protective effect of L-arginine supplementation against atherosclerosis in animal models 
of hypercholesterolemia, which is mediated via a nitric oxide (NO)-dependent pathway 
[54–56]. However, Blum et al. recently reported that oral L-arginine therapy does not im-
prove NO bioavailability in patients with CAD and thus may not be beneficial [57]. There-
fore, it is still unclear how the arginine pathway relates to cardiovascular disease. In ad-
dition, McKnight et al. showed a beneficial role of L-arginine to reduce obesity, increase 
muscle mass, and improve the metabolic profile of animals and humans[58]. Therefore, 
the precise role of L-arginine remains uncertain, but it would be interesting to further in-
vestigate the role of the L-arginine pathway in cardiovascular disease and obesity. 

Network analysis of the expression data identified aspartate kinase as hub node. As-
partate is a common metabolite in pathways that are altered during the development of 
atherosclerosis [59]. Aspartate is a dicarboxylic amino acid that is involved in the inhibi-
tion of fatty streak formation and the progression of atherogenesis [59,60], and has a pro-
tective role. In addition, oral supplementation of aspartate is also beneficial for hyperten-
sion. Studies conducted in a salt-induced rat model of hypertension demonstrated a re-
duction in mean arterial pressure of 13 mmHg in aspartate-supplemented animals [61]. 
Interestingly, the increase in the circulating aspartate concentration that follows its oral 
administration is accompanied by a rise in L-arginine concentration. Therefore, our net-
work analysis is highly consistent with the results of the pathway enrichment analysis 
and implies a role for Cyp17a1 in the regulation of the aspartate/L-arginine axis. However, 
further studies are needed to clarify the role of the aspartate/L-arginine axis in obesity and 
body fat distribution, and in particular, to determine whether oral supplementation with 
either L-arginine or aspartate may reduce fat deposition in the Cyp17a1 KO mouse model. 

  



Cells 2021, 10, 1292 10 of 13 
 

 

5. Conclusions and Limitations 
Taken together, we further validated the effect of the diet on body mass and compo-

sition of their gut microbiome. Using pathway enrichment and network analyses, we 
could show a substantial impact of Cyp17a1 genotype involving aspartate and L-arginine 
pathway. 

The sample size of this study is considered limited because group sizes are rather 
small (n = 5–6). In addition, from the 16S data, it is not possible to obtain functional profiles 
(e.g., KEGG identifiers) directly, but one can infer them (as we did, using PICRUSt2) with 
some uncertainty. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-
4409/10/6/1292/s1, Figure S1. Cladogram of the linear discriminant analysis effect size analysis 
(LEfSe) depicting phyla and genera with LDA > 2 and padj < 0.05. Circles represent the differences of 
the most abundant microbiome class and colors indicating the group of highest abundance (light 
blue refers to control chow-fed mice, dark blue to control WTD mice, light orange to KO chow-fed 
mice, and dark orange to KO WTD mice). The diameter of each circle is proportional to the relative 
abundance of the taxon; “g__” refers to genus, “p__” to phylum. Figure S2. Enrichment analysis 
results of WTD-fed mice against chow-fed mice. Orange dots refer to terms enriched in WTD-fed 
mice, blue to enriched terms in chow-fed mice. Combined enrichment scores (c) are shown on the 
x-axis (c = log(p) * z, where p refers to p-value from Fisher exact test and z is the z-score computed 
by assessing the deviation from the expected rank). Table S1. Summary table showing genotype, 
diet, age, bodyweight, fat, and total cholesterol for each mouse. Table S2. Significant phyla and gen-
era identified using LEfSe (LDA > 2, padj < 0.05). Table S3. Phyla, families, and genera tested for 
differential abundance between conditions. Effect of change (W) and adjusted p-values (q) are re-
ported for each comparison. 
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