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Abstract: CYP17A1 is a cytochrome P450 enzyme that has 17-alpha-hydroxylase and C17,20-lyase
activities. Cyp17a11 deficiency is associated with high body mass and visceral fat deposition in
atherosclerotic female ApoE knockout (KO, d/d or −/−) mice. In the present study, we aimed
to investigate the effects of diet and Cyp17a1 genotype on the gut microbiome. Female Cyp17a1
(d/d) × ApoE (d/d) (DKO) and ApoE (d/d) (controls) were fed either standard chow or a Western-
type diet (WTD), and we demonstrated the effects of genetics and diet on the body mass of the
mice and composition of their gut microbiome. We found a significantly lower alpha diversity
after accounting for the ecological network structure in DKO mice and WTD-fed mice compared
with chow-fed ApoE(d/d). Furthermore, we found a strong significant positive association of the
Firmicutes vs. Bacteroidota ratio with body mass and the circulating total cholesterol and triglyceride
concentrations of the mice when feeding the WTD, independent of the Cyp17a1 genotype. Further
pathway enrichment and network analyses revealed a substantial effect of Cyp17a1 genotype on
associated cardiovascular and obesity-related pathways involving aspartate and L-arginine. Future
studies are required to validate these findings and further investigate the role of aspartate/L-arginine
pathways in the obesity and body fat distribution in our mouse model.

Keywords: Cyp17a1; mouse; knockout; microbiota; obesity; disorders of sex development; coronary
artery disease; myocardial infarction; atherosclerosis

1. Introduction

Coronary artery disease (CAD), secondary to atherosclerosis, is the most frequent
cause of morbidity and mortality worldwide [1]. Large-scale genetic studies have suc-
cessfully identified loci that are associated with CAD, many of which have unknown
physiological roles. One of the commonly reported genomic loci, which has been shown
to be associated with CAD in several independent genome-wide association studies, is
located on chr10p24.32. The same locus is associated with myocardial infarction [2], hyper-
tension [3–8], and arterial stiffness in patients with diabetes [9], as well as with the visceral
and subcutaneous fat masses [10]. This locus harbors the CYP17A1 gene.
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The CYP17A1 enzyme plays a crucial role in the steroidogenic pathway that is re-
sponsible for the synthesis of glucocorticoids, mineralocorticoids, androgens, estrogens,
and progestins. Mutations in this gene are associated with congenital adrenal hyperplasia
(CAH), a rare inherited disorder that affects both sexes [11–13]. Children and adolescents
with CAH are at a high risk of obesity, owing to 21-hydroxylase deficiency [14]. We have
generated mice that are deficient in CYP17A1, and in contrast to the results of a previ-
ous study [15], our knockout (KO) mice survived and displayed disorders/differences in
sex development (DSDs) [16]. The CYP17A1-deficient female mice exhibited high body
mass and visceral/subcutaneous fat deposition [16]. High CYP17A1 expression in the
visceral adipose tissue of obese individuals was also recently reported by Ronquillo and
co-workers [17]. Thus, there is strong evidence for the role of CYP17A1 in obesity and
fat deposition.

The importance of the microbiota in human health and disease is well established. Gut
dysbiosis is associated with many metabolic diseases, including obesity and cardiovascular
diseases [18–22]. Previous studies have also demonstrated an association between some
CYP family members (CYP7A1 and CYP17A1), gut bacteria, and atherosclerosis [23–26].
Castaner et al. reviewed the evidence on the association between intestinal microbiota and
obesity and, lastly, the gut microbiota profiles in obesity [27]. Stanislawski et al. published
recently how the gut microbiota-obesity relationship varied across heterogeneous Western
populations and suggested that gut microbiota phenotypes of obesity may differ with
race/ethnicity [28]. Furthermore, gut microbiota correlates with dietary or socioeconomic
status [28]. Gut bacteria have been documented as an important contributor to the de-
velopment of atherosclerosis [29–31]. Sanchez-Rodriguez and co-workers reviewed the
implication of gut microbiota in the development of atherosclerosis and related cardiovas-
cular diseases and examined its beneficial aspect as a therapeutic target in the prevention
of cardiovascular diseases [32].

We have provided evidence that CYP17A1 is associated with obesity and atherosclero-
sis in our previous study, but the relationship between CYP17A1 and the gut microbiota
remains unclear. The Cyp17A1 heterozygous mice were backcrossed to the commonly used
atherogenic ApoE (Apolipoprotein E) deficient genetic background to induce atherosclero-
sis and obesity when feeding a Western-type diet (WTD) [16].

In the present study, we aimed to determine the effects of diet and Cyp17a1 genotype
on the composition of the microbiota in a mouse model of atherosclerosis (ApoE KO).

2. Materials and Methods
2.1. Animal Feeding and Collection of Samples

This study was approved by the German Animal Studies Committee of Schleswig-
Holstein and was conducted in compliance with international guidelines. Two groups of
female mice, with genotypes Cyp17a1(d/d) × ApoE(d/d) and ApoE(d/d), were studied.
The symbol “d” stands for deletion and is similar to KO or “−”. From the age of 10 weeks,
mice were fed either a standard chow diet (chow) or a Western-type diet (WTD) containing
0.2% cholesterol and 21.2% fat (TD.88137; ssniff Spezialdiäten GmbH, Soest, Germany)
for 8 weeks. The mice were maintained under controlled conditions of temperature
(23 ◦C), humidity (40–60%), and lighting (12 h/12 h light/dark cycle). After 8 weeks of
diet-feeding, the mice were euthanized using an overdose of isoflurane inhalation, followed
by cervical dislocation, and then perfused with phosphate-buffered saline, pH 7.4 (Lonza,
Cologne, Germany). Blood samples were collected to study the lipid profiles of the mice,
as described previously [16]. The body mass and visceral fat mass were determined as
previously described [16]. Finally, the caeca of the mice containing feces were collected,
and tail biopsies were obtained for re-genotyping. All the samples collected were stored at
−80 ◦C until further analysis.
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2.2. DNA Isolation, PCR, and 16S rRNA Sequencing

Bacterial DNA isolation and sequencing were performed as reported previously [33].
Briefly, the cecal samples were collected, and DNA was isolated using a Power Soil DNA
Isolation KIT (Qiagen, Hilden, Germany), according to the manufacturer’s protocol. Spe-
cific primers targeting the V1-V2 hypervariable region (27F-338R) of the bacterial 16S
rRNA genes were used to amplify these sequences by PCR, using a similar reaction mix
to that published previously [33]. PCR products were analyzed on 1.5% agarose gels and
visualized using Sybr Green II, and then individual DNA bands were pooled to create ap-
proximately equimolar sub-pools and purified. These sub-pools were mixed in equimolar
amounts and stored at −20 ◦C until sequencing, which was performed on the Illumina
MiSeq platform using v3 chemistry.

2.3. Sequence Processing and Data Analysis

Demultiplexed raw sequencing data (fastq format) were processed into amplicon
sequence variants (ASVs) using DADA2 (v1.18.0) [34]. Briefly, forward reads were trimmed
to 280 bp and reverse reads to 260 bp, the expected error rate was assigned the value 2,
and size selection was set to 280–343 bp. Furthermore, chimeric sequences were removed.
Taxonomic assignment was performed using DECIPHER (v2.18.1) [35], with GTDB r89 [36]
as the reference database. Potential contaminants were removed using the frequency
method, as implemented in the R package decontam (v1.10.0) [37], with the threshold set
to 0.1. Nine ASVs were identified as contaminants and removed. ASVs not belonging to
the kingdom Bacteria or with unassigned phylum were excluded from further analysis.

2.4. Statistical Analysis

ASV data and covariates were imported into R (v4.0.3; https://cran.r-project.org/
bin/windows/base/, accessed on 12 November 2020). Alpha diversity, based on non-
normalized counts, was estimated using DivNet (v0.3.6; sample-wise and community-wise
Shannon diversity) [38], and richness was estimated using breakaway (v4.7.2) [39]. Differ-
ences in alpha diversity were calculated using the betta function (breakaway v4.7.2) [40] to
provide richness and sample-wise estimates and testHypothesis (DivNet) for community-
wise estimates, respectively. To assess beta diversity, Aitchison distance was applied.
Briefly, data were centered log-ratio transformed (clr), and distances were calculated using
Euclidean distance. Permutational multivariate analysis of variance using distance matrices
(PERMANOVA) was used to analyze differences in beta diversity (adonis function, as im-
plemented in the vegan package v2.5-7, with 99,999 permutations). Differential abundance
analysis was performed using analysis of compositions of microbiomes with bias correction
(ANCOMBC package v1.0.2 [41]; 10,000 iterations, zero cut-off 0.9, Benjamini–Hochberg
correction to adjust for multiple hypothesis testing). The R package microbiomeMarker
(v0.01.9000) was used to perform linear discriminant analysis coupled with effect size
(LEfSe) [42] using 1000 bootstrap iterations with correction for multiple testing, and the
results were restricted to phylum and genus level.

To retrieve functional profiles for the ASV data, sequences and abundance tables were
used as inputs for PICRUSt2 [43]. The results were visualized using Aitchison distance,
and differentially abundant KEGG identifiers were identified using ALDEx2 (v1.22.0) [44].
The annotation of the KEGG identifiers was performed using KEGGREST (v1.30.1), and
effect sizes were estimated using Hedge’s g statistic (dabestr v0.3.0). Enrichment analysis
for Gene Ontology (GO) Biological Processes was performed using enrichR (v3.0).

Correlation network inference on clr-normalized abundances was performed using
the SparCC [45] approach, as implemented in the R package NetCoMi (v1.0.2) [46], and
significant edges were selected using Student’s t-test. Community structures were esti-
mated using greedy optimization of modularity, hub node detection was performed using
a threshold of 0.8, and quantitative assessment of the network was performed using a per-
mutation approach (100,000 bootstraps) with an adaptive Benjamini–Hochberg correction
to adjust p-values for multiple testing.

https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/windows/base/
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For linear regression analysis, lm_robust (estimatr package v0.30.2) was used. Visual-
ization of the microbiome analyses were performed using ggplot2 (v3.3.3), ggpubr (v0.4.0),
and patchwork (v1.1.1); the R packages phyloseq (v1.34.0) [47] and tidyverse (v1.3.0) were
used for data handling.

3. Results

We have previously shown an association of Cyp17a1 KO with obesity in female
mice [16]. Here, we asked whether the Cyp17a1 KO affects gut microbial diversity
and composition.

3.1. Cyp17a1 KO Is Associated with High Body Mass and Fat Volume

Female Cyp17a1 KO mice exhibited much higher body mass and fat volume than their
wild-type (WT) littermates when chow-fed (Figure 1), and these differences were more
marked after feeding the mice a WTD; characteristics of mice are presented in Table S1.
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Figure 1. Characteristics of female Cypa17a1 control and knockout mice. Comparison between ApoE KO control (+/+)
and double knockout (d/d) mice for bodyweight (A,C), and body fat (B,D) with respect to diet (chow and Western-type
diet; WTD).

3.2. Microbial Diversity

A total of 22 female mice were studied (Control ApoE(d/d) mice: n = 5 chow and n = 6
WTD; double knockout (DKO) Cyp17a1(d/d) × ApoE(d/d): n = 5 chow and n = 6 WTD),
which yielded 480 ASVs for further analysis. The number of contigs ranged between
4971 and 23,547 (mean: 14,219; SD 5166). Alpha diversity was assessed using species
richness and the Shannon index. For species richness, no significant correlation with the
number of contigs per sample was identified (F1,20 = 0.8536, R2

adj = 0.0226, p = 0.3665).
Furthermore, no significant differences in species richness were identified (Figure 2A, betta
test, p > 0.05) versus ApoE(d/d) controls consuming a chow diet. To further investigate
alpha diversity, we estimated the Shannon index sample-wise, with the assumption that
the taxa in a community form an ecological network [40]. Control WTD-fed mice and WTD
DKO mice showed significantly lower Shannon diversity (p = 0.005, difference −0.4446,
SE 0.1593 and p = 0.004, difference = −0.4546, SE 0.1593; respectively) than control chow-
fed mice, whereas chow-fed DKO mice showed a similar Shannon diversity (p = 0.962) to
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chow-fed control mice (Figure 2B). Community-wise estimates of the Shannon index gener-
ated similar results (Figure 2C), with lower diversity in both WTD-fed groups (Control:
p < 0.001, difference −0.8927; DKO: p < 0.001, difference −0.6500) and no difference between
the chow KO group (p = 0.643) and chow-fed controls.
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Figure 2. The effect of diet and genotype on diversity (alpha and beta). Estimated species richness and Shannon diversity
(both alpha diversity measurements) are shown in panels (A,B) for each sample, grouped by genotype and diet. Panel
(C) shows the community-wise estimate of Shannon diversity per genotype and diet. Beta diversity was estimated using
Aitchison distance, and the results are shown in a principal coordinate analysis plot (D); light colors refer to controls (d/d)
and dark colors to double knockouts (+/+); blue refers to chow-fed mice and orange to WTD-fed mice. Axis 1 (x-axis)
explains 23.0% and Axis 2 (y-axis) 10.4% of the total variance, respectively.

The bacterial composition of the four groups (beta diversity) was compared using
Aitchison distance. We found a significant effect of diet on beta diversity (PERMANOVA,
p = 1.0 × 10−5, R2 = 0.2193), which accounted for about 22% of the observed variation in
bacterial composition, but no effect of genotype (p = 0.3112, R2 = 0.0414) and no interaction
between genotype and diet (p = 0.2934, R2 = 0.0420). Projections of the first and second
principal coordinates are shown in Figure 2D.

3.3. Abundance of Each Taxon

The mean abundances of all the phyla and the top 19 genera identified are shown in
Figure 3A,B. To find out alterations associated with diet and genotype, linear discriminant
analysis coupled with effect size (LEfSe) was performed, and the results were restricted
to phylum and genus level, resulting in 11 features with LDA scores > 2.0 (padj < 0.05).
Control chow-fed mice showed an increase in the genus Lactobacillus, whereas control WTD
mice showed higher abundances of the phyla Firmicutes, and Firmicutes A and the genus
Romboutsia. Chow-fed KO mice showed higher abundances of the phylum Proteobacteria
and the genera CO1, Duncaniella, Lactobacillus H, Muribaculum, and Parasutterella; WTD-fed
KO mice showed enrichment in the genus Kineothrix. The results are shown in Table S2
and Figure S1.
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Figure 3. Taxonomic differences and Firmicutes vs. Bacteroidota ratio. Taxonomic composition
for each genotype and feeding regime are shown for phylum (A) and genus (B) level; the y-axis
shows the proportion of mapped contigs. For genus composition, the top 19 genera are shown,
and the remaining genera were binned together into ‘Other’ (grey color). (C) shows the log2-scaled
Firmicutes vs. Bacteroidota ratio per genotype and diet. The relationship of the log2-scaled Firmicutes
vs. Bacteroidota ratio and measured total cholesterol is shown in (D); the blue line refers to the fit of
the linear model, and the shaded area denotes the 95% confidence interval of the linear fit.

Next, differential abundance analysis was performed using chow-fed control mice as
a reference to investigate changes in composition due to diet and genotype using analysis
of compositions of microbiomes with bias correction (ANCOMBC). Results showed that
in comparison to control chow-fed mice, the phylum Bacteroidota was significantly less
abundant (padj = 0.0351) and the phylum Firmicutes A was significantly more abundant
(padj = 0.0351) in control WTD-fed mice; and the phylum Deferribacterota was signifi-
cantly less abundant in chow-fed DKO mice (padj = 0.0010). Some genera showed similar
trends when control WTD-fed mice were compared with chow mice, regardless of their
genotype. The genera with lower abundances in WTD-fed mice were CAG-475, COE1,
Duncaniella, Lactobacillus, Muribaculum, and Rs-D84 (padj < 0.05), whereas Faecalibaculum and
Romboutsia were significantly more abundant (padj < 0.05) in these mice. None of the genera
significantly differed in abundance between the DKO groups and WT chow-fed groups.
All the phyla, families, and genera that were evaluated are listed in Table S3. To further
evaluate the contribution of the identified differences in the abundance of phyla, the ratios
of the abundances of Firmicutes and Bacteroidota (GTDB taxonomy; NCBI taxonomy name:
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Bacteroidetes) were calculated. There was a significant difference in this ratio among the four
groups (Kruskal–Wallis test, p = 0.0063), and post hoc testing (pairwise Wilcoxon tests with
Benjamini–Hochberg correction) revealed that the difference was due to diet, rather than
genotype (Chow+/+ vs. WTD+/+ padj = 0.026, Chow+/+ vs. WTDd/d padj = 0.035, Chowd/d

vs. WTD+/+ padj = 0.026, all remaining comparisons padj > 0.05, Figure 3C). Furthermore,
there was a significant correlation between the ratio and the circulating total cholesterol
concentration of the mice (F1,20 = 9.768, R2

adj = 0.3213, p = 0.0053; Figure 3D).

3.4. Functional Profiling

To assess the potential metagenomic effects of diet and genotype, we used PICRUSt2
to infer gene identity from the 16S data. After clr-transformation of the predicted KEGG
identifiers, we found an effect of diet (PERMANOVA, p = 4.3 × 10−4, R2 = 0.1459) but
not genotype (PERMANOVA, p = 0.1373, R2 = 0.0680), and no interaction between diet
and genotype (p = 0.6745, R2 = 0.0326). This finding is consistent with the findings of
the 16S analysis shown above. The effects of diet and genotype were further analyzed
using a linear regression model against the first six principal coordinates (PC1–PC6, which
explained 73.3% of the total variance), and we found that PC2 strongly correlated with diet
(p = 4.9 × 10−5) and that PC5 tended to be affected by diet (p = 0.0566) (Figure 4A).
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Figure 4. Functional profiling of the gut microbiome. Redundancy analysis plots of clr-transformed functional profiles
(estimated by PICRUSt2) are shown in panel (A); light colors refer to controls (d/d) and dark colors to double knockouts
(+/+); blue refers to chow-fed mice and orange to WTD-fed mice. Axis 1 (x-axis) explains 26.1% and Axis 2 (y-axis) 17.9% of
the total variance observed, respectively. Gardner-Altman (effect size) plots for Arginine-related KEGG IDs for WTD-fed
mice are shown in (B,C). Effect size (unpaired Hedges’ g) distribution is indicated by the grey area (estimated using
10,000 bootstrap iterations), and a 95% confidence interval is illustrated by a straight black line. Enrichment of Gene
Ontology (GO) terms (p < 0.05) for WTD-fed mice is shown in panel (D). Orange dots refer to terms enriched in knockout
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The effect of diet was further examined to identify differential abundant KEGG
identifiers in WTD- and chow-fed mice using ALDEx2. In total 107 KEGG identifiers
were upregulated and 77 downregulated in WTD-fed mice (padj < 0.05, estimated absolute
effect size > 0.8). Enrichment analysis of up- and downregulated KEGG identifiers against
the GO Biological Process database identified immune response (GO:0033006), regulation
of leukocyte degranulation (GO:0043300) and tyrosine phosphorylation of STAT protein
(GO:0007260) as upregulated GO-terms in WTD mice, whereas terms related to virus
response as downregulated (Figure S2).

To investigate the potential effects of genotype, independently of diet, data from the
mice fed the WTD were analyzed. Differential abundance analysis showed 34 upregulated
and 68 downregulated KEGG identifiers in the KO vs. the control mice (estimated absolute
effect size > 0.8). Enrichment analysis against the GO Biological Process database of
differentially abundant KEGG identifiers revealed (t)RNA-splicing to be upregulated
in the KO mice, whereas protein repair and nucleotide-related metabolic processes were
downregulated (p < 0.05; Figure 4D). Differentially abundant KEGG identifiers were further
annotated for KEGG pathways, and arginine-related pathways were selected to estimate
the size of the genotype effect. The KO mice showed a lower abundance of arginine-related
pathways (Hedge’s g = −1.3; Figure 4B,C).

3.5. Network Analysis of the Expression Profiles

Bacteria and their metabolic products do not act as single entities in the gut or body.
We aimed to identify differences in the interaction network between control and DKO mice,
regardless of the diet fed. To this end, we inferred a correlation network from composi-
tional data, using the top 100 KEGG identifiers with the highest variance according to the
PICRUSt2 predictions using SparCC, and significant edges were selected using Student’s
t-test (p < 0.05). The resulting networks for control and DKO mice showed no differences in
community modularity (cluster) (three in both groups), but the clustering between the two
genotypes significantly differed (adjusted Rand index = 0.349; two-tailed t-test p < 0.001).
Furthermore, in the control mice, three hub nodes (K00928: aspartate kinase, K01537: P-type
Ca2+ transporter type 2C, and K07095: uncharacterized protein) were identified, whereas
the DKO mouse network had no hub nodes. The global network properties (clustering
coefficient, modularity, mean path length, vertex, and edge connectivity) were similar for
the genotypes (p > 0.05), but the centrality of the two graphs, based on the shortest paths
(betweenness centrality), was found to significantly differ (p = 0.0351) (Figure 5A,B). On the
basis of the permutations (100,000 bootstraps), we constructed a differential network, and
significantly correlated node pairs were selected (adaptive Benjamini-Hochberg corrected
p < 0.01) that showed differentially associated KEGG identifiers for the control and DKO
mice. Interestingly, more KEGG identifiers were positively associated with DKO than
control mice (Figure 5C).
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Figure 5. Network analysis of functional profiles. SparCC networks of clr transformed KEGG terms (top 100 terms with
the highest variation) for both genotypes regardless of their feeding regime are shown in (A) for controls and (B) for
double knockout mice, respectively. Orange lines denote positive associations, blue lines negative associations; strength of
correlations is depicted by the thickness of lines. Estimated clusters of KEGG IDs are shown in blue, red, and yellow, and
hub nodes are shown in bold font (controls only). The differential network is shown in panel (C), with opposite associations
marked in blue (positive in controls and negative in double knockouts) and orange (negative in controls and positive in
double knockouts).

4. Discussion

In addition to the conventional risk factors for CAD, recent studies have identified
the contribution of gut bacteria to its etiology and pathogenesis [25,48–50]. Indeed, gut
dysbiosis appears to be involved in the pathogenesis of many metabolic diseases, including
obesity and cardiovascular diseases [18–22]. Furthermore, a diet rich in fat is known to alter
the gut microbiome, which to some extent mediates such a diet’s obesogenic effect [51],
and a recent study showed an association between the gut microbiota and the consumption
of an atherogenic diet by mice [52]. In this context, we bred Cyp17a1-deficient mice on an
atherogenic ApoE KO genetic background to study the role of this gene and a WTD on lipid
metabolism and obesity [16]. In our recent study, we showed that CYP17A1 is associated
with an obesity and atherosclerosis phenotype [16], but the influence of CYP17A1 on the
gut bacteria and the consequences of such interaction for obesity were unclear. Therefore,
in the present study, we aimed to determine the effect of diet and Cyp17a1-deficiency on
the gut microbiota and to relate the findings to the obesity phenotype in these mice.

WTD-feeding was associated with an increase in the number of bacteria belonging to
the phylum Firmicutes, independent of the Cyp17a1 genotype of the mice. This finding is
consistent with that of a very recent study that provided compelling evidence that Firmi-
cutes bacteria are enriched in atherosclerotic ApoE KO mice consuming a Western diet [52].
Furthermore, the larger number of Firmicutes was reported to be associated with a greater
generation of metabolic endotoxins, which cause chronic inflammation [53]. However,
further studies are required to identify a causal link between the abundance of key micro-
bial taxa and metabolic endpoints, which might involve gut microbial transplantation into
germ-free mice, an established method in mice and other species.

Pathway enrichment analysis revealed that Cyp17a1 KO mice have a lower abun-
dance of arginine-related pathways. The role of L-arginine in cardiovascular disease is
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well established; however, the identified effects are in the opposite direction to those
that might have been expected from a therapeutic point of view. Several studies have
shown a protective effect of L-arginine supplementation against atherosclerosis in animal
models of hypercholesterolemia, which is mediated via a nitric oxide (NO)-dependent
pathway [54–56]. However, Blum et al. recently reported that oral L-arginine therapy does
not improve NO bioavailability in patients with CAD and thus may not be beneficial [57].
Therefore, it is still unclear how the arginine pathway relates to cardiovascular disease. In
addition, McKnight et al. showed a beneficial role of L-arginine to reduce obesity, increase
muscle mass, and improve the metabolic profile of animals and humans [58]. Therefore,
the precise role of L-arginine remains uncertain, but it would be interesting to further
investigate the role of the L-arginine pathway in cardiovascular disease and obesity.

Network analysis of the expression data identified aspartate kinase as hub node.
Aspartate is a common metabolite in pathways that are altered during the development of
atherosclerosis [59]. Aspartate is a dicarboxylic amino acid that is involved in the inhibition
of fatty streak formation and the progression of atherogenesis [59,60], and has a protective
role. In addition, oral supplementation of aspartate is also beneficial for hypertension.
Studies conducted in a salt-induced rat model of hypertension demonstrated a reduction in
mean arterial pressure of 13 mmHg in aspartate-supplemented animals [61]. Interestingly,
the increase in the circulating aspartate concentration that follows its oral administration
is accompanied by a rise in L-arginine concentration. Therefore, our network analysis is
highly consistent with the results of the pathway enrichment analysis and implies a role
for Cyp17a1 in the regulation of the aspartate/L-arginine axis. However, further studies
are needed to clarify the role of the aspartate/L-arginine axis in obesity and body fat
distribution, and in particular, to determine whether oral supplementation with either
L-arginine or aspartate may reduce fat deposition in the Cyp17a1 KO mouse model.

5. Conclusions and Limitations

Taken together, we further validated the effect of the diet on body mass and composition
of their gut microbiome. Using pathway enrichment and network analyses, we could show
a substantial impact of Cyp17a1 genotype involving aspartate and L-arginine pathway.

The sample size of this study is considered limited because group sizes are rather
small (n = 5–6). In addition, from the 16S data, it is not possible to obtain functional profiles
(e.g., KEGG identifiers) directly, but one can infer them (as we did, using PICRUSt2) with
some uncertainty.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10061292/s1, Table S1. Summary table showing genotype, diet, age, bodyweight, fat,
and total cholesterol for each mouse. Table S2. Significant phyla and genera identified using LEfSe
(LDA > 2, padj < 0.05). Table S3. Phyla, families, and genera tested for differential abundance between
conditions. Effect of change (W) and adjusted p-values (q) are reported for each comparison.
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