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Abstract: The blockade of programmed cell death protein 1 (PD-1) as monotherapy has been widely
used in melanoma, but to identify melanoma patients with survival benefit from anti-PD-1 monotherapy
is still a big challenge. There is an urgent need for prognostic signatures improving the prediction of
immunotherapy responses of these patients. We analyzed transcriptomic data of pre-treatment tumor
biopsies and clinical profiles in advanced melanoma patients receiving only anti-PD-1 monotherapy
(nivolumab or pembrolizumab) from the PRJNA356761 and PRJEB23709 data sets as the training and
validation cohort, respectively. Weighted gene co-expression network analysis was used to identify the
key module, then least absolute shrinkage and selection operator was conducted to determine prognostic-
related long noncoding RNAs (lncRNAs). Subsequently, the differentially expressed genes between
different clusters were identified, and their function and pathway annotation were performed. In this
investigation, 92 melanoma patients with complete survival information (51 from training cohort and 41
from validation cohort) were included in our analyses. We initiallyidentified the key module (skyblue) by
weighted gene co-expression network analysis, and then identified a 15 predictive lncRNAs (AC010904.2,
LINC01126, AC012360.1, AC024933.1, AL442128.2, AC022211.4, AC022211.2, AC127496.5, NARF-AS1,
AP000919.3, AP005329.2, AC023983.1, AC023983.2, AC139100.1, and AC012615.4) signature in melanoma
patients treated with anti-PD-1 monotherapy by least absolute shrinkage and selection operator in the
training cohort. These results were then validated in the validation cohort. Finally, enrichment analysis
showed that the functions of differentially expressed genes between two consensus clusters were mainly
related to the immune process and treatment. In summary, the 15 lncRNAs signature is a novel effective
predictor for prognosis in advanced melanoma patients treated with anti-PD-1 monotherapy.

Keywords: lncRNA; advanced melanoma; predictor; survival benefit; immune checkpoint inhibitor;
PD-1; WGCNA; LASSO

1. Introduction

Melanoma is one of the most aggressive malignant skin tumors, and the incidence
has been increasing worldwide in recent decades [1,2]. Since the US Food and Drug
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Administration (FDA) and European Medicines Agency (EMA) approved a variety of
immune checkpoint inhibitors (ICI) therapies for advanced melanoma in 2011, the overall
mortality of advanced melanoma fell by 17.9% from 2013 to 2016 [3], but it is still at a very
high level [4].

During the last years, biomarkers for effectiveness of tumor immunotherapy, including
genomic instability as described by microsatellite instable (MSI) or tumor mutational bur-
den (TMB) status, and immune cell infiltration into tumors, have been defined [5]. As one of
the cancer types with high TMB and high immune cell infiltration, melanoma can be consid-
ered for immunotherapy [5]. Despite all efforts of early diagnosis, metastatic melanoma still
has a poor prognosis and remains a challenge for treating physicians. Existing ICI therapies
include the blockade of programmed cell death protein 1 (PD-1)/programmed death-
ligand 1 (PD-L1) and the cytotoxic T-lymphocyte antigen 4 (CTLA-4) pathway. Therapies
based on blockade of PD-1 in human melanoma achieved a success [6,7]; nivolumab (an
anti-PD-1 monoclonal antibody) [8], and pembrolizumab (another anti-PD-1 monoclonal
antibody) [9] monotherapy improve relapse/recurrence-free survival of stage III melanoma
patients. Moreover, anti-PD-1 monoclonal antibodies indicate superior overall/recurrence-
free survival versus anti-CTLA-4 agent for advanced melanoma [8,10,11]. Melanoma
patients treated with anti-PD-1 monotherapy have a longer progression-free survival (PFS)
compared to those treated with both strategies [12]. Further, anti-PD-1 monotherapy pro-
vides survival benefits in responding patients, but still many patients fail to respond [12].
Identifying the responsive population is a priority to optimize drug selection and improve
patient outcomes. Future research should focus on identifying additional biomarkers to
select patients who are most likely to benefit from certain immunotherapies.

Numerous long noncoding RNAs (lncRNAs) have been identified in human genomes [13]
and they are nowadays considered as prognosis signatures in various tumors [14,15].
However, there has been limited systematic characterization of these elements in melanoma,
especially in melanoma patients treated with anti-PD-1 monotherapy. Here, we identified
a 15 lncRNAs signature in advanced melanoma by weighted gene co-expression network
analysis (WGCNA) and logistic least absolute shrinkage and selection operator (LASSO) in
the training cohort (PRJNA356761) and validated it in the validation cohort (PRJEB23709) to
determine and predict the response of melanoma patients receiving anti-PD-1 monotherapy.

2. Materials and Methods
2.1. Data Source and Processing

The sequencing data of PRJNA356761 (training cohort) were obtained from https:
//github.com/riazn/bms038_analysis (accessed on 1 December 2020) [16]. The transcrip-
tomic profiling of PRJEB23709 [12] (validation cohort) were obtained from the European
Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI) database [17]
(https://www.ebi.ac.uk/ena/data/view/PRJEB23709 (accessed on 1 December 2020)).
Raw RNA-seq reads were aligned to the reference genome (UCSC hg38 with annota-
tions from GRCh38.p13) using STAR [18] (v.2.5.3a). Gene expression was subsequently
quantified using RSEM [19] (v.1.3.1). The lncRNA annotations were performed by gen-
code.v34.annotation (https://www.gencodegenes.org/human/ (accessed on 1 Feburary
2021)). The inclusion criteria were as follows: (1) advanced melanoma; (2) only anti-PD-1
monotherapy (nivolumab or pembrolizumab); (3) pre-treatment tumor biopsies. Moreover,
only the inlier samples that were identified by hierarchical cluster analysis via the hclust
function in WGCNA were included. The detailed process is shown in Figure 1.

https://github.com/riazn/bms038_analysis
https://github.com/riazn/bms038_analysis
https://www.ebi.ac.uk/ena/data/view/PRJEB23709
https://www.gencodegenes.org/human/
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Figure 1. The overall workflow of this study.

2.2. Module Construction

After crossing all lncRNAs in the two cohorts, unsigned co-expression modules
were constructed in the training cohort using the WGCNA algorithms in R as described
previously [20]. We used one-step network construction method to identify co-expression
modules through the blockwiseModules function in the WGCNA package [21]. Before co-
expression network construction, the flashClust tool in R was utilized to perform hierarchical
clustering analysis of the samples with the appropriate threshold value to detect and
eliminate the outliers. According to scale-free topology criterion, a soft-thresholding power
β (the power values ranged from 1 to 20), which was calculated by the pickSoftThreshold
function of the WGCNA, was chosen to build an adjacency matrix [21]. In our study, the
power of 6 was used for this network.

Then, the topological overlap matrix was constructed based on the adjacency matrix.
A dissimilarity matrix was used to detect gene modules (gene sets with high topological
overlap) through a dynamic tree cutting algorithm [22,23]. To obtain moderately sized
modules, the minimum number of genes was set at 30 and a cutline was chosen to merge
modules with similar expression patterns. To identify the relationships between modules
and clinical traits, we calculated the correlation between module eigengenes and clinical
trait and searched for the most significant associations. The module eigengenes was
calculated by the first principal component, which were considered as a representative of
the expression patterns of module genes [24]. For each module, we defined the module
membership as the correlation of gene expression profile with module eigengene and
the gene significance as the absolute value of the correlation between gene and clinical
traits. In this study, genes with high module membership in a module were assigned to the
module and the module with high gene significance and p value < 0.05 was considered
to be highly related to clinical traits. Moreover, after introducing validation cohort, we
used network-based statistics, which generated a composite statistic value (Zsummary) using
a permutation test to measure the strength of lncRNAs module and expression module
preservation, to assess whether the density and connectivity patterns of lncRNAs were also
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preserved [25]. Zsummary > 5 implies strong evidence for module preservation [26,27]. Since
the Zsummary statistic bias towards a module with a large size [25], a rank-based statistic
medianRank, calculated from observed preservation values and conducted no permutation
test against background gene modules, was used to measure the relative preservation
irrespective of module size [28].

2.3. Identifcation of lncRNAs Signature

Although which module was most relevant to the predictor of melanoma can be
identified after WGCNA, we further applied a novel, modern statistical shrinkage technique
to examine the association between lncRNAs and the prognosis of melanoma to establish
prognostic lncRNAs signature. The logistic LASSO regression model is a shrinkage method
that can actively select from a large and potentially multicollinear set of variables in
the regression, resulting in a more relevant and interpretable set of predictors [29]. One
interesting property of LASSO is that the estimates of the regression coefficients are sparse,
which means that many components are exactly 0 [30]. We utilized the glmnet package
(version 2.0–16) to fit the logistic LASSO regression.

2.4. Development and Validation of the lncRNAs Signature

After the identification of the predictive module, we further clustered melanoma
population into different consensus clusters though an optimum cutoff value identified by
survivalROC package (version 1.0.3). Ultimately, the lncRNAs signature can distinguish
different consensus clusters, and the survival package was applied to perform Kaplan–
Meier analysis with the log-rank test to analyze the overall survival (OS) and PFS in both
training and validation cohorts. Moreover, we used a time-dependent receiver operating
characteristic (ROC) curve to assess the survival prediction, and the area under the ROC
curve (AUC) value was computed with the ROCR package (version 1.0.–7) to measure
prognostic or predictive accuracy, as described previously [31]. In addition, we calculated
the response rates of anti-PD-1 therapy based on the lncRNAs signature in both, training
and validation cohort.

2.5. Functional Analysis

Subsequently, the differentially expressed genes (DEGs) between different consensus
clusters distinguished by the lncRNAs signature were identified by limma package [32]
(version 3.28.14) with the cutoff of p < 0. Functional analysis were performed using
the clusterProfiler package [33] (version 3.18.0) and msigdbr package [34] (version 7.2.1)
to expand our understanding of those lncRNAs signature-related functions and their
coordinated regulatory networks.

2.6. Immune Cell Enrichment Analysis by xCell

Immune cell enrichment analysis was conducted by xCell function [35] in immunede-
conv package (version 2.0.3) [36].

3. Results
3.1. Patient Characteristics

In total, 100 tumor biopsies from melanoma patients treated with anti-PD-1 monother-
apy (nivolumab) were assessed by whole-exome sequencing in PRJNA356761, among
them, 49 biopsies were pre-therapy [16]. PRJEB23709 included 158 tumor biopsies from
120 melanoma patients treated with anti-PD-1 monotherapy (nivolumab or pembrolizumab)
or combined anti-PD-1 and anti-CTLA-4 (nivolumab or pembrolizumab combined with
ipilimumab) [12]. In our study, we included 51 melanoma patients form PRJNA356761 and
41 melanoma patients form PRJEB23709 (Figure 1). The patient characteristics are listed
in Table 1. Responders were defined as patients with a Response Evaluation Criteria in
Solid Tumors (RECIST) response [37] of complete response (CR), partial response (PR), or
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stable disease (SD) of greater than 6 months with no progression, and non-responders as
progressive disease (PD) or SD for less than or equal to 6 months before disease progression.

Table 1. Characteristics of patients in the training and validation cohorts.

Features Training Cohort
PRJNA356761 (N = 51)

Validation Cohort
PRJEB23709 (N = 41)

Gender NA
Male 26 (63%)

Female 15 (37%)
Age NA
≥60 26 (63%)
<60 15 (37%)

RECIST Response
CR 3 (6%) 4 (10%)
PR 7 (14%) 15 (36%)
SD 16 (31%) 6 (15%)
PD 23 (45%) 16 (39%)
NE 2 (4%) 0 (0%)

Survival time
PFS (days) 111 (52~288) 271 (80~891)
OS (days) 484 (220~836) 607 (169~1085)

Progressed
Yes 26 (51%) 29 (71%)
No 25 (49%) 12 (29%)

Status
Alive 17 (33%) 17 (41%)
Dead 34 (67%) 24 (59%)

Note: Data were shown as N (%) or median (Q1~Q3). RECIST: Response Evaluation Criteria in Solid Tumors, CR:
complete response, PR: partial response, SD: stable disease, PD: progressive disease, NE: Not Evaluated, PFS:
progression-free survival, OS: overall survival, and NA: Not applicable.

3.2. WGCNA and Key Module Identification

We both obtained data of 16,899 lncRNAs from the training and validation cohorts, by
transcriptome analysis, and 4653 lncRNAs after the intersection were included to construct
co-expression networks by WGCNA. To exclude the outliers, we chose 85 for the cut
tree height for the samples (Figure 2A), and 48 samples were included for subsequent
analysis. Then we identified the soft-thresholding power β of six to construct a scale-
free network (Figure 2B,C). As a result, 12 co-expression modules were identified by
gathering similarly expressed lncRNAs (Figure 3A). Interactions between 12 modules
were subsequently analyzed. The heatmap demonstrated the topological overlap matrix
among all of 4653 lncRNAs in our study (Figure 3B), indicating that each module showed
independent validation to each other. Then, the correlations between module eigengene,
and clinical traits were discovered. Moreover, after introducing the validation cohort, we
plotted the preservation median rank and Zsummary for the modules as a function of module
size. The 12 modules (gold, yellow, pink, turquoise, magenta, green, lightgreen, white,
darkred, skyblue, skyblue3, and lightsteelblue1) showed strong evidence of preservation
(Zsummary > 5) (Figure S1). The module eigengenes in the skyblue module showed a
higher correlation with PFS status, OS status, OS, PFS, and responder (RPFS status

2 = −0.43,
p < 0.002; ROS status

2 = −0.27, p < 0.05; ROS
2 = 0.24, p < 0.1; RPFS

2 = 0.48, p < 0.0001;
Rresponder

2 = 0.29, p = 0.04; respectively) (Figure 3C). We therefore chose the skyblue
module for further analyses.
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Figure 2. Sample clustering dendrogram and determination of soft-thresholding power in weighted gene co-expression
network analysis (WGCNA). (A) Sample clustering dendrogram to detect outliers. (B) Analysis of the scale-free fit index for
various soft-thresholding power. (C) Analysis of the mean connectivity for various soft-thresholding powers.

3.3. Identification of lncRNAs Signature

There were 63 lncRNAs in the skyblue prognosis module we identified (Table S1). Though
the logistic LASSO regression model, we shrank to 15 lncRNAs (AC010904.2, LINC01126,
AC012360.1, AC024933.1, AL442128.2, AC022211.4, AC022211.2, AC127496.5, NARF-AS1,
AP000919.3, AP005329.2, AC023983.1, AC023983.2, AC139100.1, and AC012615.4) to regard as
lncRNAs signature (Table 2).

3.4. Development and Validation of the lncRNAs Signature

On the basis of the time-dependent ROC curve analysis, the optimal cutoff value that
could be used for the 15 lncRNAs signature to stratify melanoma patients treated with
anti-PD-1 monotherapy into the high- or low-risk group was determined to be 0.39 in
the training cohort (Figure 4A–C). All 51 patients in the training cohort were segregated
into the high-risk group (n = 30) and the low-risk group (n = 21), and the low-risk group
exhibited significantly better OS than the high-risk group (hazard ratio (HR) = 0.2855, 95%
confidence interval (CI) = 0.1302~0.6259, p = 0.0010, Figure 5A). For the low-risk group, the
median OS was not reached, whereas the median OS was 12.5 months (95% CI = 7.46~21.2)
for the high-risk group (Figure 5A). Regarding PFS, all 51 patients in the training cohort
were similarly segregated into the low- and high-risk groups, and the low-risk group was
correlated with significantly favorable PFS (HR = 0.2805, 95% CI = 0.1427~0.5514, p = 0.0001,
Figure 5B). For the low-risk group, the median PFS was 10.95 months (95% CI = 7.20~NA),
whereas the median PFS was 1.87 months (95% CI = 1.71~5.36) for the high-risk group
(Figure 5B).
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Figure 3. Identification of key module related to survival benefit (progression-free survival (PFS) and overall survival (OS)) by
WGCNA. (A) Clustering dendrogram of long noncoding RNAs (lncRNAs) with dissimilarity based on topological overlap
together and assigned module colors. (B) The heatmap plot of visualizing all modules. (C) The module-trait heatmap plot.

Figure 4. Characteristics of the 15 lncRNAs signature. (A) The risk score of each melanoma patient in the training cohort.
(B) PFS and survival status of patients in the training cohort. (C) Heat map of gene expression profiles of melanoma patients
in the training cohort. (D) The risk score of each melanoma patient in the validation cohort. (E) PFS and survival status of
patients in the validation cohort. (F) Heat map of gene expression profiles of melanoma patients in the validation cohort.
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Table 2. Details of 15 lncRNAs signature.

ID Name Coefficient

ENSG00000272002.1 AC010904.2 −5.68483
ENSG00000279873.2 LINC01126 −2.91046
ENSG00000235319.1 AC012360.1 −3.83868
ENSG00000272656.1 AC024933.1 −5.09725
ENSG00000277767.1 AL442128.2 −3.06533
ENSG00000265800.1 AC022211.4 −5.29139
ENSG00000263786.1 AC022211.2 −5.69648
ENSG00000262873.2 AC127496.5 −3.43136
ENSG00000266445.1 NARF-AS1 −5.70092
ENSG00000272625.1 AP000919.3 −5.27859
ENSG00000265399.1 AP005329.2 −5.76167
ENSG00000264365.1 AC023983.1 −3.39892
ENSG00000273321.1 AC023983.2 −4.87733
ENSG00000267251.2 AC139100.1 −5.64345
ENSG00000267141.1 AC012615.4 −3.59529

Figure 5. The survival curves of OS and PFS. (A) The survival curve of OS in the training cohort. (B) The survival curve
of PFS in the training cohort. (C) The survival curve of OS in the validation cohort. (D) The survival curve of PFS in the
validation cohort.

To examine the robust and realistic application of the lncRNAs signature, the perfor-
mance of the 15 lncRNAs signature was validated in the validation cohort (Figure 4D–F).
The developed 15 lncRNAs signature could actively predict OS and PFS in melanoma
patients treated with anti-PD-1 monotherapy in the validation cohort. The lncRNAs
signature significantly stratified patients into low- and high-risk groups in terms of OS;
more specifically, all 41 patients were segregated into the low-risk group (n = 22) and the
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high-risk group (n = 19) and showed significantly different OS rates (HR = 0.4634, 95%
CI = 0.2054~1.045, p = 0.0580, Figure 5C) according to the optimum cutoff point (−0.321)
acquired from the training cohort (Figure 4D). For the low-risk group, the median OS
was not reached, whereas the median OS was 18.10 months (95% CI = 5.10~NA) for the
high-risk group (Figure 5C). Concerning PFS, the low-risk group tended to favor favor-
able PFS (HR = 0.3994, 95% CI = 0.1908~0.8361, p = 0.0120, Figure 5D). For the low-risk
group, the median PFS was 19.33 months (95% CI = 6.28~NA), whereas the median PFS
was 2.72 months (95% CI = 1.91~24.80) for the high-risk group (Figure 5D). Overall, the
15 lncRNAs signature appears to independently estimate OS and PFS in melanoma patients
treated with anti-PD-1 monotherapy well.

Time-dependent ROC curve analysis was performed to compare the sensitivity and
specificity of the prediction of OS and PFS with the 15 lncRNAs signature in the training
and validation cohorts. AUC values at 12, 18, and 24 months obtained from ROC curve
analysis were used to assess the prognostic accuracy.

In the training cohort, the 15 lncRNAs signature reached 12-month AUC values of
0.636, 18-month AUC values of 0.651, and 24-month AUC values of 0.746 for OS (Figure
S2A). The validation cohort was characterized by 12-month AUC values of 0.527, 18-month
AUC values of 0.485, and 24-month AUC values of 0.490 for OS (Figure S2B). However,
regarding PFS, both, the training and the validation cohort had good AUC values, namely
12-month AUC values of 0.742, and 0.646, 18-month AUC values of 0.745 and 0.601, and
24-month AUC values of 0.868 and 0.579, respectively (Figure 6).

Figure 6. Time-dependent receiver operating characteristic (ROC) curves for PFS predicted with the 15 lncRNAs signature.
(A) Time-dependent ROC curves for PFS predicted with the 15 lncRNAs signature in the training cohort. (B) Time-dependent
ROC curves for PFS predicted with the 15 lncRNAs signature in the validation cohort.

3.5. Response Rates Based on the lncRNAs Signature

Among advanced melanoma patients treated with anti-PD-1 monotherapy, there
was a strong association between best overall response and the identified 15 lncRNAs
signature. In the training cohort, 2 (7%) of 30 patients in the high-risk group versus 8
(38%) of 21 patients in the low-risk group had an objective response (CR or PR); CR were
achieved by 0 (0%) of 30 patients in the high-risk group versus 3 (14%) of 21 patients in the
low-risk group; 11 (37%) of 30 patients in the high-risk group had disease control (CR, PR,
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or SD) as their best overall response, compared to 15 (71%) of 21 patients in the low-risk
group (p = 0.0236, Figure 7).

Figure 7. Response rates in the high-risk (high) versus the low-risk (low) groups in advanced melanoma patients treated
with anti- PD-1 monotherapy based on the 15 lncRNAs signature. (A) Response rates based on the 15 lncRNAs signature in
advanced melanoma patients treated with anti-PD-1 monotherapy in the training cohort. (B) Response rates based on the
15 lncRNAs signature in advanced melanoma patients treated with anti-PD-1 monotherapy in the validation cohort. CR:
complete response; PR: partial response; SD: stable disease; PD: progressive disease.

In the validation cohort, 6 (32%) of 19 patients in the high-risk group versus 13 (59%)
of 22 patients in the low-risk group had an objective response; CR were achieved by 1 (5%)
of 19 patients in the high-risk group versus 3 (14%) of 22 patients in the low-risk group;
8 (42%) of 19 patients in the high-risk group had best overall response compared to 17 (77%)
of 22 patients in the low-risk group (p = 0.0476, Figure 7).

3.6. Functional Analysis

We identified 4709 differentially expressed genes (DEGs) in the high-risk versus low-
risk group, including 2593 up-regulated and 2116 down-regulated DEGs (Table S2). The
Molecular Signatures Database (MSigDB) gene sets are divided into nine major collections:
H (hallmark gene sets), C1 (positional gene sets), C2 (curated gene sets), C3 (regulatory
target gene sets), C4 (computational gene sets), C5 (ontology gene sets), C6 (oncogenic
signature gene sets), C7 (immunologic signature gene sets), and C8 (cell type signature
gene sets) [34,38]. According to MSigDB database (version 7.2) which was updated in
September 2020, further enrichment analysis showed that these 4709 DEGs were enriched
to IL2-STAT5 signaling, inflammatory response, and xenobiotic metabolism in H, MAPK8
targets, jaeger metastasis dn, and onder cdh1 targets 2 dn in C2, miR183-3p, HES2, THAP1,
and miR1277-5p in C3, organic acid metabolic process, DNA packaging complex, signaling
receptor binding, defense response, and molecular transducer activity in C5, P53, BMI1,
KRAS, ALK, and NFE2L2 in C6, B cell, CD8+ T cell, and CD4+ T cell in C7, and hay bone
marrow stromal, aizarani liver C14 hepatocytes 2, aizarani liver C11 hepatocytes 1, muraro
pancreas acinar cell, and muraro pancreas ductal cell in C8 (Figure 8, Table S3).
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Figure 8. Functional enrichment of DEGs.

3.7. Immune Cell Enrichment Analysis

A compendium of 39 cell types, comprising multiple adaptive and innate immune
cells derived from thousands of expression profiles, was identified in the training cohort
with xCell, a novel method that integrates the advantages of gene set enrichment with
deconvolution approaches [35]. We identified CD4+ Th1 cells and CD8+ naïve T cells to be
significantly altered (p = 0.0103 and 0.0436, respectively; Table S4).

4. Discussion

Over the past decades, with a deeper understanding of the pathophysiology and
the manifold roles of the immune system in cancer management [39], ICI have made
their way into clinics as single treatment or in multimodal settings for several tumor
entities [40–42]. While these advances in the treatment of metastatic melanoma have
improved responses and survival [43], still the majority of patients do not respond properly
or respond with side effects to ICI. Although the regimens of ICI-based immunotherapy
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have been continuously adjusted and optimized [44–46], patients with melanoma still have
heterogeneous ICI response, especially to anti-PD-1 monotherapy. This requires screening
for the most sensitive subgroups. An early assessment, especially at the pre-treatment stage,
for anti-PD-1 monotherapy responses by predictive signature is crucial for the selection of
patients who are most likely to benefit from anti-PD-1 monotherapy. Hence, in this study,
we combined WGCNA and LASSO to discover 15 lncRNAs predictor for patients with
advanced melanoma, which can also reflect the anti-PD-1 monotherapy response, and then
initially explored the potential mechanisms.

Hence, in this study, we succeeded to identify a 15 lncRNAs predictor to response to
anti-PD-1 monotherapy for patients with melanoma. A total of 15 lncRNAs (AC010904.2,
LINC01126, AC012360.1, AC024933.1, AL442128.2, AC022211.4, AC022211.2, AC127496.5,
NARF-AS1, AP000919.3, AP005329.2, AC023983.1, AC023983.2, AC139100.1, and AC012615.4)
signature was identified by computational approach with datasets of a training and a validation
cohort. All data of patients included in our analyses were based on anti-PD-1 monotherapy.

The survival curves indicate that the identified 15 lncRNAs signature distinguishes
patients who are most likely to have survival benefit of anti-PD-1 monotherapy, regardless
of PFS and OS. However, the signature was stronger for prediction of PFS when being
validated. This is of high value, since OS might be generally influenced by non-disease
specific events.

Furthermore, we used the DEGs between two consensus clusters as a starting point
to get first hints why there is a survival benefit between the two clusters distinguished
by the 15 lncRNAs signature by using MSigDB, which is has been seldomly performed
in previous studies [47,48]. We found several immune-related cells, processes, and path-
ways being affected. Recent studies showed that IL2-STAT5 signaling pathway is closely
related to immunity [49,50]. The activation of the MAPK8 in melanoma could trigger the
massive functional natural killer cells infiltration [51]. Moreover, the enriched C2 con-
tents jaeger metastasis dn is related to the molecular mechanisms of malignant melanoma
progression and metastasis [52], and onder cdh1 targets 2 dn contributes to metastatic
dissemination [53]. In C7, we also identified several immune-related cells, such as B cell,
CD8+ T cell, and CD4+ T cell. Additionally, the identified pathways were also enriched
for PD-L1/PD-1 axis events, which is exactly the target of anti-PD-1 therapy. In terms
of adaptive immune response, CD4+ T cells are regarded as important factors regulating
immune balance [54]. In the xcell analysis, we also highlighted CD4+ T cell and CD8+ T cell,
which is consistent with functional analysis. T cells are prominent TILs in melanoma [55].
CD4+ T cells are associated with anti-tumor responses in melanoma [56–58]; CD8+ T cells
also play a role herein [59]. Further, different CD8+ T cell subpopulations have predictive
value in melanoma [60].

Moreover, similar to previous studies [61–63], we also succeeded with the identified 15
lncRNAs signature to stratify patients in the high- and low-risk groups. The high-risk group
had a lower best overall response compared to the low-risk group, both in the training and
in the validation cohort (Figure 7), indicating the robustness of the 15 lncRNAs signature.
Therefore, one can hypothesize that the identified 15 lncRNAs signature might affect the
survival benefit of advanced melanoma patients treated with anti-PD-1 monotherapy
through generally immune-related cells, processes, and pathways.

The lncRNAs we identified may provide new ideas and insights for predicting the
survival benefit of melanoma patients who receive anti-PD-1 monotherapy. However, one
has to consider that our analyses are based on the publicly available dataset. Thus, we
could not obtain all the clinic-pathological characteristics for each patient. Furthermore,
we only included data of pre-treatment tumor biopsies from melanoma patients treated
with anti-PD-1 monotherapy.. Although we used two completely independent data as
the training cohort and the validation cohort, anti-PD-1 monotherapy in the two data is
not exactly consistent. Moreover, since the population we included in this retrospective
study was melanoma patients receiving anti-PD-1 monotherapy with complete follow-up
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data, our sample size was relatively small. Therefore, further testing and verifying of the
identified 15 lncRNAs signature in prospective studies will be necessary.

5. Conclusions

However, we succeeded to characterize lncRNA expression profiles to identify partic-
ularly PFS benefit of melanoma patients receiving anti-PD-1 monotherapyOur analyses
provide also hints that this signature affects the response of melanoma patients treated
with anti-PD-1 monotherapy by influencing immune-related pathways. The 15 lncRNAs
signature is therefore a novel predictor for survival in melanoma patients treated with
anti-PD-1 monotherapy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10050977/s1, Figure S1: The median rank and Zsummary statistics of each module
preservation, Figure S2: Time-dependent ROC curves for OS predicted with the 15 lncRNAs signature.
(A) Time-dependent ROC curves for OS predicted with the 15 lncRNAs signature in the training
cohort. (B) Time-dependent ROC curves for OS predicted with the 15 lncRNAs signature in the
validation cohort. Table S1: Details of lncRNAs in the skyblue module, Table S2: Details of the DEGs,
Table S3: Details of the DEGs function annotation analysis, Table S4: Immune cell enrichment analysis
by xCell.
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