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Abstract: Due to the redundancy of the genetic code most amino acids are encoded by multiple
synonymous codons. It has been proposed that a biased frequency of synonymous codons can affect
the function of proteins by modulating distinct steps in transcription, translation and folding. Here,
we use two similar prototype K* channels as model systems to examine whether codon choice has an
impact on protein sorting. By monitoring transient expression of GFP-tagged channels in mammalian
cells, we find that one of the two channels is sorted in a codon and cell cycle-dependent manner
either to mitochondria or the secretory pathway. The data establish that a gene with either rare or
frequent codons serves, together with a cell-state-dependent decoding mechanism, as a secondary
code for sorting intracellular membrane proteins.

Keywords: codon usage; effect of synonymous codon exchange; membrane protein sorting; dual sorting

1. Introduction

Each amino acid in a protein is on average encoded by about three synonymous
codons. This provides a quasi-infinite sequence space of mRNA molecules and the po-
tential of transmitting much more information than required for only coding the primary
amino acid sequence. In this context it is well established that synonymous codons are
used with distinct frequencies in different genomes [1] and that mRNAs encoding the
same polypeptide with a codon bias can dramatically alter the amount of protein expres-
sion [2] including membrane proteins [3]. This phenomenon is already successfully used in
biotechnology to increase protein production; similar codon-optimization strategies have
also been proposed as therapeutic tools for tuning the cellular production of recombinant
protein drugs, in mRNA therapies as well as in the production of DNA /RNA vaccines [4,5].
Such codon optimization strategies in medical therapy are however confounded by the fact
that synonymous codons cannot be exchanged in all cases without affecting protein struc-
ture and function. There is increasing experimental evidence for a much more complex role
of codon choice in that synonymous codons, for example, can alter mRNA splicing as well
as mRNA folding and stability [6,7]. Codon choice is also known to regulate, together with
the abundancy of the corresponding tRNAs, the velocity of protein synthesis, which can
affect the proper folding of a nascent protein [4,8—-12]. There are also isolated reports in
which codon changes resulted in altered functional properties of proteins [13,14] and in
some cases synonymous mutations have even been linked to diseases [4].

For a safe in vivo application of codon optimization strategies, it is important to better
understand the potential impacts of codon choice on the cellular function of proteins. In this
respect there is currently little information on the influence of codon usage on protein
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sorting in cells. Such an impact is not unrealistic considering that a biased frequency of
synonymous codons can affect translation kinetics and co-translational protein folding and
that both of these parameters can in turn alter protein sorting [15,16].

A good system for studying protein sorting of membrane proteins is two structurally
similar algal viral-encoded K* channels that have the structural hallmarks of eukaryotic
K* channel pores [17]. Consequently, they can utilize the protein sorting machinery of
mammalian cells and hence they are able to provide an unbiased insight into this process
independent of cellular coevolution. In this context, it was interesting that one of these
channels, Kcv, is co-translationally sorted at the translocon into the ER [18], where it reaches
the plasma membrane via the secretory pathway [19]. The second channel, Kesv, is sorted
in a typical post-translational manner. It reaches its destination in the inner membrane
of the mitochondria via the canonical TIM/TOM translocases without a mitochondrial
targeting motif [20,21]. The decision between these two distinct trafficking pathways is
made by the level of affinity of the nascent proteins for the signal recognition particle (SRP).
While Kcv has a high binding affinity for the SRP, the other channel, Kesv, does not [22].

Additional studies have shown that sorting of the Kesv channel could be redirected by
mutations in the second transmembrane domain of the channel; that is, the protein was no
longer directed to the mitochondria but to the secretory pathway [20]. This redirection of
mutated Kesv proteins occurs because the proteins become a substrate for the guided entry
of the tail-anchored protein (GET) sorting pathway [22]. However, extensive mutational
studies in the Kesv second transmembrane domain were not able to definitely identify an
amino acid motif that was responsible for the difference in affinity for the GET factors [23].

To test the impact of codon choices on the sorting of the two virus-encoded K* chan-
nels, we synthesized genes, which were codon-optimized for mammalian cells. For this
purpose, the guanosine—cytosine (GC) content was increased and the majority of infre-
quently used codons were replaced by synonymous frequently used ones. The data show
that co-translational sorting of the Kcv channel was insensitive to codon bias in the gene.
The second channel Kesv, however, was sorted in mammalian cells in a codon-sensitive
manner either to the mitochondria, the secretory pathway or even to both destinations
in the same cell. The data support the hypothesis that codon bias in a gene can serve in
combination with the primary amino acid sequence and with other cellular factors as a
secondary code for sorting membrane proteins into one or the other pathway.

2. Materials and Methods
2.1. Codon-Modified DNA Variants of Channels

All codon-optimized DNA variants of Kesv and Kcv were obtained from GeneArt®
gene synthesis (ThermoFisher Scientific™, Waltham, MA, USA). The DNA sequence of
the randomized Kesv gene (Kesvyan) was generated using a Matlab script that randomly
assigns to each amino acid of any primary sequence one of the codons coding for that amino
acid from the corresponding group of redundant codons. As sorting of small membrane
proteins is very sensitive to the structure of the nascent N-terminal polypeptide chain,
which emerges from the ribosome [14] and since an N-terminal GFP tag is more likely to
corrupt protein sorting than a C-terminal tag [24], all channel variants were exclusively
tagged on the C-terminus via a linker to eGFP and inserted in a peGFP-N2 vector. For op-
togenetic studies the channels were inserted in a pGL4-C120-Fluc vector (as described
in [25]) in exchange for the firefly luciferase. Codon sequences of the channel constructs,
linkers and eGFP are shown in Supplement Figure S2. All experiments were performed
with linker 1 (Figures 1-5 and Figure 6A), linker 2 was used for data in Figure 6B,C.

2.2. Mutagenesis

To create channel chimeras, a chimeric PCR was performed [26]. For chimeras in which
entire DNA sequence segments were exchanged, two or three desired gene fragments
were initially amplified from the corresponding DNA templates. In order to ensure the
fusion of the gene fragments, overhangs were created over the primers, which were
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complementary to the adjacent gene fragment. Interfaces for restriction enzymes were
introduced via the overhangs of the outermost fragments in order to subsequently enable
ligation with the vector. The gene fragments were then fused together with a second
PCR. The Phusion DNA polymerase (ThermoFisher Scientific™; Waltham, MA, USA) was
used for all described PCR approaches according to manufacturer specifications. All PCR
products were electrophoretically separated in a 1-2% agarose gel in 1 x TAE (Tris, acetate,
EDTA) and purified using the Zymoclean™ Gel DNA recovery Kit (Zymo Research;
Irvine, CA, USA) according to the manufacturer’s specifications. The DNA concentrations
were photometrically determined using the Nano-Drop® ND-1000 spectrometer (PeQlab
Biotechnologie GmbH; Erlangen, Germany).

After fusion of gene fragments via PCR and subsequent purification, both the empty
peGFP-N2 and the final PCR products were first treated with the respective Fast Digest®
restriction enzymes (ThermoFisher Scientific TM; Waltham, MA, USA) according to the
manufacturer’s specifications. In the next step, the PCR product was ligated into the cleaved
vector using T4 ligase (ThermoFisher Scientific™; Waltham, MA, USA) according to the
manufacturer’s specifications. The full ligation product was used for the transformation of
competent E. coli DH5« cells by heat shock. Finally, the transformed E. coli were plated on
LB kanamycin plates and incubated overnight at 37 °C.

The colonies were used to inoculate LB medium liquid cultures with 100 pg/mL
kanamycin. On the following day, the plasmid DNA was purified using the ZR Plasmid
Miniprep™ Classic Kit (Zymo Research; Irvine, CA, USA) and sequenced (Eurofins MWG
Operon GmbH Ebersberg, Germany). The sequencing was controlled using SnapGene
software (GSL Biotech; Chicago, IL, USA).

2.3. Heterologous Expression

Localization of the eGFP tagged channels was performed in human embryonic kidney
(HEK293) cells. In addition, CHO, HeLa, HaCaT and COS-7 cells were used. All cell
lines were cultured at 37 °C and 5% CO; in T25 cell culture flasks in an incubator with
the appropriate culture media (see below). For imaging, cells were placed 48 h prior
to examination on sterilized glass coverslips (No. 1.0; Karl Hecht GmbH & Co. KG,
Sondheim, Germany) with a @ = 25 mm. The cells were incubated for ~24 h at 37 °C with
5% CO;,. As soon as the cells reached a confluence of 60%, they were transfected with the
appropriate plasmids. GeneJuice (Novagen, EMD Millipore Corp.; Billerica, MA, USA) or
TurboFect™ (Life Technologies GmbH; Darmstadt, Germany) were used as transfection
reagents according to manufacturer specifications. Unless otherwise stated, 1 pug of plasmid
DNA of the corresponding construct was always used or, in the case of co-transfection,
0.5 pg of each of the desired constructs.

For experiments on temperature dependence, a media change with Leibovitz (1x) L-
15 medium was performed 4 h post transfection after which cells were incubated overnight
at a desired temperature without additional CO,. In all experiments where cells were
incubated at different test temperatures, a control batch was treated in the same manner
and incubated at 37 °C.

In experiments on the influence of the metabolic status on protein sorting, a change of
medium to the respective test medium with a different content of sugars (4.5g/Lor 1 g/L
glucose) was performed 4 h after transfection. Cells were then incubated overnight at
37 °C with 5% COx. In each experiment on the influence of the metabolic status on protein
sorting, a control in HEK293 standard medium was conducted with the same treatment.

For illumination of cells in which the channel protein was expressed under control of
the light-sensitive EL222 system, a custom-made illumination setup was designed with
six 450 nm LEDs (Winger WEPRB3-51 Power LED Star, 3W, Nettetal, Germany) arranged
on a plate to fit under a standard 6-well cell culture plate. For tuning illumination times,
the LEDs were attached to a timer that allowed application of light pulses of defined length
on a second to minute timescale. For the experiments shown here, pulsed blue light of
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120 ©E was applied for 16 h prior to imaging. Light pulses were either 10 s or 20 s long
followed by 60 s of darkness.

2.4. Cell Culture Media

HEK?293, COS-7 and HeLLa: DMEM/F12-Medium with Glutamine (Biochrom AG,
Berlin, Germany) plus 10% fetal calf serum (FCS) und 1% Penicillin/Streptomycin. Ha-
CaT: DMEM-Medium with 4.5 g/L glucose plus 2 mM Glutamine (Biochrom AG, Berlin,
Germany), 10% FCS and 1% Penicillin/Streptomycin.

2.5. Confocal Laser Scanning Microscopy (CLSM)

Initial microscopic screening and quantitative examination of protein sorting in cul-
tured mammalian cell lines was performed on a confocal Leica TCS SP5 II microscope
(Leica GmbH, Heidelberg, Germany). Unless stated otherwise, cells were kept with 500 uL
PBS medium (8 g/L sodium chloride, 0.2 g/L potassium chloride, 1.42 g/L disodium
hydrogen phosphate, 0.24 g/L potassium hydrogen phosphate; pH was adjusted with 1M
sodium hydroxide up to 7.4) on coverslips, clamped into a custom-made aluminum cup at
least 16 h after transfection.

Cells were imaged with a PL APO 100.0 x 1.40 oil immersion lens. Dyes or fluorescent
proteins were excited with an argon laser (488 nm) or a helium-neon laser (561 nm) and the
emitted light observed at the following wavelengths: GFP: 505 nm-535 nm, MitoTracker®
Red FM and mCherry: 590 nm-700 nm, ER-Tracker™ Red (BODIPY® TR Glibenclamide):
600 nm~-700 nm.

The primary observation of the eGFP-tagged channel localization in cells was always
carried out without fluorescent labeling of the target membranes. This should exclude any
influence by the overexpression of a compartment specific protein. For detailed localization
studies the mitochondria or the ER were labeled either with fluorescent dyes or organelle
specific marker proteins. Dye labeling was performed according to established manufactur-
ers’ protocols. The growth medium was replaced with PBS containing the organelle-specific
dyes MitoTracker® Red FM (25 nM) or ER-Tracker™ Red (BODIPY® TR Glibenclamide)
(1uM) (Life Technologies GmbH, Frankfurt, Germany). After incubation with MitoTracker®
Red FM for 5 min or with ER-Tracker™ Red (BODIPY® TR Glibenclamide) for 10 min,
cells were washed with fresh PBS incubation buffer before imaging. As organelle-specific
dyes have only a limited specificity mitochondria and ER were in all experiments also
labeled with fluorescent specific marker proteins. The subunit VIII of human cytochrome C
oxidase fused with the fluorescent protein mCherry (COXVIIL::mCherry) was employed to
label the inner membrane of the mitochondria. The ER retention sequence HDEL fused with
fluorescent protein mCherry (HDEL::mCherry) was used to label the ER. Both plasmids
were obtained from Addgene (Cambridge, MA, USA); mCherry-Mito-7 and mCherry-ER-3
were kindly provided by Michael Davidson (Addgene plasmids #55102 and #55041). La-
beling of the target organelles with fluorescent proteins and fluorescent dyes provided
overall the same results on sorting of the channel proteins. For a quantitative analysis of
channel sorting only the fluorescent dyes were used in order to avoid an interference with
the sorting of the organelle marker protein and the channel protein of interest.

For a quantitative estimate of protein localization in different cell compartments,
images of at least 100 individual cells with a fluorescent signal were recorded. The classifi-
cation of protein sorting was done manually according to the criteria described in Figure 1.
To limit the bias of manual classification most images were independently analyzed by at
least two experimenters. The results of three experimenters on the relative distribution of
Kesvy varied over 15 independent experiments with a total of > 600 cells examined by
less than 2%. To further test reproducibility, the same images on the complex expression
pattern of chimera 1 were in a blinded manner examined by three independent and trained
individuals. The resulting values for the relative distributions varied in this case by < 4%.
Image analysis was generally performed using LAS AF Lite software (Leica Microsystems
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GmbH, Wetzlar, Germany) or Fiji [27]. Images were created using either IGOR Pro 6
(Wavemetrics, Tigard, OR, USA) or Origin 9 (OriginLab, Northhampton, MA, USA).

2.6. Cell Cycle Analysis

Cell cycle analysis was performed on fixed HEK293 cells transfected with Kesvy::eGFP
and Kesvp,::eGFP (or Kesvy,t and Kesv,, without the eGFP tag) using propidium iodide
staining. The cells were harvested >18 h after transfection by trypsination, transferred to
5 mL PBS and centrifuged for 6 min at room temperature (RT) at 1000 rpm. The cell pellet
was re-suspended in 0.5 mL PBS. Cells were fixed in 4.5 mL 70% ethanol at —20 °C and
under continuous vortexing. The fixed cells were centrifuged 5 min at 1000 rpm at RT,
re-suspended in 5 mL PBS and again pelleted 5 min at 1000 rpm and RT. The cell pellet was
then re-suspended in 1 mL staining solution (10 mL 0.1% Triton x 100 in PBS, 2 mg RNAse
A, 200 pL 1 mg/mL Propidium Iodide (PI)) and incubated for 30 min at RT. The cells were
pelleted again before measurement, resuspended in 0.5 mL PBS and filtered through a
40-um filter. The measurements were performed using the blue laser (488 nm) of the S3e
Cell Sorter (Bio-Rad GmbH; Munich, Germany). The cell cycle phases were determined
with the Flow]Jo (Flow]Jo, LLC; Ashland, OR, USA) software by analyzing the PI height to
PI area distribution.

2.7. Software Analysis

Almost all amino acids are encoded by more than one codon. The %MinMax algorithm
valuates in a species-dependent manner the relative rareness of a nucleotide sequence,
which codes for a protein of interest [28]. We used this algorithm to estimate the codon bias
of the channel proteins including linker and eGFP in human cells. Data were calculated as
a moving average over a window of 18 codons where 0% represents the least common and
100% the most common codon.

3. Results
3.1. Mitochondrial Sorting of Channel Protein Is Modulated by Codon Choice

To examine the influence of codon bias on Kesv sorting, we compared its location
in HEK293 cells after expressing the GFP-tagged protein from a wild type (Kesvyt) gene,
a gene that was codon-optimized for expression in mammalian cells (Kesv,p) and a gene
with a randomized sequence of favorable/unfavorable codons (Kesvyan) (Figure S1 and
Figure S2A). Cells transfected with the wt gene can be grouped into three distinct popula-
tions: (i) a majority of cells with the GFP-tagged protein being targeted to the mitochondria
in a background of GFP fluorescence in the cytosol (Figure 1A,C), (ii) a small number of cells
with the channel in the secretory pathway (SP) (Figure S3A and Figure 1C), and (iii) cells
with a strong GFP signal throughout the cell (Figure S3B, Figure 1C). The latter include GFP
in the nucleus and exclude it from mitochondria and peri-nuclear ring (Figure S3B(a,b)).
We interpret the presence of GFP in the nucleus as evidence for partial degradation of the
channel/GFP construct; only a cleavage of GFP from the hydrophobic channel will allow
diffusion of the fluorescent tag into the nucleus [29].

The robust pattern of sorting was altered by expression of the codon-optimized
gene (Kesvop): The protein was no longer targeted to the secretory pathway but sorted
with increased propensity to the mitochondria (Figure 1B,C). An enhanced tendency for
mitochondrial sorting was further underscored by quantifying the relative fluorescence in
mitochondria versus background fluorescence in the cytosol (Figure 1B,D). The latter ratio
is about six times higher in cells transfected with the codon-optimized gene compared to
those transfected with the wt gene.
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Figure 1. Codon optimization affects the sorting pattern of the Kesv channel. (A,B) Fluorescent
images of HEK293 cells transfected with either Kesvyt (A) or Kesvoyp (B). Images show: GFP tagged
channels (green, first column), fluorescence from mitochondrial marker (COXVIII::mCherry) (ma-
genta, second column) and merging of magenta and green channels (third column). A magnification
from areas marked in overlay images is shown in the fourth column. Letters in the images refer
to cytosol (c), nucleus (n) and mitochondria (m). (C) Mean relative distribution (£SD; n > 3) for
localization of channels in mitochondria (black), secretory pathway (blue) or unsorted (orange) in
HEK?293 cells transfected with Kesvyt (1 = 259 cells), Kesvyp, (1 = 245 cells) or Kesvyan (1 = 120 cells).
(D) Mean ratio + SD of fluorescence intensity in mitochondria versus adjacent cytosol (fmito /feyt) in
cells transfected with Kesvyt or Kesvop. A Student t-test predicts high statistical significance between
the two conditions (*** p < 0.0001). Scale bars 10 pm.

In contrast, expression of randomized Kesv (Kesvan) strongly lowered the probability
for mitochondrial sorting below that of the wt gene (Figure 1C). This reduction occurred
because of an increased frequency in protein degradation and increased sorting to the SP.
Taken together, the data show that the same protein can be targeted to different cellular
locations in HEK293 cells and that their sorting destiny depends both on the codon structure
of the gene and on additional cellular factor(s). This translates the same message even in
adjacent cells in one case into a protein sorting to the mitochondria and in the other case
into a protein sorting to the SP (Figure S3D).

We conducted several experiments to determine if the phenomenon of codon-sensitive
sorting could be a technical artifact of the experimental system. A first set of control
experiments shows that the presence of the mitochondrial marker has no impact on sorting
(Figure 2A). A co-expression with the ER marker HDEL::mCherry in contrast favors mi-
tochondrial sorting of the channel and eliminates targeting into the ER. The data suggest
that a competition for co-translational sorting into the ER is influencing the targeting of the
channel in our system (Figure 2A). For this reason, all quantitative data were obtained in
the absence of protein markers. We further reasoned that, if the sorting phenomenon is
dominated by an overload of the translation and/or sorting system, a further increase in
DNA should mimic the effect of codon optimization in the wt channel. A 10-fold difference
in DNA concentration used for transfection however had no appreciable impact on sorting
of Kesvyt and Kesv,y, (Figure 2B). This suggesting that the difference in sorting between the
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two constructs is not dominated by an oversaturated sorting system. Next, we addressed
the question if rate-limiting sorting factors like the signal recognition particle (SRP) are
over engaged when expressing a codon-optimized gene and that this could alter sorting.
We therefore transfected HEK293 cells with either the wt gene or a codon-optimized gene
of a second small K* channel from chlorella virus PBCV1 (Kcvppcy1) [30] (Figure S1 and
Figure S2B). In this case codon optimization had no impact on sorting (Figure 2C), suggest-
ing that the general targeting of a small channel protein is not corrupted by codon bias per
se. That is, expression of a codon-optimized channel protein does not alter targeting of the
nascent protein to the mitochondria because of over engaged SRPs.

; o . Kevwt::GFP HDEL::mCherr:
A relative distribution C " Y
0 0.4 0.8
S S S S S—
COXVIII 1 .
Mito-trac. 1 L~
HDEL {ee i —
ER-trac. 4 E - Kevop::GFP HDEL::mCherry
B relative distribution
0 0.4 0.8
N S S S S—
M1 .
wt
Lot —
Kevwt::GFP+ Kevop::GFP+ c
|- | _ COXVIIl:mCherry COXVIllzmCherry g 10
1 2 é s
op 2
L o1 17 LI
» °
1 S
ug DNA unsorted )
W mitochondria 5] Kcv.-.‘:]
Wsecretory pathway Kcvop

Figure 2. Codon-sensitive sorting is channel specific and not an artifact of the experimental system.
(A) Mean relative distribution + SD for localization of the Kesv channel in mitochondria (black),
SP (blue), or unsorted (orange) in HEK293 cells transfected with Kesvy. Images as in Figure 1 were
analyzed by co-expression of the channel with marker proteins COXVIII::mCherry (1 = 4, n = 63 cells)
or HDEL::mCherry (n = 3, n = 55 cells) for mitochondria and ER, respectively. In separate experiments
mitochondria and ER of Kesvy; transfected cells were labeled with fluorescent dyes Mito- (1 = 6,
with > 144 cells per condition) or ER-tracker, respectively (1 = 3, >116 cells per condition). (B) Mean
relative distribution of Kesvyt and Kesvop in HEK293 as in (C) from cells transfected transiently with
either 0.1 or 1 ug DNA (1 = 3 with > 121 cells per treatment). (C) Fluorescent images of HEK293 cells
transfected with Kcvyt or Kevep. Images in two top rows show: GFP tagged Kcv channels (green,
first column), fluorescence from ER marker HDEL::mCherry (magenta, first and second row) and
overlay of magenta and green channels in third column. Images in the third row show overlay of the
GFP (green) and COXVIIL::mCherry (magenta) channel for HEK293 cells transfected with either Kevy
or Kevep. Inset: Mean relative distribution (n > 220 cells) for localization of the channel in SP (blue),
or unsorted channels (orange) in HEK293 cells transfected with Kcvyt or Kevgp. Scale bars 10 pm.

All control experiments support the idea that sorting of the Kesv channel is affected
by the codon structure of the Kesv gene and there is no evidence to suggest that this sorting
phenomenon is a technical artifact of the experimental system. Based on current knowledge
on the effects of synonymous codon usage, this could be related to several modes of action
including codon-sensitive efficiency and stringency of mRNA decoding, the synthesis and
stability of mRNA or the translation velocity and folding of nascent proteins [4,8,9,31].

3.2. Codon-Biased Sorting Is a General Phenomenon of Mammalian Cells

To test if codon-sensitive sorting of Kesv is peculiar to HEK293 cells, we repeated the
experiments from Figure 1 with four other cell lines. These experiments were motivated
by the fact that established mammalian cells lines differ among other features in their
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expression levels of proteins [32] as well as in the trafficking of heterologously expressed
membrane proteins [33]. Relevant for the present investigation is also that different tis-
sues exhibit distinct differences in their tRNA concentrations, a feature which could affect
protein sorting [34]. Transfection of all four different mammalian cells with the wt gene
resulted in diverse sorting of Kesv to the mitochondria. While the sorting to the mitochon-
dria was strong in HeLa cells (Figure 3A), the channel was sorted to the mitochondria in
only a few COS-7 and HaCaT cells (Figure 3B). In CHO cells the channel was not only
found in the mitochondria but also in the secretory pathway (Figure 3C). The results of
these experiments confirm the assumption that the efficiency of sorting to the mitochondria
is not only due to the channel protein, but that it is also influenced by cellular factors.

Kesvwt::GFP Kesvop::GFP
A COXVIlizmCherry > C BN

Hela

+COXVIIl::mCherry

Hela

COXVIII;;mCherry
3

h S

CHO

Tt

B COXVIllzmCherry

HaCaT

COSs-7

COXVIII::mCherry

COS-7

relative distribution
D O 04 08 0 04 08

| 1 L 1 1 ] L 1 1 1 1 ]
COSs-7
Hela

unsorted
B mitochondria
I secretory pathway

Kesvu Kesvop

Figure 3. Sensitivity of channel sorting to codon optimization is conserved in mammalian cells.
Fluorescent images of HeLa (A) and COS-7 cells (B) transfected with Kesvy. In both cell types the
channel exhibited either a clear-cut sorting to the mitochondria (top row) or a unsorted phenotype
with GFP fluorescence throughout the cell (lower row). Images show: the GFP tagged Kesv channel
(green, first column) and fluorescence from mitochondrial marker COXVIIL::mCherry (magenta,
second column). Merged images are in the third column. (C) Fluorescent images of different
mammalian cells transfected with Kesvop. The images are overlays of GFP fluorescence (green)
and fluorescence from mitochondrial marker COXVIIL::mCherry (magenta) (HeLa, CHO, COS-7)
or from ER marker HDEL:: mCherry (HaCaT). Scale bars 10 um. (D) Mean relative distribution +
SD for localization of the wt channel (Kesvyy, left) or codon-optimized channel (Kesvop, right) in
mitochondria (black), secretory pathway (blue) or unsorted channels (orange). (Data from n >3;
n > 56 cells per condition).

The data in Figure 3D, however, clearly show that the effect of codon optimization
on sorting to the mitochondpria is conserved in all five mammalian cell lines. In all cell
lines tested codon optimization created a strong tendency for sorting the channel to the
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mitochondria. This was independent of the cellular conditions, which are in different cell
types more or less favorable for mitochondrial sorting of the wt channel.

3.3. Chimeras of Genes with Optimized/Non-Optimized Codons Cause Complex Sorting Patterns

We constructed chimeras consisting of codon-optimized and wt codons (Figure 4A)
to identify a potentially critical region in the gene that is important for this phenomenon.
Figure 4B shows the relative sorting of different chimeras in HEK293 cells. Remark-
ably chimeras of synonymous codons result in distinctly different sorting phenotypes.
One important conclusion from the data in Figure 4B is that the protein is able to traffic
in a codon-dependent manner either to the secretory pathway or to the mitochondria
(Figure 4B). This pattern occurs in an inverse relationship in that the proteins are sorted to
the mitochondria when they escape sorting to the secretory pathway. This suggests that

the decision on sorting is the result of multiple competing factors.
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Figure 4. Complex sorting of the Kesv channel and its mutant in HEK293 cells transfected with chimera of genes with wt
and optimized codons. (A) Schematic domain architecture of the Kesv channel monomer with transmembrane x-helixes
including the N-terminal helix (NH), outer (TM1) and inner (TM2) transmembrane domain and pore helix (PH) (central
panel) (top) and composition of Chimeras C1 to C8 comprising parts of the Kesvyt (grey) and Kesvop genes (red). (B) Mean
relative distribution (£SD; n = 3, n > 120 cells per chimera) of channels in mitochondria (black), SP (blue) and unsorted
channels (orange) in HEK293 cells transfected with corresponding genes. The green bars represent cells in which the channel
was present within the same cell in the mitochondria and in the SP. (C) Fluorescent image of a HEK293 cell transfected
with Chimera C4. The images show distribution of GFP tagged chimera (green, left column), mitochondrial marker
COXVIII:mCherry (magenta, second column), and an overlay of magenta and green channel (third column). The part
indicated in the overlay is magnified in the fourth column with blue arrows and white arrows indicating presence of GFP in
SP (white arrow) and mitochondria (blue arrow), respectively. (D) Top: schematic domain architecture as in A indicating
position 113 in which the AA motive GML was inserted in TM2. Central: fluorescent images of HEK293 cells transfected
with Kesv113GML from wt (113GMLyt) or codon-optimized (113GMLop) gene. Images show: the GFP tagged channel
(green, first column) and fluorescence from mitochondrial marker COXVIII::mCherry (magenta, top) or from ER marker,
HDEL:: mCherry (magenta, down) as well as overlay of magenta and green channels (third column). Bottom: relative
distribution of channels in mitochondria (black), SP (blue) and unsorted channels (orange) in HEK293 cells (numbers in
brackets) transfected with corresponding genes. Scale bar in (C,D) 10 pm.

A surprising observation is that the protein can occur in a codon-dependent man-
ner (e.g.; Chimera C4) in the same cell in the SP and in the mitochondria (Figure 4B,C).
The dual sorting of three chimeras (C-1, C-4, and C7) within one cell was confirmed by
co-localization with the respective marker proteins (Figure 4C and Figure S4). The results
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of these experiments establish that the channel protein can be targeted to both the SP and to
the mitochondria in the same cell and that this process is influenced by the codon structure
of the gene. In this respect the chimera mimics the natural situation of channels like Kv1.3,
which can occur in the plasma membrane and in the mitochondria [35].

Scrutiny of the data in Figure 4 did not reveal a single region in the gene in which codon
optimality favors sorting to the mitochondria or to the SP. For example, optimization of the
last 14 C-terminal codons (Chimera C6) has the same impact on sorting as optimization of
the entire channel. Codon optimization of upstream regions (e.g., Chimera C3), however,
can even be counterproductive and promote protein degradation and sorting to the SP.
Additionally, optimization of a stretch of codons > 30 codons from the start (Chimera C8),
which might negatively affect binding of the nascent protein to the SRP when emerging
from the ribosome [16], did not increase mitochondrial sorting.

The complex pattern in which a particular region can favor sorting to the mitochondria
in one chimera but not in another suggests that the decision on sorting is the result of
multiple competing factors. To test this assumption, we altered the sorting of Kesv in a
codon bias-independent manner by inserting amino acids into the second transmembrane
domain [20,22]. In a screening endeavor we inserted in position 113 of Kesvy 16 different
triplets of randomly chosen amino acids and found that the triplet GML was the most
potent in redirecting sorting of this mutant (Figure 4D). This channel (Kesv-113GMLy)
was no longer detected in the mitochondria but was present in the SP in >80% of the
cells (Figure 4D). When the full-length gene of Kesv-113GML was codon-optimized it had
almost no effect on the sorting of the channel. Like the wt protein, Kesv-113GML,, was still
efficiently sorted to the SP. The results of these experiments indicate that codon optimality
does not per se favor sorting to the mitochondria. If a protein like Kcv or Kesv-113GML
has a strong signal for trafficking to the SP, the sorting destiny is only slightly affected by
codon optimality.

3.4. Impact of Codon Usage on Sorting

Based on current knowledge, the sorting of proteins between the secretory path-
way and mitochondria is determined by fundamentally different mechanisms [36,37].
The canonical targeting mechanism involves interactions between the protein and spe-
cific sorting factors for subsequent delivery to membrane-embedded translocases [36,37].
For some short tail-anchored proteins, a spontaneous insertion in either the ER or the
mitochondria membrane is known [38]. The latter pathway however only targets proteins
to the outer membrane of mitochondria and is hence not relevant for the Kesv channel,
which is sorted to the inner mitochondrial membrane [20]. A third targeting mechanism
employs a distinct pre-sorting of the respective mRNA to the final destination where the
protein is translated directly into its final location [36,39]. The complex sorting phenotypes
of the different Kesv constructs could in principle result from an impact of codon usage on
any of the three mechanisms. Codon optimization could alter the structure of a peptide
signal or the interaction kinetics of the nascent protein with sorting factors. This could arise
from codon sensitivity of translation efficiency, protein folding or transcript stability [7].
Alternatively, codon optimality could also alter the structure of the mRNA [40,41] and as a
consequence perturb or create essential targeting codes for mRNA sorting [42].

To examine the impact of codon usage on the mRNA structure, we calculated the free
energy of the different RNAs using an RNA structure prediction algorithm [43]. To augment
the relevance of structural elements in the variable channel-coding region, the free energy
was only calculated for this part of the construct, ignoring the contribution of the constant
linker/GFP. A plot of the efficiency of sorting of the channel to the mitochondria as a
function of this free energy implies that the codon choice has considerable impact on
mRNA structure. This could generate altered targeting codes for mRNA sorting but could
also affect translation velocity [39].

The linear relationship with a weak correlation (coefficient 0.44) between mRNA
stability and channel sorting does not exclude a contribution of RNA stability to the
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differential sorting of the channel (Figure 5A). Still the data are not sufficient to explain
sorting of different chimeras. The different chimeras have roughly the same free energy
between —115 and —125 kcal/mol; one promotes sorting to the mitochondria in ca. 10%
of the cells while the other chimera does it more than 70% of the time. The results of this
analysis are in agreement with published data showing that differences in the secondary
structure of mRNA are not sufficient to explain the causal link between codon bias and
ribosome elongation rates [7].
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Figure 5. Sorting pattern of the Kesv channel as a function of parameters, which can affect protein
synthesis. (A) Relative distribution of the Kesv channel in mitochondria from data in 4A as a function
of estimated free energy of RNA structures derived for Kesvy, Kesvyan, Kesvop and chimeras C1-C8.
Energies were calculated for channel coding the RNA sequence only. The line shows linear fit with
a correlation coefficient of 0.44. (B) Light triggered transcription of Kcvop, channel shifts sorting
propensity from SP to mitochondria. Top: confocal images of representative HEK293 cell expressing
GFPtagged Kcv,yp, (green, 1st panel) and stained with MitoTrackerRed (magenta, 2nd panel); merging
of green and magenta channels is shown in the 3rd panel with a blow up of the indicated area in the
4th panel. Bottom: relative distribution for localization of the Kcv,p, channel in mitochondria, SP, or
unsorted channels in HEK293. Protein was expressed in HEK293 cells by conventional transfection
(CT) or under control of a light-sensitive EL222 system [25,44]. In the latter case, transcription was
induced by a pulsed blue light of 120 ©E, which was applied for 16 h prior to imaging. Light pulses
were 10 5/20 s on followed by 60s of darkness. Data are from n cells in N independent experiments:
CT-Kevop 1 =3, n =237 and EL222-Kcvp 1 = 3, n = 118. Scale bars 10 um. (C) Sorting of the channel
to the three destinations (mitochondria: black, SP: blue and unsorted: orange) was estimated as in
Figure 1 in HEK293 cells transfected with Kesvy: (left panel) and Kesvop (right panel). Cells were
kept either at 37 °C or 25 °C. Lowering the temperature is unfavorable for channel sorting to the
mitochondria. The lower temperature favors non-sorting and sorting to the SP. Mean values & S.D.
of n = 3 experiments with > 270 cells per temperature. Color coding is the same as in B.

To further test potentially hidden impacts of the mRNA structure on protein sorting,
we expressed both channels under control of an optogenetic transcription system. It was
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reported that the transcription of a gene of interest could be triggered by light via a quasi-
instant activation of a transcription factor [44]. Based on the kinetic relationship between
transcription and subsequent translation [45,46], we reasoned that a light-triggered burst in
transcription would neither affect the mRNA nor the structure of the translated protein but
the kinetics of transcription/translation to such an extent that even the codon-optimized
Kcv channel would be sorted to the mitochondria. To test this prediction, codon-optimized
channels were expressed in HEK293 cells under control of the light-sensitive EL222 system.
Hence, a light triggered burst in transcription should not affect protein sorting if the latter
is determined by the structure of the RNA. To test if the same mRNA can generate in such
a system differences in sorting, Kcvop was expressed in HEK293 cells under control of the
light-sensitive EL222 system. After triggering transcription by blue light, we monitored the
distribution of the GFP-tagged channels in HEK293 cells. The data in Figure 5B show that
the light-inducible system had a strong impact on the targeting of Kcvep. While the latter
channel is preferentially sorted to the SP following conventional transfection (Figure 2),
its sorting is shifted with an increased tendency for the mitochondria when transcription
is triggered by light (Figure 5B). We are not able at this point to explain the mechanism,
which is underlying the shift in sorting of Kcvep in the context of the light-sensitive
transcription system. However, the results of these experiments are in good agreement
with the view that codon optimality is affecting one or more critical steps in the translation
of the nascent channel proteins. They further confirm that differences in the secondary
structure of the mRNA are unlikely crucial for sorting. The fact that the mRNA for the
Kevop channel was the same for conventional expression or expression under control of the
optogenetic system also indicates that codon choice has in the present system no impact on
signals, which contribute to mRNA localization in cells [39].

In the case that codon optimality does not affect mRNA sorting but translation effi-
ciency, folding or transcript stability [42], protein sorting should be sensitive to temperature;
lower temperatures should slow translation efficiency and folding. To test this prediction,
we followed the expression and sorting of Kesvyt and the codon-optimized channel in
HEK293 cells at 37 °C and 25 °C. The data in Figure 5C show that the incubation tempera-
ture indeed affects sorting of the channel. Cells transfected with the Kesv,; and with the
codon-optimized gene exhibited an altered sorting pattern at 25 °C compared to 37 °C.
While the relative number of cells with the channel in the mitochondria decreased at 25 °C,
the fraction of cells with a degraded protein increased. This result implies that sorting to
the mitochondria is favored by higher temperature. The data are in agreement with the
hypothesis that codon optimization alters cellular processes, which are also accelerated by
temperature. Since a change in the incubation temperature is a rather non-selective param-
eter, which affects many cellular processes, the data do not yet provide a clear indication of
the precise mechanism responsible for codon-sensitive sorting.

Since all experiments are based on transient transfection of channel proteins it is
possible that the difference in their sorting simply reflects different amounts of proteins,
which are generated in individual cells; this parameter might than be influenced by codon
optimality. To test this possibility, we randomly chose 15 images like in Figure S3D
and Figure S5A in which a cell with a mitochondria-sorted Kesv channel was in the
same optical plane close to one with the channel sorter into the SP. Assuming that the
fluorescence intensity (FI) of GFP is an indirect approximation of the amount of tagged
protein [47], we defined outside of the nucleus as regions of interest (ROI) and measured
their integrated fluorescence density (IFD). For each pair of cells, a ratio was calculated
by dividing the IFD value from GFP in mitochondria by the respective value from GFP in
the SP (IFD(ROlyyy /IFD(ROIsp)). The resulting ratios cover a wide range from 0.4 to 2.1,
with a mean value of 1.2 & 0.5 (Figure S5C). The results of this analysis exhibit no apparent
correlation between the amount of GFP-tagged protein in a cell and its destiny of sorting.
This conclusion is further supported by a similar analysis of pairs of cells in which the
channel was, in both cases, sorted to the mitochondria (Figure S5B); in this case, the IFD
values between adjacent cells deviate by a factor between one and four without an apparent
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consequence on sorting. Collectively, the data suggest that the protein concentration varies
considerably between individual cells, but this has no systematic impact on sorting.

3.5. Sorting Is Affected by State of the Cell Cycle However, Not by the Energy Status of Cells

The experiments have so far shown that the K* channel protein Kesv can be sorted in
cells to two distinct destinations in a codon-dependent manner. However, this message is
interpreted in different ways by individual cells. That is, in the same experiment one cell
decodes this message as a signal for sorting to the mitochondria, whereas another cell sorts
the channel with the same message to the SP. A similar scenario was previously reported
for the Slit3 protein in which sorting to the plasma membrane or the mitochondria were
determined by some state of cell differentiation or development [48].

One aspect in which cells in a non-synchronized culture differ is their position in the
cell cycle. It has been shown that different states of the cell cycle correlate with different
metabolic activities and different concentrations of tRNAs [49]. This led to the concept that
availability of ribosomes, aminoacyl-tRNA synthetases and charged tRNAs might be rate
limiting and influence the speed of protein translation in one condition but not in another.

To test this possibility, we treated HEK293 cells with RO-3306, a CDK1-inhibitor,
which arrests cells in the G2 state [50]. The results from a flow cytometry analysis show
that treatment with 7 pM RO-3306 caused the expected arrest of cells in G2 after 48 h of in-
cubation (Figure 6A). While in control cells 36.3 = 3.2% of the cells were in G2, 73.5 + 1.5%
of the cells were in G2 after inhibitor treatment. We then used cells, which were treated
with the same protocol, to examine the sorting pattern of the Chimera C1 (Figure 6A,B).
This Chimera was chosen because of its complex sorting pattern under control conditions
(Figure 4B). We reasoned that any alteration in the cells would exhibit a strong impact on
the sorting of this construct. An analysis of the sorting pattern from three independent
experiments shows that the state of the cell cycle strongly influenced the fate of protein
sorting (Figure 6A,B). An increase in cells in G2 goes together with a decrease in mito-
chondrial sorting. At the same time, this condition favors sorting of the channel to the SP.
This inverse behavior of sorting to the mitochondria and SP is the same as in Figure 4B and
underscores a causal relationship between both sorting pathways.
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Figure 6. Sorting pattern of the Kesv channel in HEK293 cells is affected by cell cycle. (A) Analysis of DNA content in HEK293
cells by flow-cytometry in the absence and presence of cell cycle blocker R0-3306. Representative histograms of control cells
(blue) and cells pretreated for 48 h with 7 uM RO-3306 (red) as function of Propidium Iodide (PI) intensity. The respective cell
cycle phases are indicated by colored bars. (B) Relative distribution (£SD, nn = 3, n > 150 cells) of Chimera C1 in mitochondria
(black), SP (blue), dual location in mitochondria and SP (green) as well as non-sorted channels (orange) as a function of cells in
G2 in control cells (36 & 3%) and RO-3306 treated cells (74 £ 1.5%). Cells were transfected 24 h after exposure to inhibitor and
imaged 24 h later. (C) Mean relative distribution (£SD, n = 3, n > 120 cells) of Kesv channel in mitochondria (black), SP (blue),
dual location in mitochondria and SP (green) as well as non-sorted channels (orange) in HEK293 cells transfected with Chimera

C1. Cells were supplied in culture medium with the indicated concentrations of glucose.
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In an additional assay, we also incubated HEK293 cells with different concentrations of
glucose in the medium. This has an impact on many cellular parameters including energy
status [51], signaling pathways [52] and even the expression of membrane proteins [53].
When Chimera C1 was expressed in cells incubated in low, normal or elevated glucose
concentrations, the channel exhibited overall the same complex sorting pattern (Figure 6C)
as in Figure 4. Thus, addition or deprivation of glucose in the incubation medium of the
cells, which presumably influenced among other factors the energy status of the cells,
had no appreciable impact on sorting of the Kesv channel.

4. Discussion

Our analysis of the impact of synonymous codon choices on the sorting of two similar
K* channel proteins shows that codon bias has, in combination with cellular factors,
a strong impact on the targeting destiny of one channel, Kesv, but not on the other, Kcv.
A key message from these results is that the codon choice of the Kesv gene can serve in
this orthogonal system as a signal for intracellular protein sorting. Hence, a gene sequence
can contain more information for protein sorting than is encoded in the primary amino
acid sequence. All of these data can be explained in the context of the redundancy in the
genetic code in which most amino acids are coded by multiple synonymous codons.

Current knowledge on the role of synonymous codons provides several possible ex-
planations on how they could affect protein sorting. This could occur at the level of stability
or localization of mRNA, codon-sensitive efficiency and stringency of mRNA decoding,
the synthesis, as well as the translation velocity and folding of nascent proteins [7,8,42].
At this point it is not possible to pinpoint which of these mechanisms is responsible for the
sorting phenomena. However, from circumstantial evidence we reason that translational
missense errors can be excluded as an explanation. It is known that synonymous codons
exhibit different frequencies of translational misreading. While this is a frequent phe-
nomenon in bacteria, it is very rare in eukaryotes [54]. The diversity of sorting phenomena
obtained with the chimeras is not compatible with such a rare event. Our data are also not
in agreement with an effect of codon usage on the stability of mRNA structures. A plot of
sorting efficiency as a function of the estimated free energy of mRNA stability exhibits only
a weak correlation. This suggests that this parameter could contribute to but not completely
explain the different sorting patterns. Finally, the results provide no evidence for an impact
on codon optimality on targeting signals in the mRNA, which could be responsible for
the differential sorting. When the Kcvop channel is expressed from the same mRNA it
is, depending on the expression system, sorted either to the SP or to the mitochondria.
This argues against an impact of codon choice on this alternative mechanism of protein
sorting. Altogether, this leaves the impact of synonymous codons on translation velocity
and folding of nascent proteins as the most likely explanation.

Analyses of Kesv sorting at the single cell level reveal that targeting of the channel
not only depends on a combination of primary amino acid sequence and codon choice but
also on the individual conditions of the cell that is expressing the protein. Depending on
this cellular condition, a cell can interpret the same genetic information as a signal for
sorting the channel protein either into the mitochondria, the secretory pathway or into
both compartments; in other cell conditions the protein is degraded. In this context it
is interesting to note that five different mammalian cell lines have distinctly different
efficiencies for sorting the Kesv,; channel to the mitochondria. This phenomenon is in
good agreement with the finding that non-uniform distributions of rare/frequent codons
in genes can generate patterns of local translation elongation/folding rates in an organism-
specific manner [55]. Our experiments show that the state of the cell cycle is one cellular
factor, which contributes to the sorting destiny of the Kesv channel in a given cell type.

A central dogma of molecular biology is that synonymous mutations have no ef-
fect on the primary amino acid sequence and hence on function of the resulting protein.
These claims have been challenged by recent data underpinning important roles of codon
choice in a wide range of events such as speed of protein synthesis, folding, stability and
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even function [7-16]. The present data now extend this scope of codon effects to the
mechanism of protein sorting in mammalian cells. The apparent sensitivity of intracellular
targeting of small channel proteins on codon bias suggests that the codon structure of a
gene can together with a cell-state-dependent decoding mechanism which serves as a code
for intracellular proteins trafficking. The data support a mechanism in which clusters of
rare and common codons can serve together with the primary amino acid sequence as a
signal for sorting of nascent membrane proteins to such fundamentally different destina-
tions as mitochondria and secretory pathway. An intriguing consequence from the present
study with model proteins is that the same sorting system may also operate with native
membrane proteins. Any physiological or pathophysiological condition, like synonymous
mutations [4] or variable concentrations of tRNA, [49,50] but also codon optimization in
gene therapy [4], could direct the same protein to different membrane destinations in a cell.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/cells10051128 /51, Figure S1: Components of channel-linker-GFP constructs. Figure S2:
Schematic domain architectures and codon usage plots of Kesv and Kcv. Figure S3: Sorting pattern
of the Kesv channel. Figure S4: Dual sorting of Chimera C4 in the same HEK293 cell into SP and
mitochondria, Figure S5: Comparative GFP fluorescence from Kesv in adjacent HEK293 with either
mitochondria SP sorting.

Author Contributions: Conceptualization, G.T. and A.M.; methodology, A.J.E. and O.R.; investi-
gation, M.K.; A.J.E.; M.L. and M.C.; writing—original draft, A.J.E; M.K;; ] L.VE.,, AM. and G.T,;
funding acquisition, A.M. and G.T.; resources, G.T. and J.L.V.E,; supervision, G.T. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by European Research Council (ERC; 2015 Advanced Grant
495 (AdG) n. 695078 noMAGIC to A. Moroni and G. Thiel and the DFG priority program SPP1926
(to G.T.). We acknowledge support from the Open Access Publishing Fund of Technical University
of Darmstadt.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: All constructs used in this study are available on request.

Acknowledgments: We thank Kevin Gardner (City College New York) for providing the EL222
system and Ulrich Goringer (Darmstadt) for help in interpreting RNA structure data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Athey, J.; Alexaki, A.; Osipova, E.; Rostovtsev, A.; Santa-Quintero, L.V.; Katneni, U.; Simonyan, V.; Kimchi-Sarfaty, C. A new and
updated resource for codon usage tables. BMC Bioinform. 2017, 18, 391. [CrossRef]

2. Gustafsson, C.; Govindarajan, S.; Minshull, J. Codon bias and heterologous protein expression. Trends Biotechnol. 2004, 22, 346-353.
[CrossRef] [PubMed]

3. Morgunov, A.S.; Babu, M. Optimizing membrane-protein biogenesis through nonoptimal-codon usage. Nat. Struct. Mol. Biol.
2014, 21, 1023-1025. [CrossRef]

4. Mauro, V.; Chappell, S.A. A critical analysis of codon optimization in human therapeutics. Trends Mol. Med. 2015, 20, 604-613.
[CrossRef] [PubMed]

5. Lu,J.;Lu, G; Tan, S; Xia, J.; Xiong, H.; Yu, X; Qi, Q.; Yu, X,; Li, L,; Yu, H,; et al. A COVID-19 mRNA vaccine encoding SARS-CoV-2
virus-like particles induces a strong antiviral-like immune response in mice. Cell Res. 2020, 30, 936-939. [CrossRef]

6.  Presnyak, V.; Alhusaini, N.; Chen, Y.H.; Martin, S.; Morris, N.; Kline, N.; Olson, S.; Weinberg, D.; Baker, K.E.; Graveley, B.R,; et al.
Codon optimality is a major determinant of mRNA stability. Cell 2015, 160, 1111-1124. [CrossRef]

7. Hanson, G.; Coller, ]. Codon optimality, bias and usage in translation and mRNA decay. Nat. Rev. Mol. Cell Biol. 2018, 19, 20-30.
[CrossRef]

8.  Komar, A.A. The Yin and Yang of codon usage. Hum. Mol. Genet. 2016, 25, R77-R85. [CrossRef] [PubMed]

9. Buhr, F; Jha, S.; Thommen, S.; Mittelstaet, M.; Kutz, J.; Schwalbe, H.; Rodnina, M.; Komar, A.A. Synonymous codons direct
cotranslational folding toward different protein conformations. Mol. Cell 2016, 61, 341-351. [CrossRef] [PubMed]

10. Novoa, E.M.; de Pouplana, L.R. Speeding with control: Codon usage, tRNAs, and ribosomes. Trends Genet. 2012, 28, 574-581.

[CrossRef] [PubMed]


https://www.mdpi.com/article/10.3390/cells10051128/s1
https://www.mdpi.com/article/10.3390/cells10051128/s1
http://doi.org/10.1186/s12859-017-1793-7
http://doi.org/10.1016/j.tibtech.2004.04.006
http://www.ncbi.nlm.nih.gov/pubmed/15245907
http://doi.org/10.1038/nsmb.2926
http://doi.org/10.1016/j.molmed.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25263172
http://doi.org/10.1038/s41422-020-00392-7
http://doi.org/10.1016/j.cell.2015.02.029
http://doi.org/10.1038/nrm.2017.91
http://doi.org/10.1093/hmg/ddw207
http://www.ncbi.nlm.nih.gov/pubmed/27354349
http://doi.org/10.1016/j.molcel.2016.01.008
http://www.ncbi.nlm.nih.gov/pubmed/26849192
http://doi.org/10.1016/j.tig.2012.07.006
http://www.ncbi.nlm.nih.gov/pubmed/22921354

Cells 2021, 10, 1128 16 of 17

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Yu, C.H.; Dang, Y.; Zhou, Z.; Wu, C.; Zhao, E; Sachs, M.S,; Liu, Y. Codon usage influences the local rate of translation elongation
to regulate co-translational protein folding. Mol. Cell 2015, 59, 744-754. [CrossRef] [PubMed]

Spencer, S,; Siller, E.; Anderson, ]J.F,; Barral, ].M. Silent substitutions predictably alter translation elongation rates and protein
folding efficiencies. J. Mol. Biol. 2012, 422, 328-335. [CrossRef]

Zhou, M.; Guo, J.; Cha, J.; Chae, M.; Chen, S.; Barral, ].M.; Sachs, M.S.; Liu, Y. Non-optimal codon usage affects expression,
structure and function of clock protein FRQ. Nature 2013, 496, 111-116. [CrossRef]

Zhao, F; Yu, C.H.; Liu, Y. Codon usage regulates protein structure and function by affecting translation elongation speed in
Drosophila cells. Nucleic Acids Res. 2017, 45, 8484-8492. [CrossRef] [PubMed]

Pechmann, S.; Frydman, J. Evolutionary conservation of codon optimality reveals hidden signatures of cotranslational folding.
Nat. Struct. Mol. Biol. 2013, 20, 237-243. [CrossRef]

Pechmann, S.; Chartron, J.W.; Frydman, J. Local slowdown of translation by nonoptimal codons promotes nascent-chain
recognition by SRP in vivo. Nat. Struct. Mol. Biol. 2014, 21, 1100-1105. [CrossRef] [PubMed]

Thiel, G.; Baumeister, D.; Schroeder, I.; Kast, S.M.; Van Etten, J.L.; Moroni, A. Minimal art: Or why small viral K* channels are
good tools for understanding basic structure and function relations. Biochim. Biophys. Acta 2011, 1808, 580-588. [CrossRef]
Watson, H.R.; Wunderley, L.; Andreou, T.; Warwicker, J.; High, S. Reorientation of the first signal-anchor sequence during
potassium channel biogenesis at the Sec61 complex. Biochem. J. 2013, 456, 297-309. [CrossRef]

Moroni, A.; Viscomi, C.; Sangiorgio, V.; Pagliuca, C.; Meckel, T.; Horvath, F; Gazzarrini, S.; Valbuzzi, P.; Van Etten, J.L.;
DiFrancesco, D.; et al. The short N-terminus is required for functional expression of the virus encoded miniature K*-channel Kcv.
FEBS Lett. 2002, 530, 65-69. [CrossRef]

Balss, J.; Mehmel, M.; Baumeister, D.; Hertel, B.; Delaroque, N.; Chatelain, F.C.; Minor, D.J.; Van Etten, ].L.; Moroni, A.; Thiel, G.
Transmembrane domain length of viral K* channels is a signal for mitochondria targeting. Proc. Natl. Acad. Sci. USA 2008, 10,
12313-12318. [CrossRef]

Engel, A.].; Winterstein, L.M.; Kithil, M.; Langhans, M.; Moroni, A.; Thiel, G. Light-regulated transcription of mitochondrial
targeted K* channel. Cells 2020, 9, 2507. [CrossRef]

Zhang, Y.; Schiffer, T.; Wolfle, T.; Fitzke, E.; Thiel, G.; Rospert, S. Cotranslational intersection between the SRP and GET targeting
pathways to the endoplasmic reticulum of Saccharomyces cerevisiae. Mol. Cell. Biol. 2016, 36, 2374-2383. [CrossRef] [PubMed]
von Chappuis, C.; Meckel, T.; Moroni, A.; Thiel, G. The sorting of a small potassium channel in mammalian cells can be shifted
between mitochondria and plasma membrane. Cell Calcium 2014, 58, 114-121. [CrossRef] [PubMed]

Palmer, E.; Freeman, T. Investigation into the use of C- and N-terminal GFP fusion proteins for subcellular localization studies
using reverse transfection microarrays. Comp. Funct. Genom. 2004, 5, 342-353. [CrossRef]

Motta-Mena, L.B.; Reade, A.; Mallory, M.].; Giantz, S.; Weiner, O.D.; Lynch, K.W.; Gardner, K.H. An optogenetic gene expression
system with rapid activation and deactivation kinetics. Nat. Chem. Biol. 2014, 10, 196-202. [CrossRef]

Heckman, K.L.; Pease, L.R. Gene splicing and mutagenesis by PCR-driven overlap extension. Nat. Prot. 2007, 2, 924-932.
[CrossRef] [PubMed]

Schindelin, ].; Arganda-Carrereas, I; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid,
B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676—682. [CrossRef]

Clarke, T.E; Clark, P.L. Rare codons cluster. PLoS ONE 2008, 3, e3412. [CrossRef] [PubMed]

Timney, B.L.; Raveh, B.; Mironska, R.; Trivedi, ] M.; Kim, S.J.; Russel, D.; Wente, S.R.; Sali, A.; Rout, M.P. Simple rules for passive
diffusion through the nuclear pore complex. J. Cell Biol. 2016, 215, 57-76. [CrossRef] [PubMed]

Plugge, B.; Gazzarini, S.; Cerana, R.; Van Etten, J.; Nelson, M.; DiFrancesco, D.; Moroni, A.; Thiel, G. A potassium ion channel
protein encoded by chlorella virus PBCV-1. Science 2000, 287, 1641-1644. [CrossRef]

Stein, K.C.; Frydman, ]J. The stop-and-go traffic regulating protein biogenesis: How translation kinetics controls proteostasis.
J. Biol. Chem. 2019, 294, 2076-2084. [CrossRef] [PubMed]

Geiger, T.; Wehner, A.; Schaab, C.; Cox, J.; Mann, M. Comparative proteomoic analysis of eleven common cell lines reveals
ubiquitous but varying expression of most proteins. Mol. Cell. Proteom. 2012, 11, M111-014050. [CrossRef]

Murillo, I.; Henderson, L.M. Expression of gp911f’h°X /Nox2 in COS-7 cells: Cellular localization of the protein and the detection of
outward proton currents. Biochem. J. 2005, 385, 649-657. [CrossRef]

Dittmar, K.A.; Goodenbour, ].M.; Pan, T. Tissue-specific differences in human transfer RNA expression. PLoS Genet. 2006, 2, e221.
[CrossRef] [PubMed]

Szabo, I; Bock, J.; Jekle, A.; Soddemann, M.; Adams, C.; Lang, F.; Zoratti, M.; Gubins, E. A novel potassium channel in lymphocyte
mitochondria. J. Biol. Chem. 2005, 280, 12790-12798. [CrossRef]

Weis, B.L.; Schleiff, E.; Zerges, W. Protein targeting to subcellular organelles via mRNA localization. Biochim. Biophys. Acta 2013,
1833, 260-273. [CrossRef] [PubMed]

Costa, E.A.; Subramanian, K.; Nunnari, J.; Weissman, ].S. Defining the physiological role of SRP in protein-targeting efficiency
and specificity. Science 2018, 359, 689-692. [CrossRef]

Costa, F,; Castella, P.; Colombo, S.F.; Borgese, N. Discrimination between the endoplasmatic reticulum and mitochondria by
spontaneous inserting tail-anchored proteins. Traffic 2018, 19, 182-197. [CrossRef] [PubMed]

Eliscovich, C.; Singer, R. RNP transport in cell biology: The long and winding road. Curr. Opin. Cell Biol. 2017, 45, 38—46.
[CrossRef]


http://doi.org/10.1016/j.molcel.2015.07.018
http://www.ncbi.nlm.nih.gov/pubmed/26321254
http://doi.org/10.1016/j.jmb.2012.06.010
http://doi.org/10.1038/nature11833
http://doi.org/10.1093/nar/gkx501
http://www.ncbi.nlm.nih.gov/pubmed/28582582
http://doi.org/10.1038/nsmb.2466
http://doi.org/10.1038/nsmb.2919
http://www.ncbi.nlm.nih.gov/pubmed/25420103
http://doi.org/10.1016/j.bbamem.2010.04.008
http://doi.org/10.1042/BJ20130100
http://doi.org/10.1016/S0014-5793(02)03397-5
http://doi.org/10.1073/pnas.0805709105
http://doi.org/10.3390/cells9112507
http://doi.org/10.1128/MCB.00131-16
http://www.ncbi.nlm.nih.gov/pubmed/27354063
http://doi.org/10.1016/j.ceca.2014.09.009
http://www.ncbi.nlm.nih.gov/pubmed/25449299
http://doi.org/10.1002/cfg.405
http://doi.org/10.1038/nchembio.1430
http://doi.org/10.1038/nprot.2007.132
http://www.ncbi.nlm.nih.gov/pubmed/17446874
http://doi.org/10.1038/nmeth.2019
http://doi.org/10.1371/journal.pone.0003412
http://www.ncbi.nlm.nih.gov/pubmed/18923675
http://doi.org/10.1083/jcb.201601004
http://www.ncbi.nlm.nih.gov/pubmed/27697925
http://doi.org/10.1126/science.287.5458.1641
http://doi.org/10.1074/jbc.REV118.002814
http://www.ncbi.nlm.nih.gov/pubmed/30504455
http://doi.org/10.1074/mcp.M111.014050
http://doi.org/10.1042/BJ20040829
http://doi.org/10.1371/journal.pgen.0020221
http://www.ncbi.nlm.nih.gov/pubmed/17194224
http://doi.org/10.1074/jbc.M413548200
http://doi.org/10.1016/j.bbamcr.2012.04.004
http://www.ncbi.nlm.nih.gov/pubmed/23457718
http://doi.org/10.1126/science.aar3607
http://doi.org/10.1111/tra.12550
http://www.ncbi.nlm.nih.gov/pubmed/29359838
http://doi.org/10.1016/j.ceb.2017.02.008

Cells 2021, 10, 1128 17 of 17

40.

41.

42.
43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Shabalina, S.A.; Spiridonov, N.A.; Kashina, A. Sounds of sillence: Synonymous nucleotides as a key to biological regulation and
complexity. Nucleic Acids Res. 2013, 41, 2073-2094. [CrossRef]

Pop, C.; Rouskin, S.; Ingolia, N.T.; Han, L.; Phizicky, E.M.; Weissman, ].S.; Koller, D. Causal signals between codon bias, mRNA
structure, and the efficiency of translation and elongation. Mol. Syst. Biol. 2014, 10, 770. [CrossRef]

Hamilton, R.S.; Davis, I. Identifying and searching for conserved RNA localization signals. Methods Mol. Biol. 2011, 714, 447—-466.
Reuter, J.S.; Mathews, D.H. RNAstructure: Software for RNA secondary structure prediction and analysis. BMC Bioinform. 2010,
11, 129. [CrossRef]

Rullan, M.; Benzinger, D.; Schmidt, G.W.; Milias-Argeitis, A.; Khammash, M. An optogenetic platform for real time singel-cell
interrogation of stochastic transcriptional regulation. Mol. Cell 2018, 70, 745-756. [CrossRef] [PubMed]

Schroder, M.; Korner, C.; Friedel, P. Quantitative analysis of transcription and translation in gene amplified Chinese hamster
ovary cells on the basis of a kinetic model. Cytotechnology 1990, 29, 93-102. [CrossRef] [PubMed]

Liu, Y,; Beyer, A.; Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 2016, 165, 535-550.
[CrossRef]

Richards, H.A.; Halfhill, M.D.; Millwood, R.J.; Stewart, C.N. Quantitative GFP fluorescence as an indicator of recombinant protein
synthesis in transgenic plants. Plant Cell Rep. 2003, 22, 117-121. [CrossRef] [PubMed]

Little, M.H.; Wilkinson, L.; Brown, D.L.; Piper, M.; Yamada, T.; Stow, ].L. Dual trafficking of Slit3 to mitochondria and cell surface
demonstrates novel localization for Slit protein. Am. J. Physiol.-Cell Physiol. 2001, 281, C486-C495. [CrossRef]
Frenkel-Morgenstern, M.; Danon, T.; Christian, T.; Igarashi, T.; Cohen, L.; Hou, Y.M.; Jensen, L.J. Genes adopt non-optimal codon
usage to generate cell cycle-dependent oscillations in protein levels. Mol. Syst. Biol. 2012, 8, 572. [CrossRef]

Vassilev, L.T. Cell cycle synchronization at the G2/M phase border by reversible inhibition of CDK1. Cell Cycle 2006, 5, 2555-2556.
[CrossRef]

Sakowicz-Burkiewicz, M.; Grden, M.; Maciejewska, I.; Szutowicz, A.; Pawelczyk, T. High glucose impairs ATP formation on the
surface of human peripheral blood B lymphocytes. Intern. J. Biochem. Cell Biol. 2013, 1246-1254. [CrossRef] [PubMed]

Graham, N.A.; Tahmasian, M.; Kohli, B.; Komisopoulou, E.; Zhu, M.; Vivanco, I; Teitell, M.A.; Wu, H.; Ribas, A.; Lo, R.S.; et al.
Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death. Mol. Syst. Biol. 2012, 8, 589.
[CrossRef]

Mohammadi-Farani, A.; Ghazi-Khansari, M.; Sahebgharani, M. Glucose concentration in culture medium affects nRNA expres-
sion of TRPV1 and CB1 receptors and changes capsaicin toxicity in PC12 cells. Iran. ]. Basic Med. Sci. 2014, 17, 673.

Kramer, E.B.; Vallabhaneni, H.; Mayer, L.M.; Farabaugh, P.J. A comprehensive analysis of translational missense errors in the
yeast Saccharomyces cerevisize. RNA 2010, 16, 1797-1808. [CrossRef] [PubMed]

Komar, A.A. A pause for thought along the co-translational folding pathway. Trends Biochem. Sci. 2009, 34, 16-24. [CrossRef]
[PubMed]


http://doi.org/10.1093/nar/gks1205
http://doi.org/10.15252/msb.20145524
http://doi.org/10.1186/1471-2105-11-129
http://doi.org/10.1016/j.molcel.2018.04.012
http://www.ncbi.nlm.nih.gov/pubmed/29775585
http://doi.org/10.1023/A:1008077603328
http://www.ncbi.nlm.nih.gov/pubmed/22359058
http://doi.org/10.1016/j.cell.2016.03.014
http://doi.org/10.1007/s00299-003-0638-1
http://www.ncbi.nlm.nih.gov/pubmed/12845471
http://doi.org/10.1152/ajpcell.2001.281.2.C486
http://doi.org/10.1038/msb.2012.3
http://doi.org/10.4161/cc.5.22.3463
http://doi.org/10.1016/j.biocel.2013.03.008
http://www.ncbi.nlm.nih.gov/pubmed/23523697
http://doi.org/10.1038/msb.2012.20
http://doi.org/10.1261/rna.2201210
http://www.ncbi.nlm.nih.gov/pubmed/20651030
http://doi.org/10.1016/j.tibs.2008.10.002
http://www.ncbi.nlm.nih.gov/pubmed/18996013

	Introduction 
	Materials and Methods 
	Codon-Modified DNA Variants of Channels 
	Mutagenesis 
	Heterologous Expression 
	Cell Culture Media 
	Confocal Laser Scanning Microscopy (CLSM) 
	Cell Cycle Analysis 
	Software Analysis 

	Results 
	Mitochondrial Sorting of Channel Protein Is Modulated by Codon Choice 
	Codon-Biased Sorting Is a General Phenomenon of Mammalian Cells 
	Chimeras of Genes with Optimized/Non-Optimized Codons Cause Complex Sorting Patterns 
	Impact of Codon Usage on Sorting 
	Sorting Is Affected by State of the Cell Cycle However, Not by the Energy Status of Cells 

	Discussion 
	References

