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Abstract: Emerging data suggest that obesity is a major risk factor for the progression of major
complications such as acute respiratory distress syndrome (ARDS), cytokine storm and coagulopathy
in COVID-19. Understanding the mechanisms underlying the link between obesity and disease
severity as a result of SARS-CoV-2 infection is crucial for the development of new therapeutic
interventions and preventive measures in this high-risk group. We propose that multiple features
of obesity contribute to the prevalence of severe COVID-19 and complications. First, viral entry
can be facilitated by the upregulation of viral entry receptors, like angiotensin-converting enzyme 2
(ACE2), among others. Second, obesity-induced chronic inflammation and disruptions of insulin and
leptin signaling can result in impaired viral clearance and a disproportionate or hyper-inflammatory
response, which together with elevated ferritin levels can be a direct cause for ARDS and cytokine
storm. Third, the negative consequences of obesity on blood coagulation can contribute to the
progression of thrombus formation and hemorrhage. In this review we first summarize clinical
findings on the relationship between obesity and COVID-19 disease severity and then further discuss
potential mechanisms that could explain the risk for major complications in patients suffering
from obesity.
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1. Introduction

The novel coronavirus SARS-CoV-2 that first appeared in the Chinese city of Wuhan
is still causing a global pandemic with a death toll that already exceeds 2,430,000 people
and continues to grow every day (number from John Hopkins University). SARS-CoV-2
is the virus that causes COVID-19, a clinical picture characterized by fever, coughing,
muscle pain and fatigue and can evolve into hyperinflammation, cytokine storm, ARDS
and COVID-associated-coagulopathy (CAC) [1,2]. A large number of patients severely
ill with COVID-19 arriving at the ICU are overweight or suffer from obesity [3]. These
conditions, as well as smoking, age, type Il diabetes and cardiovascular diseases, appear
to be major risk factors for serious complications and increased mortality in COVID-19
patients [4-6].

Understanding the contributing factors to COVID-19 disease severity and complica-
tions in the context of obesity is of key importance for the development of therapeutic
interventions, as well as for advancing preventative strategies in this high-risk group.
Therefore, in this review we first summarize clinical findings on obesity and COVID-19
disease outcomes. Next, we discuss possible underlying mechanisms linking obesity to
major disease complications as a result of SARS-CoV-2 infection Here we focus on the
metabolic- and immune-related consequences of obesity on COVID-19 disease course.
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2. Obesity
2.1. Obesity Is a Common Disease Associated with Chronic Inflammation and Insulin and
Leptin Resistance

The prevalence of obesity has increased worldwide over the last 50 years. In 2015
the mean prevalence of obesity in adults of selected countries was 19.5% and ranged from
3.7% in Japan to 38.2% in the United States [7]. Obesity (BMI > 30 kg/ m?) is a major risk
factor for the development of non-communicable diseases and is defined by the WHO as
abnormal or excessive fat accumulation that might impair health [8].

Fat or adipose tissue, originally regarded as a simple organ for storing energy, is
currently viewed as one of the most important endocrine organs [9-11]. Fat cells, or
adipocytes, produce cytokine-like hormones, called adipokines, which play a major role
in metabolism and inflammation [11]. Adipocytes in different regions fulfill different
functions. Distinctions should be made between brown and white adipocytes, between
ectopic and non-ectopic and between visceral and subcutaneous adipose tissue to accurately
estimate the impact of the adipose tissue on the patient’s health. For example, visceral
fat, but not so much subcutaneous fat accumulation, promotes systemic inflammation and
is associated with impairments of glucose and lipid metabolism accompanied by insulin
resistance [12-14].

Obesity is associated with chronic inflammation, resulting from immune cell activity in
dysfunctional (visceral) adipose tissue. In obesity, the excessive presence and hypertrophy
of adipocytes result in hypoxia, cell stress and apoptosis. The hypoxic environment induces
the infiltration of immune cells into the adipose tissue as a result of the expression of
chemo attractive molecules [15]. Also, hypertrophic adipocytes produce multiple pro-
inflammatory adipokines, such as such as tumor necrosis factor-o (TNF-c), interleukin
(IL)-6 and leptin [16].

Leptin informs the brain about the amount of energy stored in the adipose tis-
sue [17,18]. The percentage of total body fat is the most important determinant of leptin
levels [19]. Given their high percentage of total body fat, individuals suffering from obesity
show elevated leptin concentrations [20], a condition also referred to as hyperleptinemia.
Persistent hyperleptinemia is often accompanied with central leptin resistance, due to
which appetite and satiety regulation is disrupted [21]. In addition to the regulation of
hunger and satiety, leptin also has pro-inflammatory properties [22], further contributing
to a chronic inflammatory state in individuals suffering from obesity [23].

2.2. Obesity and COVID-19 Disease Severity

In the following section, we summarize clinical findings supporting an association
between obesity and COVID-19 disease severity (see also Table 1). We searched the
Pubmed database up to March 15, 2021. In our search strategy, the combination of the
following keywords was used: obesity OR BMI OR overweight OR adiposity OR adipose
tissue AND COVID-19 OR SARS-CoV-2. Our search was limited by published full-text
article in English language. Most studies investigating this association used BMI cate-
gories as the predictor variable [24-37]. Four cross-sectional studies did not specify the
used classification of obesity [38-41] presumably using the WHO guidelines defining
obesity as BMI of 30 or higher. Outcome variables included: hospitalization [36,38,42],
ICU admission [31,35,37,38,43-45], intubation [24,25,29,37,38], invasive mechanical venti-
lation [26,31,34], disease severity [27,28,30,33] and death [24-29,32,38-41]. Of the eleven
studies investigating the association between BMI and mortality in hospitalized COVID-19
patients, ten studies observed an increased mortality rate in patients that were overweight
(BMI > 25 to <30) [24,32], or suffering from obesity (BMI > 30) [25,29,38-41], or severe
obesity (BMI > 35) [26,27]. One study observed no difference in in-hospital deaths between
normal and overweight (BMI > 28) patients, but overweight patients did show more severe
disease symptoms [28]. Because BMI does not discriminate between fat and lean body
mass and poorly reflects fat distribution, four studies used measures of visceral adipose
tissue (VAT) obtained by high-resolution computed tomography [42—45]. In COVID-19
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patients reporting at the emergency department, subsequent admission to the ICU was
associated with 30% higher VAT and 30% lower subcutaneous adipose tissue (SAT) [43]
with VAT scores being the best ICU admission predictor. Another study observed no differ-
ences in BMI but did see higher VAT and a higher VAT /total adipose tissue (TAT) ratio
in hospitalized patients compared to outpatients that did not require hospitalization [42].
Finally, in a different study it was observed that both VAT and TAT were associated with
ICU admission [45]. To summarize, numerous studies indicate that obesity is associated

with increased disease severity and mortality in COVID-19.

Table 1. Clinical Studies Investigating the Association Between Obesity and Disease Severity in COVID-19 Patients.

Reference Study Design Predictor Outcome Effect
BMI categories: underweight
(BMI < 18.5), normal weight Patients younger than 65
Retr tiv (BMI > 18.5 to <25), with obesity
Anderson et al., cf)hg:tpseti d N overweight (BMI > 25 to Intubation were at higher risk for intubation
2020 [29] (1 = 246 6)y <30), class 1 obesity death or death, with the highest risk
B (BMI > 30 to <35), class 2 among those with class 3 obesity
obesity (BMI > 35 to <40), (BMI > 40).
and class 3 obesity ( > 40)
Battisti et al., Cohort study . .. VAT /SAT was associated with
2020 [43] (n= 441) VAT/SAT ratio ICU admission increased risk of ICU admission.
Cha;‘i?rana Retrospective study VAT, SAT, TAT, VAT /TAT Hospi- Higher VAT and VAT /TAT in
2020 [4’2] (n=>51) and BMI talization hospitalized patients.
Deng etal, Izggsjf :tf:ge thi?angszuZCitzlf;Z??afta;nd Disease severit High BMI was a risk factor for
2020 [30] y P Y severe COVID-19.
(n =65) visceral fat
Frank et al Retrospective BMI categories: BMI < 25, Intubation BMI > 30 was associated with an
2020 [25] v cohort study BMI > 25 to < 30, BMI > 30 death ’ increased risk of intubation
(n = 305) to < 35, and BMI > 35 or death.
s I_.IOSP - Obesity was associated with an
Hernandez- . talization . . e
Cross-sectional . o s increased risk of hospitalization,
Galdamez et al., Obesity (not specified) ICU admission . .
study (n = 212,802) . ICU admission, intubation
2020 [38] Intubation
death and death.

BMI categories: BMI < 25,

Severe obesity (BMI > 35) was
positively associated with ICU

. Retrospective . admission.
. > > .
Kalligeros et al., cohort study BMI > 25 to <30, BMI > 30 ICU admission, Obesity (BMI > 30 to <35)
2020 [31] to <35, MV ;
(n=103) and severe obesity (BMI > 35)
BMI > 35 - . .
were positively associated with
the use of IMV.
BMI categories: underweight
(BMI < 18.5), normal weight Categories: overweight,

(BMI > 18.5 to <25), obesity class I, Il and III were
Kim et al., 2020 Retrospective overweight (]?MI >25to IMV, assoggted with mcreaseq risk of
[26] cohort study < 30), obesity class I death requiring IMV. Underweight and

(n=10,861) (BMI > 30 to < 35), obesity obesity classes II and III were

class IT (BMI > 35 to <40), associated with increased risk

and obesity class III of death.
(BMI > 40)
Descriptive BMI categories: normal . .
>

Mash etal, 2021 observational (BMI > 18.5 to <25), Overweight/obesity (BMI > 25)

. . Death was significantly linked with

[32] cross-sectional study overweight/obese mortalit
(n = 1376) (BMI > 25) Y
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Table 1. Cont.

Reference Study Design Predictor Outcome Effect
BMI categories: normal
Nakeshbandi Retrospective (BMI > 18.5 to <25), Mortalit Patients with overweight and
et al., 2020 cohort study overweight (BMI > 25 to intuba tio}; obesity were at increased risk for
[24] (n =504) <30), mortality and intubation.
and obese (BMI > 30)
Palaiodimos Retrospective . In—hosp.l tal Severe ob.esrry (B.M ! 2 35) was
ot al.. 2020 cohort stud BMI categories: BMI < 25, mortality, associated with higher
['2’7] (1 = 200) y BMI > 25 to <35, BMI > 35 Worse in-hospital in-hospital mortality and worse
- outcomes in-hospital outcomes.
Parra- Cross-sectional
Bracamonte study Obesity (not specified) Death Ob§51ty was assoc1ated’w1th
et al., 2020 higher risk of mortality.
[39] (n =331,298)

VAT score (overweight: VAT

Pediconi et al., Izzﬁgff:tige area 100-129 cm? or VAT score ICU admission VAT score was the best ICU
2020 [44] (n = 62) y 1. Obesity: VAT area > 130 admission predictor.
B cm? or VAT score 2)
~ Cross-sectional . .
Pefia e[’l 35., 2020 study Obesity (not specified) Death Obesity V;/(;s ;1 (r)r;ta;i)ill risk factor
(n = 323,671) Y
Randhawa et al, Retrospective BMI categories: normall Compli- Patlen.ts with obesity were more
2021 [33] cohort study weight (BMI < 30), obesity cations likely to suffer severe
g (n =302) BMI > 30) complications.
Retrospective E . Being overweight was related to
Rao etzaéj’ 2020 cohort study BMI (overweight, BMI > 28) Iggg:fg:g\ii?: b COVID-19 severity but not to
(n =240) y in-hospital death.
. . Cross-sectional . . .
iil:lla;oAz%u[z‘]r ]e study Obesity (not specified) Death Obesity wrgalzftzsliaated with
v (n = 17,479) ¥
BMI categories: lean
Retrospective (BMI > 185 to <25),
Simonnet et al., cohorfs tud overweight (BMI > 25 to Need for IMV Need for IMV was associated
2020 [34] = 124) y < 30), moderate obesity with BML

(BMI > 30 to < 35) and severe
obesity (BMI > 35)

Suleyman et al.,

Case series

BMI categories: severe

ICU admission

Severe obesity was
independently associated with

2 = i >
2020 [35] (n = 463) obesity (BMI > 40) ICU admission.
Pr " Abdominal adiposity and BMI
van Zelst et al., ospec. ve BMI were associated with an increased
observational . L. Unfavorable .
2020 Abdominal adiposity risk for unfavorable outcome
cohort study . . : outcome . .
[37] (11 = 166) (waist-to-hip-ratio) (respiratory support of 3 L/min,
B intubation, ICU admission).
Watanabe et al., Izzgs:f:tige TAT ICU admission TAT and VAT had a univariate
2020 [45] (n = 150) y VAT association with ICU admission.
BMI, categories:
. normal weight (BMI. g Hospi- BMI, waist circumference and
Retrospective to <25), overweight o . . . e
Zhu et al., 2020 talization waist-to-hip ratio were positively
cohort study (BMI > 25.0 to <30), and o . . .
[36] (n = 489,769) obese (BMI > 30); waist with ‘severe associated with the risk of severe
R = COVID-19/ COVID-19.

circumference and
waist-to-hip ratio

Abbreviations: VAT = visceral adipose tissue; SAT = subcutaneous adipose tissue; TAT = total adipose tissue; BMI = body mass index
(kg/m?); IMV = invasive mechanical ventilation; ICU = intensive care unit.
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3. Underlying Mechanisms Linking Obesity to Major Complications as a Result of
SARS-CoV-2 Infection

To gain a better understanding of the pathophysiology of COVID-19 in patients
suffering from obesity, in the next section and in Figure 1 we provide an overview of the
mechanistic pathways linking obesity with COVID-19 disease severity, with a focus on
the metabolic and immunological consequences of obesity on COVID-19 disease course.
Other features of obesity, like impaired respiratory mechanics and pulmonary function and
the co-existence of metabolic disorders like diabetes and cardiovascular disease within a
single individual also increase the risk for severe COVID-19 and complications [46], but are
beyond the scope of this review. In this overview we discuss, in vitro, animal and human
in vivo studies, including clinical trials. Studies were excluded when not indexed and when
methodology did not reach minimal criteria.

" Leptin (resistance)
Obesrty Insulin resistance

Cytokines (IL-6, TNFa)
M1 macrophages

¥ | Chronic inflammation
Thrombus formation
Serum ferritin

RAS components

> | ACE2 1
Tissue expansion/
remodelling ~ | HSPG 1
“ INRP-11

UPR activation /
csGRP78 1

Cell stress /
oxidative stress

Endothelial
dysfunction

Coagulopathy

LY
) > | Coagulopathy
Vitamin K storage
Impaired viral clearance
+~ Hyperinflammation
L4

COVID-19 severity and complications Cytokine storm
Coagulopathy

Figure 1. Schematic representation of different mechanisms through which obesity can promote COVID-19 disease severity
and risk for complications. Obesity is often accompanied by insulin and leptin resistance which impairs viral clearance.
Next, obesity is characterized by large hypoxic adipocytes infiltrated with immune cells and M1 macrophages leading to
a chronic inflammatory state, hypercoagulability and hyperferritinemia. ACE2 produced by adipocytes could provide
viral entry into the adipose tissue. In this way the adipose tissue could possibly function as a reservoir for the virus. The
constant tissue expansion and tissue remodeling accompanying obesity in concert with high cell stress can upregulate the
expression of other potential SARS-CoV-2 receptors, such as csGRP78, HSPG and NRP-1 in adipose tissue and other organs.
Obesity-associated endothelial dysfunction, enhanced production of PAI-1 and vitamin K deficiency all increase the risk
of developing COVID-19 associated coagulopathy. Abbreviations: IL-6 = Interleukin-6; TNFa = Tumor necrosis factor «;
RAS = Renin angiotensin system; ACE = Angiotensin converting enzyme; HSPG = Heparan sulfate proteoglycan; NRP-
1 = Neuropilin-1; UPR = Unfolded protein response; csGRP78 = Cell surface glucose related protein 78; PAI-1 = Plasminogen
activator inhibitor 1.
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3.1. Obesity Facilitates Viral Entry of SARS-CoV-2

Cell entry of SARS-CoV-2 virus depends on binding of the viral spike (S) proteins to
cellular receptors and on S protein priming by host cell proteases. Obesity can promote
viral entry by the upregulation of some of these host cell receptors.

3.1.1. Obesity Increases ACE2 Expression

Viral entry into target cells is facilitated by binding of the SARS-CoV-2 spike (5) protein
to the membrane protein angiotensin-converting enzyme 2 (ACE2) and the priming of the
S protein by serine protease TMPRSS2 and the endosomal cysteine proteases cathepsin
B and L expressed by host cells [47,48]. ACE2 is part of the renin-angiotensin system
(RAS) and plays an important role in regulating systemic blood pressure. Renin induces
proteolytic cleavage of angiotensinogen into angiotensin (Ang)-I, which is then converted
into Ang-II by ACEL. The action of ACE1 induces vasoconstriction and inflammation while
ACE2 acts as a counter-regulator of the RAS. ACE2 induces vasodilatation and has an
anti-inflammatory effect, by converting the pro-inflammatory Ang-II into Ang-1-7 which
opposes the actions of Ang-II. ACE2 is expressed in a wide variety of human tissues such
as the small intestine, testis, kidneys, heart, thyroid, lungs and brain [49]. Adipose tissue
also expresses ACE2, together with all other components of the RAS. The RAS has been
shown to play an important role in lipid metabolism and vice versa [50-53]. For example,
the expression of ACE2 in adipocytes seems to be promoted by a high-fat diet [54]. Also,
analysis of available transcriptome data showed that diet-induced obese mice displayed
increased expression of ACE2 in the lung epithelium [55]. The expression of ACE2 was
correlated with the expression of genes that code for sterol response element binding
proteins 1 and 2, transcription factors controlling lipid synthesis and adipogenesis [55].

In addition, a number of studies indicate that ACE2 expression can be upregulated by
a wide range of pro-inflammatory cytokines [56,57]. The chronic inflammatory state that
characterizes obesity could therefore potentially facilitate viral entry [56]. Moreover, it has
been suggested that viral pools can lodge in adipose tissue and promote shedding, immune
activation, and chronic excessive cytokine release [58]. Earlier studies demonstrated that
other viruses such as influenza A, HIV and cytomegalovirus use the adipose tissue as a
reservoir [59].

Binding of SARS-CoV-2 to ACE2, which prevents ACE2 from exerting its enzymatic
activities [60], has further consequences for immune system functioning. Decreased enzy-
matic ACE2 activity results in a reduction of anti-inflammatory Ang-1-7 and an accumu-
lation of pro-inflammatory Ang-II. This process further increases the risk for COVID-19-
related immune system complications such as ARDS.

In conclusion, obesity and its related pro-inflammatory state can promote viral entry,
viral shedding and excessive immune activation through the upregulation of ACE2.

3.1.2. Activation of the Unfolded Protein Response by GRP78

Another receptor that provides viral entry for SARS-CoV-2 is glucose-regulated protein
78 (GRP78) [61,62]. GRP7S, also called immunoglobulin heavy chain binding protein (BiP),
is part of the heat shock protein 70 family and is a molecular chaperone found in the lumen
of the endoplasmic reticulum (ER). GRP78 functions as an anti-apoptotic regulator that
protects cells against cell death induced by ER stress [62]. GRP78 protects against cell death
by ensuring the correct folding and assembly of proteins in the ER and by initiating the
degradation of misfolded proteins. This evolutionarily preserved cellular homeostatic
response to ER stress, also named the ER-stress or unfolded protein response (UPR) [63]
can be disrupted by viruses in the establishment of acute, chronic and latent infections [64].

Normally, new foreign viral proteins produced inside host cells would be immediately
degraded by the UPR. Therefore, viruses that acquired the ability to disrupt the process
designed to degrade unrecognized protein have a clear advantage. Binding GRP78 is a
mechanism commonly used by viruses like the Ebola virus, Zika virus, Dengue virus,
Japanese encephalitis virus, Coxsackie A9, MERS-CoV and the Borna disease virus to
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ensure safe entry into host cells and to facilitate viral replication [65-71]. Also, the S
proteins of the SARS-CoV-2 virus binds GRP78 with high affinity [61,72].

Obesity and various factors associated with obesity induce ER stress [73] and conse-
quently UPR activation. These factors, including hypoxia, reactive oxygen species, insulin
resistance, nutritional imbalance and excessive fat storage [74-76], stimulate GRP78 ex-
pression as a mechanism of the UPR to restore normal cell functions [77,78]. For example,
evidence from in vitro and in vivo studies shows that dyslipidemia is associated with GRP78
overexpression in adipocytes (especially in white adipose tissue) [79], pneumocytes [80],
neurons of the hypothalamus [81] and hepatocytes [82].

GRP78 overexpression induces its translocation to the cell membrane or cell surface.
When GRP78 is located on the cell surface, it is referred to as cell surface (cs)-GRP78.
This acts as a multi-functional receptor that can bind various ligands and plays a crucial
role in apoptosis and inflammation, among other things [62]. By binding to cs-GRP78,
SARS-CoV-2 could ensure safe entry into host cells [61,72].

3.1.3. Heparan Sulfate Proteoglycans and Neuropilin-1

Heparan sulfate proteoglycans (HSPGs) are located in the extracellular matrix and at
the surface of the cell, where they act as co-receptors for various ligands. HSPGs are widely
expressed and mediate many biological activities, including angiogenesis, blood coagulation,
developmental processes, and cell homeostasis. The binding of cytokines, chemokines and
growth factors to HSPGs at the cell surface prevents their degradation [83]. A significant
amount of research has established that many different types of viruses can interact with
HSPGs. For some of these viruses, these interactions are essential for internalization into host
cells [84]. This is also the case for the internalization of SARS-CoV-2 [85].

Syndecans are the major family of transmembrane HSPGs and are present on virtually
all nucleated human cells. Syndecans have been shown to facilitate the cellular entry
of SARS-CoV-2 in vitro. Among syndecans, syndecan-4 was most efficient in mediating
SARS-CoV-2 uptake, yet overexpression of other isoforms, including syndecan-1 and the
neuronal syndecan-3, also increased SARS-CoV-2 internalization [85,86]. Syndecan 4 is
widely expressed in most adult tissues [87] and, among other functions, is involved in lipid
metabolism, by clearing pro-atherogenic remnant lipoproteins from the circulation [88]. In
addition, syndecan-4 is crucial for adipocyte differentiation and proliferation [89]. Synde-
can 4 is upregulated upon activation of the pro-inflammatory transcription factor nuclear
factor-kB (NF-kB) [90,91] and its expression is therefore markedly increased under inflam-
matory conditions [92].

Neuropilin-1 (NRP-1), a membrane-bound co-receptor for growth factors such as
vascular endothelial growth factor (VEGF), also facilitates viral entry of SARS-CoV-2
in vitro [93]. NRP-1 is strongly involved in adipogenesis and is highly upregulated during
adipose-derived stem cell differentiation [94].

In obesity, chronic inflammation, higher circulating pro-atherogenic lipoprotein lev-
els [95] and the constant expansion of adipose tissue accompanied with the differentia-
tion and proliferation of adipose-derived stem cells, could increase syndecan (especially
syndecan-4) and NRP-1 expression in various tissues. The up-regulation of syndecans and
NRP-1 could facilitate cellular entry of SARS-CoV-2. However, further studies need to
confirm this theory.

3.2. Obesity Related Insulin Resistance Contributes to an Impaired Immune Response to
SARS-CoV-2 Infection

3.2.1. Obesity Induces Insulin Resistance

Insulin resistance is a consequence of the impairment of insulin signaling in insulin-
responsive cells, like hepatocytes, myocytes and adipocytes. In the adipose tissue, insulin re-
sistance is promoted by excess lipid accumulation, causing hypoxia and inflammation. The
subsequent invasion of macrophages in the adipose tissue that release pro-inflammatory
cytokines further impair insulin signaling (see also Section 3.2.2). As a consequence of
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adipocyte insulin resistance higher levels of free fatty acids (FFA) leave the fat tissue and
enter into the circulation. The increase in circulating FFA and pro-inflammatory mediators
further impairs insulin action in other metabolically active organs and tissues, including
skeletal muscle and the liver, leading to systemic insulin resistance, which is associated
with impaired glucose transport [96,97]. It has been shown that the size of the visceral
adipose tissue and adipocyte size in humans is directly associated with systemic insulin
resistance [14].

3.2.2. Insulin Resistance Is Induced by Adipocytes and Related Immune Cells

Adipose tissue macrophages can be divided into the classical M1 and alternatively
activated M2 macrophages. Adipose tissue from obese individuals contains elevated num-
bers of M1-like macrophages, which produce pro-inflammatory cytokines, such as TNF-o
and IL-6 [98,99]. These pro-inflammatory cytokines inhibit insulin signaling pathways in
multiple tissues [100].

The production of TNF-a by M1 macrophages is positively related to the size of the
adipose tissue mass. In the adipose tissue TNF-o induces phosphorylation and inactivation
of insulin receptors and activates lipolysis, which increases the FFA load. The production of
IL-6 by adipocytes and related immune cells is also associated with the amount of body fat.
IL-6 induces the production of the pro-inflammatory acute-phase protein C-reactive protein
(CRP) and increases fibrinogen levels, resulting in a prothrombotic state. It also promotes
adhesion molecule expression by endothelial cells and activates local RAS pathways [101].

Chronic elevations of pro-inflammatory cytokines, such as TNF-« and IL-6, also
directly influence COVID-19 disease course. Because TNF-« plays an important role
in promoting ARDS, obese individuals with chronically elevated serum TNF-« are at
greater risk of developing this life-threatening complication [102]. In patients with COVID-
19, IL-6 levels are significantly elevated and associated with adverse clinical outcomes.
Meta-analysis of mean IL-6 concentrations demonstrated 2.9-fold higher levels of IL-6
in hospitalized COVID-19 patients with complications compared to patients without
complications [103].

3.2.3. Systemic Insulin Resistance Impairs the Immune Response

Insulin acts upon immune cells and therefore, systemic insulin resistance can have
a substantial impact on the functioning of the adaptive and innate immune system [100].
Animal studies have shown that insulin signaling is essential for optimal T cell effector
function [104]. In humans, insulin-resistant individuals displayed delayed innate immune-
related pathway activation after respiratory viral infection compared to insulin-sensitive
individuals, suggesting an impairment of the early acting innate immune response [105].

It is likely to assume that chronic inflammation and impairments of the immune
response as a consequence of obesity-induced insulin resistance may reduce efficient viral
clearance and drive organ injury in the development of severe COVID-19 [106].

3.3. Disrupted Leptin Signaling in Obesity can Induce Hyperinflammation during
SARS-CoV-2 Infection

3.3.1. Leptin Is an Important Regulator of Energy Metabolism

Leptin is a pleiotropic protein secreted primarily from white adipose tissue into the
bloodstream and can be transported across the blood-brain barrier. Through its effects on
the central nervous system (CNS) and peripheral tissues, leptin is an important regulator
of energy homeostasis, metabolism, neuroendocrine and immune system function [107].

Obesity proceeds from a chronic energy imbalance and is characterized by persistent
hyperleptinemia and central leptin resistance. Under physiological conditions, leptin
informs the brain about the energy status in the periphery, but in obesity, signaling to regu-
latory centers in the brain that normally inhibit food intake and regulate body weight and
energy homeostasis is disrupted. Mechanisms underlying leptin resistance, include disrup-
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tion of leptin signaling in hypothalamic and other CNS neurons, impaired leptin transport
across blood-brain barrier, hypothalamic inflammation, ER stress, and autophagy [107,108].

3.3.2. Leptin Modulates the Immune System

Leptin has pro-inflammatory properties and upregulates the secretion of pro-
inflammatory cytokines [18,22]. Leptin signaling results in the modulation of both the
innate and adaptive immune system on multiple levels. Leptin signaling occurs primar-
ily through the binding of leptin to the long isoform of the leptin receptor, followed by
activation of the JAK/STAT pathway [2]. In the innate immune system, increased leptin
production stimulates chemotaxis and neutrophil survival, induces pro-inflammatory cy-
tokine production [109,110], and higher expression of adhesion molecules by eosinophils
and basophils [111,112]. Monocyte activation and proliferation as well as the production
of pro-inflammatory cytokines and chemotaxis are also stimulated by leptin [22]. Certain
immune cells, more specifically those that contain the long isoform of the leptin recep-
tor, may become unresponsive to leptin, or leptin resistant, when exposed to high leptin
levels for an extended period of time [113,114]. Therefore, chronic hyperleptinemia, as
seen in obesity, can have detrimental effects on the immune response due to both chronic
pro-inflammatory effects and immune cell dysfunction [21].

Additionally, the adaptive immune system responds to leptin. Leptin induces a shift
towards the more pro-inflammatory Thl response [21], activates T and B lymphocytes,
and inhibits regulatory T cells [18,115,116]. Regulatory T cells are involved in suppressing
an excessive immune response [117,118]. It was demonstrated in patients suffering from
obesity that leptin levels and BMI were inversely correlated with the number of regulatory
T cells [119].

In obesity, leptin levels can be further increased due to infection or sepsis [120].
Elevated leptin levels, in combination with the obesity-induced pro-inflammatory state,
further increases the risk for the development of a disproportionate or hyper-inflammatory
response upon SARS-CoV-2 infection. Furthermore, SARS-CoV-2 infection has been shown
to increase the expression of the gene that encodes for suppressor of cytokine signaling
3 (SOCS3) in lung epithelium [55]. This gene is a key regulator of inflammation and
an inhibitor of leptin signaling. Increased SOCS3 expression as a result of SARS-CoV-
2 infection could therefore further impair leptin signaling and negatively influence the
immune response in patients suffering from obesity [121].

3.4. Hyperferritinemia as a Result of Hyperinflammation can Induce a Cytokine Storm

Ferritin is an iron-binding molecule that stores iron in a biologically available form for
vital cellular processes and protects proteins, lipids and DNA from the potential toxicity of
this metal element. Ferritin is a marker of the acute-phase response, and its secretion is
regulated by pro-inflammatory cytokines. However, the origin of circulating serum ferritin
during inflammatory conditions is still debated [122]. While some describe serum ferritin
as a leakage product of damaged cells [123], increasing evidence shows that circulating
serum ferritin levels may play a critical role in the inflammatory process [91]. Serum ferritin
may protect the host during active infection by limiting the availability of iron to pathogens,
a phenomenon called nutritional immunity’ [124-126].

COVID-19 is also accompanied by a rise in circulating ferritin levels. Serum ferritin lev-
els can be used as a diagnostic marker and even a predictor of COVID-19 severity [127-131].
The elevated ferritin levels observed in COVID-19 patients are probably a consequence of
the inflammatory process induced by SARS-CoV-2 infection and actively act as enhancer
of the inflammatory process in more severe COVID-19 [132]. Alternatively, it has been
suggested that ferritin levels increase due to the break-down of red blood cells by the SARS-
CoV-2 virus. By breaking down red blood cells and then attacking the hemoglobin 1-beta
chain, the virus could separate iron from the porphyrin ring to eventually hijack the por-
phyrin ring, producing a rise in free iron and subsequently increasing ferritin levels [133].
Although hemoglobin-related biomarkers such as serum ferritin, progressively increase as
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the severity of COVID-19 increases [134-136], there is very limited evidence supporting
this hypothesis [133]. This hypothesis has subsequently been refuted by DeMartino and
colleagues, confirming that disease markers such as hemoglobin, iron and ferritin did not
differ between critically ill COVID-19 patients and non-COVID ARDS patients [137].

Several studies have shown a relationship between obesity and elevated ferritin
serum levels [138]. Chronic inflammation, as a result of the increased release of leptin and
pro-inflammatory cytokines by adipocytes and related immune cells, [11,21,23,120] likely
contributes to the manifestation of elevated ferritin levels in individuals with obesity.

Infection with SARS-CoV-2 in individuals with obesity as pre-existing condition can
progress into a hyperferritinaemic state as both SARS-CoV-2 and obesity initiate the release
of ferritin. Ferritin further stimulates macrophages to produce pro-inflammatory cytokines,
mainly IL-1, IL-6 and IL-17. At overly elevated serum ferritin levels, macrophages produce
so many cytokines that the situation can evolve into a cytokine storm [122]. The cytokine
storm occurring with COVID-19 could be considered a hyperferritinemia syndrome [139]
and is a significant adverse development in the course of the disease, translating into a
marked increased risk of death [140].

3.5. Obesity-Related Risk Factors for Developing Coagulopathy in COVID-19 Patients

About a third of ICU patients with COVID-19 develop thrombotic complications [141,142].
The characteristics of CAC seem to be more complex than the development of thromboin-
flammation triggered by systemic inflammation in response to infection [143]. For example,
the presence of systemic microthrombi and hemorrhage in SARS-CoV-2 affected organs
indicates a malfunction in the coordination of coagulation and fibrinolysis [144]. Moreover,
CAC is commonly associated with increased D-dimer and fibrinogen levels, indicating
there is initially no suppression of fibrinolysis [145]. Abnormalities in other coagulation
biomarker such as prothrombin time and platelet count are less frequent and seem less
affected by SARS-CoV-2 infection [146].

In the following section we provide an overview of parameters that are dysregulated
in obesity and could contribute to increase the risk of developing CAC (See also Figure 1).

3.5.1. Hyperleptinemia

Hyperleptinemia is a risk factor for developing thrombi. Leptin affects blood clot-
ting by enhancing prothrombotic and antifibrinolytic protein expression in vascular and
inflammatory cells and thereby producing a more hypofibrinolytic state [147]. A large
population-based cohort study from The Netherlands, examining associations between
serum leptin concentrations and coagulation factor concentrations and parameters of
platelet activation, showed that serum leptin concentrations were positively associated
with concentrations of coagulation factor VIII and IX [148]. Hyperleptinemia and leptin
resistance have also been described as risk factors for the development of cardiovascular
diseases [149,150]. As elevated leptin levels are a key feature of obesity [149,151,152],
the prothrombotic state produced by hyperleptinemia, increases the risk for developing
thrombotic complications in COVID-19.

3.5.2. PAI-1 Production by Adipocytes

Plasminogen activator inhibitor 1 (PAI-1) is the primary physiological inhibitor of
plasminogen activation. Elevations in plasma PAI-1 compromise normal fibrin clearance
mechanisms and promote thrombosis. PAI-1 is also produced by adipocytes and its
production is dramatically upregulated in obesity [153,154]. PAI-1 mRNA expression was
demonstrated in the visceral and subcutaneous fat of obese rats [155] and in adipose tissue
from human subjects [156]. In both rats and humans, VAT produced significantly more PAI-
1 compared to SAT. These results are consistent with the observation that cardiovascular
risk is most closely correlated with central obesity [157]. PAI-1 produced by adipocytes and
vascular endothelium is involved in tissue expansion and angiogenesis necessary during
adipose tissue development [158].
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Several molecular mechanisms are involved in the upregulation of PAI-1 mRNA expres-
sion in obesity. For example, different cytokines including TNF-« and transforming growth
factor (TGF)-f3, triglycerides, free fatty acids and insulin all stimulate PAI-1 expression in
adipose tissue [153]. Leptin, additionally, contributes to a prothrombotic state by increasing
the expression of PAI-1 in vascular endothelium [159]. Thus, obesity-induced upregulation
of PAI-1 further increases the risk for coagulopathy, following SARS-CoV-2 infection.

3.5.3. Endothelial Dysfunction

The endothelium serves as a dynamic barrier that separates blood from interstitia.
Endothelial cells respond rapidly to changes in the circulation and become activated
according to environmental needs [160]. The multitude of physiological functions of the
endothelium are still a topic of extended research. Endothelium is recently described as an
active regulator of lipid and glucose homeostasis [161].

Endothelial cells play a major role in vascular homeostasis and blood coagulation.
Endothelial dysfunction is considered a hallmark of metabolic diseases and is characterized
by a loss of molecular cell functions and inevitably causing coagulopathy. Endothelial
dysfunction contributes to various pathological states such as atherothrombosis, arterial
thrombosis (stroke, visceral and peripheral artery occlusive diseases), venous thrombosis,
intravascular coagulation and thrombotic microangiopathies [160].

Oxidative stress is considered the major cause of endothelial dysfunction. Obesity gen-
erates oxidative stress through different pathways, such as hyperglycemia, known to trigger
vascular damage by inducing the accumulation of reactive oxygen species (ROS) [162].
Hyperglycemia also activates NF-«B, a transcription factor that mediates vascular inflam-
mation [162]. The exacerbated production of pro-inflammatory cytokines by adipose tissue
further increases oxidative stress levels and promotes the upregulation of procoagulant
factors and adhesion molecules in the endothelium, the downregulation of anticoagulant
regulatory proteins, increases thrombin generation, and enhances platelet activation [163].
Not coincidentally, endothelial dysfunction is a common feature of comorbidities that
increase the risk for severe COVID-19, including hypertension, obesity, diabetes mellitus,
coronary artery disease and heart failure.

Furthermore, because ACE2 is expressed abundantly on vascular endothelial cells of
both small and large arteries and veins [164], SARS-CoV-2 infection of endothelial cells
can further aggravate endothelial dysfunction. Endothelial damage and dysfunction may
thus be the result of cellular infection by SARS-CoV-2, as well as a consequence of obesity-
associated excessive systemic inflammation [165]. Evidently, patients with preexisting
endothelial dysfunction are more vulnerable to develop severe complications, including
coagulopathy, following SARS-CoV-2 infection (See also Figure 1).

3.5.4. Vitamin K

Vitamin K is a fat-soluble vitamin, required for the carboxylation of vitamin K-
dependent proteins (VKDP). Intrahepatic VKDP include coagulation factors 1II, VII, IX,
X, and different anticoagulant proteins. Extra-hepatic VKDP include diverse gamma-
carboxyglutamate (Gla) proteins involved in maintaining bone homeostasis, as well as
inhibiting ectopic calcification [166]. Vitamin K is not a single entity but a family of
structurally related molecules such as phylloquinone, also referred to as vitamin K1, and
menaquinone or vitamin K2.

Obesity is linked with vitamin K deficiency [167-169]. Vitamin K deficiency results in
decreased vitamin K-dependent carboxylation and phosphorylation of Gla-proteins and,
as a consequence, into elevated levels of circulating desphosphorylated-uncarboxylated
matrix Gla protein (dp-ucMGP). Recent research studied the relationship between obesity
and serum dp-ucMGP in a cohort of 278 Chinese Han people. The results demonstrated
that serum dp-ucMGP level was positively associated with visceral fat index, waist height
ratio, but not BMI [167]. In addition, lower vitamin K2 levels were observed in obese
hemodialysis patients compared to non-obese patients [168]. Also, a lower vitamin K1
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status was observed in patients with obesity compared to healthy individuals [169]. Yet,
differences in dietary K1 intake could not fully explain this observation. It has been
suggested that vitamin K accumulates in adipose tissue, thereby reducing the bioavailability
of this vitamin in individuals with obesity [169]. This theory could be plausible since a
similar mechanism has been established for other fat-soluble vitamins [170,171]. However,
understanding the mechanisms underlying the association between obesity and vitamin K
deficiency remains a topic for further investigation.

Vitamin K status was also assessed in COVID-19 patients by measuring dp-ucMGP.
Levels of dp-ucMGP were significantly elevated in COVID-19 patients compared to controls
and were higher in COVID-19 patients with unfavorable disease outcome. Carboxylated
matrix Gla-protein protect against degradation and calcification of vasculature and elastic
fibers in the extracellular matrix of the lungs. In COVID-19, elastic fiber degradation
combined with calcification of these fibers due to low vitamin K status could aggravate
lung injury and lung fibrosis [172].

Thus, to summarize, we can argue that several factors associated with obesity increase
the risk for CAC, including elevated leptin levels, increased PAI-1 levels, endothelial dys-
function and low vitamin K levels. The latter is possibly also involved in the development
of more severe lung injury in COVID-19.

4. Conclusions and Implications for Further Research

Obesity cannot simply be defined as an excess of fat cells. Adipose tissue releases
many active substances, such as adipokines and components of the RAS, all influencing the
brain and metabolic- and immune system. Being obese increases the risk of SARS-CoV-2
infection and complications via several mechanisms. First, viral entry is enhanced due to
increased ACE2, csGRP78 and presumably HSPG and NRP-1 expression levels in various
cell types, like pneumocytes and adipocytes. Second, the immune system is unable to
provide an adequate immune response leading to impaired viral clearance. Eventually, the
immune system can overreact as a result of pro-inflammatory ‘priming” due to excessive
cytokine production by adipose tissue and its related immune cells and high ferritin
levels, eventually triggering a cytokine storm [122,139]. Finally, hyperleptinemia, PAI-1
production by adipocytes and endothelial cells, endothelial dysfunction and low levels,
or low bioavailability, of vitamin K, all increase the risk for the development of thrombus
formation and hemorrhage.

An important lesson learned from the coronavirus pandemic is the importance of a
healthy lifestyle to positively influence the course of COVID-19 disease. A non-processed
nutrient-rich diet [173-175], limited excessive or overly energy-rich food, sufficient and
intensive exercise [176], sufficient sleep [177] and avoiding chronic psycho-emotional
stress [178] are all efficient health-promoting measures in the prevention of obesity [179].
We also advocate an integrated multidisciplinary approach in the fight against COVID-19.
Future research must identify causes of severity and complications to develop efficient
preventive measures and curative interventions.
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