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Abstract: Impaired fetal growth is one of the most important causes of prematurity, stillbirth and
infant mortality. The pathogenesis of idiopathic fetal growth restriction (FGR) is poorly understood
but is thought to be multifactorial and comprise a range of genetic causes. This research aimed
to investigate non-coding RNAs (lncRNAs) in the placentas of male and female fetuses affected
by FGR. RNA-Seq data were analyzed to detect lncRNAs, their potential target genes and circular
RNAs (circRNAs); a differential analysis was also performed. The multilevel bioinformatic analysis
enabled the detection of 23,137 placental lncRNAs and 4263 of them were classified as novel. In
FGR-affected female fetuses’ placentas (ff-FGR), among 19 transcriptionally active regions (TARs),
five differentially expressed lncRNAs (DELs) and 12 differentially expressed protein-coding genes
(DEGs) were identified. Within 232 differentially expressed TARs identified in male fetuses (mf-FGR),
33 encompassed novel and 176 known lncRNAs, and 52 DEGs were upregulated, while 180 revealed
decreased expression. In ff-FGR ACTA2-AS1, lncRNA expression was significantly correlated with
five DEGs, and in mf-FGR, 25 TARs were associated with DELs correlated with 157 unique DEGs.
Backsplicing circRNA processes were detected in the range of H19 lncRNA, in both ff- and mf-FGR
placentas. The performed global lncRNAs characteristics in terms of fetal sex showed dysregulation
of DELs, DEGs and circRNAs that may affect fetus growth and pregnancy outcomes. In female
placentas, DELs and DEGs were associated mainly with the vasculature, while in male placentas,
disturbed expression predominantly affected immune processes.

Keywords: FGR; placenta; RNA-seq; lncRNA; transcriptome

1. Introduction

Adequate fetal growth and proper functioning of the placenta is a valuable predictor
of pregnancy outcome [1]. Hence, impaired fetal growth is one of the most important
causes of prematurity, stillbirth and infant mortality [2,3]. The etiology of fetal growth
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restriction (FGR) is multifactorial and comprises a wide range of various either maternal,
fetal, placental or genetic causes [4,5]. Maternal risk factors include infections (TORCH,
malaria), poor maternal health (malnutrition, diabetes mellitus, hypertension, anemia, car-
diac, hepatic and chronic renal diseases), obesity (BMI > 30), drug abuse, smoking, female
age above 35 years and multiple gestations [5,6]. Fetal factors encompass chromosomal
abnormalities, as at least 50% of fetuses with trisomy 21, 13 or 18, or Turner’s syndrome
are associated with a higher rate of fetal growth restriction [7]. Moreover, specific placental
disorders like infarction, fetal vessel thrombosis, preeclampsia (PE), decidual or spiral
artery arteritis, chronic villitis and placental hemangioma, as well as umbilical cord abnor-
malities, like velamentous or marginal cord insertion, also affect FGR initiation [4,8]. While
those environmental cues have been associated with the development of FGR, idiopathic
aberrations in placental function account for nearly 70% of FGR cases in normally formed
fetuses [9]. The pathogenesis of idiopathic FGR is poorly understood but might be the effect
of placental insufficiency with interference in nutrient supply, redox balance and energy
metabolism [10]. Growth-restricted newborns are susceptible to pulmonary hypertension,
hypothermia, pulmonary hemorrhage, and hypo- and hyper-glycemia [4,11] and may suf-
fer from cognitive delay, and neurological and psychiatric disorders in childhood [4,11–14].
Adults are prone to obesity, hypertension and Type 2 diabetes, as well as neurological,
cardiovascular, renal, hepatic and respiratory diseases [14–17].

With high-throughput sequencing and bioinformatics development, it appears that
the number of non-coding RNAs (ncRNAs) greatly exceeds the number of protein-coding
genes. Transcripts that are not translated into proteins can be divided into several classes:
long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), small non-coding RNAs
such as microRNAs (miRNAs), small interfering RNAs (siRNAs), piwi-interacting RNAs
(piRNAs), small nucleolar RNAs (snoRNAs) and other short RNAs [18,19]. Transcripts to
be classified as lncRNA need to meet criteria regarding length (>200 nt) and a structure
that must contain at least two exons. The majority of lncRNAs exist as a single isoform and
98% of them are spliced and 80% have 2–4 exons [20,21]. The genomic localization of the
lncRNA may be various, from the introns of protein-coding genes to enhancer-associated
RNAs resulting from direct or bidirectional transcription of enhancer elements. Non-coding
transcripts located between coding and non-coding genes do not overlap the exons of other
genes, which are long intergenic (or intervening) ncRNAs (lincRNAs). Natural antisense
transcripts are transcribed for the antisense strand of a coding (or non-coding gene) but
their transcription start site is located downstream relative to that of the coding gene [22,23].
As a large ncRNAs class, circRNAs, produced due to non-canonical backsplicing, should
also be mentioned. CircRNAs are mostly transcribed from protein-coding genes but may
include exons that are skipped during canonical types of alternative splicing, as well
as introns [24]. CircRNAs may exert a regulatory function by acting as microRNA or
protein inhibitors, which multiplies their biological effects. Moreover, the expression of
circRNAs is tissue-specific and plays an important role in the physiological development
and pathogenesis of various diseases [25].

There is growing evidence that some differences in placenta efficiency and growth
depend on the sex of the fetus [26,27]. Male fetuses grow faster and, at birth, have a greater
body length and mass than female fetuses with comparable placenta size [28]. At the
cellular level, differences between male and female placentas result from the activity of
X- and Y-linked genes that also may have the potential to control and regulate autosomal
gene expression [29]. Research performed on physiological human placentas concerning
sex-bias comparisons revealed five differentially expressed lncRNAs: HAND2-AS1, XIST,
RP1-97J1.2, AC010084.1 and TTTY15 [30]. Studies of placentas from FGR-complicated preg-
nancies identified 28 differentially expressed genes (DEGs), and their functional enrichment
annotation indicates that most of them are implicated in inflammation and immune disor-
der processes related to FGR and PE. Genes that display differential alternative splicing
(DAS) events (S100A13, GPR126, CTRP1, and TFPI) are mainly implicated in angiogenic-
related processes [31]. Investigating the mechanisms regulating placental development
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and potentially underlying the FGR should be extended with a complete analysis of the
lncRNA profile. Studies of single lncRNAs revealed that their specific profile may make
a contribution to placenta-associated conditions [32]; however, high-throughput analy-
sis characterizing a complete lncRNA profile in FGR-affected placentas has not yet been
performed. As far as it is known, this research is the first step towards a more profound
understanding of lncRNAs’ interactions in FGR-affected male and female placentas.

Recent studies revealed that lncRNAs have huge potential to regulate eukaryotic
gene expression at every level [33] and control various physiological processes, including
development, differentiation and other biological mechanisms [34]. There may also be
some differences in placental gene expression depending on the sex of the fetus [30,31] and
thus, it seems reasonable to study the lncRNA profile in various pathologies in terms of
the fetus’s sex. Therefore, this study analyzed if there were sex-based differences in the
lncRNA profile of the physiological and FGR-complicated human placenta. Advanced
bioinformatics may reveal possible changes in the lncRNA profile that disrupt expression
regulation and affect the proper development of the placenta and fetus.

2. Materials and Methods
2.1. Ethics Statement

Placental samples were collected at the Clinical Ward for Gynecology, Obstetrics,
and Oncological Gynecology at the Regional Specialist Hospital in Olsztyn, according to
the consent of the Bioethics Committee of the Warmia-Mazury Medical Chamber (OIL.
164/15/Bioet) in Olsztyn, Poland. All patients gave informed consent (confirmed by
signature) to participate in the study.

2.2. Clinical Characteristics of Placental Samples

To investigate differences in the ncRNA expression profile between growth-restricted
(FGR) and properly growing (control) fetuses, placentas from 6 women were collected for
the FGR and control (n = 6) groups (Table 1). Healthy patients were added to the control
group (n = 6) if they had a physiological pregnancy course with no clinically abnormal
signs of gestation, normal fetus growth and development, and underwent a scheduled
caesarean section (CS) at full-term pregnancy (37–39 weeks of gestation). Placentas for
the study group (n = 6) were collected from patients with diagnosed asymmetric FGR
(chromosomal abnormalities were excluded) who underwent scheduled (due to breech
presentation, psychiatric indications or state after previous CS) or immediate CS due to
the symptoms of fetal circulation insufficiency. FGR was diagnosed according to the Fetal
Growth Calculator (https://medicinafetalbarcelona.org/calc/ accessed on 18 January 2019)
guidelines.

https://medicinafetalbarcelona.org/calc/
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Table 1. Characteristics of the placental samples.

Biosample
Number Fetus Sex Fetus

Weight [g]
Week of

Gestation
Apgar
Score

Maternal
Age

FGR
Stage *

ERX4055529 Male 750 26 2 31 4
ERX4055530 Male 1680 30 2 37 3
ERX4055531 Male 2060 39 10 28 1
ERX4055532 Female 2360 36 10 28 1
ERX4055533 Female 2260 37 10 24 1
ERX4055534 Female 2000 37 10 27 1
ERX4055535 Male 3230 37 10 35 -
ERX4055536 Male 3420 39 10 37 -
ERX4055537 Male 3500 39 10 31 -
ERX4055538 Female 2960 39 10 23 -
ERX4055539 Female 3300 38 10 29 -
ERX4055540 Female 3100 38 10 30 -

* FGR stage was determined according to Figueras and Gratacós (2014) [35] and the Fetal Growth Calculator
(https://medicinafetalbarcelona.org/calc/ accessed on 18 January 2019) guidelines. Stage 1: severe smallness or
mild placental insufficiency; Stage 2: severe placental insufficiency; Stage 3: low-suspicion fetal acidosis; Stage 4:
high-suspicion fetal acidosis.

The percentiles were calculated based on estimated fetal weight (EFW), biparietal
diameter, head circumference, abdominal circumference and femur length, which were
appointed ultrasonographically, and the values of pulsatile index flow into a medial
cerebral artery, the umbilical artery and maternal uterine arteries; resistance index and
systolic/diastolic ratio (GE Voluson 730). Ultrasound EFW below the 10th centile was a
prerequisite to recognize abnormal fetal growth [36]. Additionally, to diagnose FGR, one of
the following conditions had to be met: vessel flow estimated as poor, a cerebroplacental
ratio below the 5th percentile, mean uterine artery pulsatility index higher than the 95th
percentile, or correct flows but with a third percentile EFW for a given gestational age.
Gestational age was assessed by the first day of the last menstrual period confirmed
by ultrasound scans with crown–rump length measurement performed between the 8th
and 12th weeks in those with 28-day cycles, or only by ultrasound scans between 8 and
10 weeks of pregnancy in women with irregular cycles. To investigate sex biases in the
lncRNA expression profile, placental samples were derived from both fetus sexes. Placental
tissue samples were collected according to established guidelines [37]. Briefly, immediately
after delivery, full-thickness pieces from the middle region of the placenta, close to the
umbilical cord insertion, were harvested, rinsed in sterile cold PBS buffer and dabbed
dry, then snap-frozen in liquid nitrogen. Preserved tissues were stored at −70 C until
RNA extraction.

2.3. Library Preparation and High-Throughput Sequencing

Total RNA was isolated from the placental tissues using the Qiagen RNeasy Kit accord-
ing to the manufacturer’s recommendations, and DNase (Qiagen Venlo, The Netherlands)
digestion was performed to obtain high-quality RNA. The quantity and integrity of the
total RNA were evaluated by Quant-IT RiboGreen (Invitrogen, Waltham, MA, USA) and
TapeStation RNA screen tape (Agilent Technologies, Waldbronn, Germany), respectively.
For RNA library construction, only high-quality samples (RIN > 8.0) were used. Sequenc-
ing libraries were prepared with 1 µg of total RNA from each sample with the use of the
Illumina TruSeq mRNA Sample Prep kit (Illumina Inc., San Diego, CA, USA). Initially,
poly-T-attached magnetic beads were used to purify the poly-A-containing mRNA. Next,
purified mRNA was fragmented into small pieces using divalent cations under an elevated
temperature. The cleaved RNA fragments were copied into first-strand cDNA using Super-
Script II reverse transcriptase (Invitrogen) and random primers, and second-strand cDNA
was synthesized using DNA Polymerase I and RNase H. Further, an end repair process
included the addition of a single ‘A’ base and then ligation of the indexing adapters. After
purification and PCR enrichment, final cDNA libraries were created. A KAPA Library

https://medicinafetalbarcelona.org/calc/
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Quantification kit (Illumina Sequencing platform) for qPCR and The TapeStation D1000
ScreenTape (Agilent Technologies, Waldbronn, Germany) were applied to quantify the ex-
amined libraries. Finally, the indexed libraries were sequenced on the HiSeq4000 platform
(Illumina, San Diego, USA by the Macrogen Incorporated).

2.4. Quality Control, Mapping and Differentially Expressed Analysis

FastQC v. 0.11.7 [38] software was used to prepare a quality control report. Trimmo-
matic v. 0.32 [39] was applied to eliminate adaptors and to trim reads with a low Phred
score (cutoff < 20). Reads trimmed to 90 bp were splice-aware mapped to the reference
human genome (GRCh38) with ENSEMBL annotation (GRCh38.90). Paired-end reads were
aligned to the genome by a compilation of two methods STAR v. 2.7.1a and StringTie v.
1.3.3 [40]. Only uniquely mapped reads in the format of a BAM file were retrieved by
conversion with a MarkDuplicates Picard tool (http://broadinstitute.github.io/picard/ ac-
cessed on 4 February 2020). Expression analysis was performed using the Cufflinks v. 2.2.1
pipeline [41]. The genome-wide transcriptome comparison of FGR-affected and control
placentas was divided into two parts (Figure 1): FGR vs. controls in the placentas of male
fetuses (mf-FGR) and FGR vs. controls in the placentas of female fetuses (ff-FGR). Using
a binomial statistical test (with a cutoff of padj < 0.05), differentially expressed transcripts
were retrieved for each comparison. Among the differentially expressed TARs, DEGs and
lncRNAs were selected. Candidate DEGs were plotted in an MA and heatmap diagrams
with gplots [42] and ggplot2 [43] in the R Bioconductor packages (www.r-project.org ac-
cessed on 22 February 2021). The obtained DEGs were annotated by the Gene Ontology
(GO) database using g.Profiler [44] software with the g:SCS algorithm (p-value < 0.05). All
in silico analyses were computed on the server (46-core CPU and 136 GB RAM) of the
Regional IT Center of University of Warmia and Mazury in Olsztyn.

http://broadinstitute.github.io/picard/
www.r-project.org
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Figure 1. Scheme of the project.

2.5. Identification of Known and Novel lncRNAs

A multistage pipeline (Figures 1 and 2) was adapted for the identification of known
and novel lncRNA candidates in human FGR-affected and control libraries. The transcripts
of each sample were merged and annotated using references from both the ENSEMBL
and GENCODE (Release 33-GRCh38.p13) databases (green line in Figure 2). Transcripts
classified as the lncRNA biotype were separated as “known lncRNA” and were directly
transferred to the final lncRNAs dataset (red line in Figure 2). Sequences without any
annotation were classified as “not annotated” and were used in the next steps of lncRNA
prediction (blue line in Figure 2). Sequences shorter than 200 bp and 1-exon transcripts
were filtered out. Further, the coding potential was calculated using 7 tools in 3 different
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approaches. The first approach included CPC2 v. 0.1 [45] and PLEK v.1.2.4 [46], which
did not require a reference genome. The second was based on FEELnc v. 0.1.1 [47]
(estimated coding probability cutoff = 0.3934), CPAT v. 2.0.0 [48] and CNCI v.2 [49] (with a
coding probability threshold of 0.364), tools that required a reference genome. In the third,
intersected transcripts from the above approaches were scanned with the Pfam v.32.0 [50]
and Rfam v.14.1 [51,52] databases. Sequences for which any homolog was found in the
protein or RNA domain databases (except families of domains typical for human lncRNA)
were filtered out. Finally, surviving sequences that met all the above criteria were classified
as “novel lncRNA”. Both datasets of known and novel lncRNAs were combined into the
final lncRNAs set used in this research (orange line in Figure 2).
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2.6. LncRNA Target Functional Network Analyses

Among the identified lncRNAs, significant DELs (cutoff q-value < 0.05) were retrieved
from differentially expressed TARs. Cis- and trans-acting lncRNAs were investigated ac-
cording to their expression profiles and localization concerning their target protein-coding
genes. Based on Cufflinks values, the Pearson correlation coefficient between lncRNAs
and mRNA expression profiles was calculated. The positive and negative mutual trans-
interactions were qualified as significant when the correlation coefficient was higher than
the absolute value of 0.9 and its p-value was lower than 0.05. Cis-acting lncRNA regulatory
elements were classified concerning the distance (<10 kbp) to the target gene. ToppClus-
ter [53] was used to identify functional lncRNA–target gene interactions. The network of
functional metadata for selected DELs and DEGs was generated using Cytoscape [54].

2.7. Prediction of Circular Organization of Transcripts

To identify circular RNA molecules in the RNA-Seq data, mapping of previously
processed reads against the reference human genome (GRCh38) using the STAR v. 2.7.1a
tool was performed again with the additional input parameters recommended by Jakobi
et al. (S2019). The multi-modular Circtools software v. 1.1.0.8 [55] was applied for compu-
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tational circRNA analyses. CircRNA detection in datasets prepared from ff-FGR, mf-FGR
and both control groups was based on the DCC tool v.0.4.8 [56]. The internal circRNA
structure reconstruction was conducted through the use of FUCHS [57]. Statistical tests of
host gene-independent circRNA expression differences were performed in comparisons of
FGR vs. controls in female and male fetuses, using the R environment-dependent CircTest
package [56]. The threshold of statistical significance of differentially expressed circRNAs
was set at p < 0.05. The required datasets containing the location of repetitive regions
and individual exons in the reference genome were generated using the UCSC Genome
Browser [58].

2.8. Validation of RNA-Seq Results Using External Transcriptomic Datasets

Data obtained regarding known and novel lncRNAs, as well as DEGs, were validated
by comparison with external data generated in similar studies. The available databases
were searched to select projects including placental transcriptomic data from physiological
and FGR-affected pregnancies. Data from the most accurate microarray (ID: GSE147776)
and RNA-Seq (ID: GSE114691) projects were chosen for further analysis. The raw data
were then processed with the same approach and parameters that were applied to our data
analysis. Expression values for detected DELs and DEGs were merged and compared with
values obtained for datasets from the aforementioned projects.

2.9. Validation of RNA-Seq Results Using Quantitative Real-Time PCR (RT-qPCR)

Laboratory validation was performed using the same RNA samples as were used for
RNA-Seq. Genes for validation were selected among differentially expressed lncRNAs
characteristic for both comparisons (FGR vs. controls in placentas of male fetuses; FGR
vs. controls in placentas of female fetuses) that were classified as known lncRNAs in
the ENSEMBL database. The Enhanced Avian HS RT-PCR Kit (Sigma Aldrich, St. Louis,
MO, USA) was used according to the manufacturer’s recommendations to obtain a cDNA
template for quantitative real-time PCR (RT-qPCR). Expression levels of UCA1, AC244205,
HAND2-AS, and ACTA2-AS1 were detected by RT-qPCR using TaqMan Gene Expression
Assays (UCA1: Hs01909129; AC244205: Hs01692073; HAND2-AS: Hs01043065; ACTA2-AS1:
Hs04406862) (all Applied Biosystems, USA). The RT-qPCR was performed with the use of
Applied Biosystems TaqMan Fast Advanced Master Mix (Thermo Fisher Scientific, Vilnius,
Lithuania) according to the manufacturer’s protocol. In brief, each reaction contained 10 µL
of Master Mix (2×), 1 µL of TaqMan Assay (20×), 25 ng of the cDNA template and an
appropriate volume of nuclease-free water to achieve a final volume of 20 µL. The reactions
were performed in four replicates in the QuantStudio 3 Real-Time PCR System (Applied
Biosystems, Thermo Fisher Scientific Inc., Waltham, MA, USA). The reaction conditions
were as follows: 50 ◦C for 2 min, 95 ◦C for 2 min, and 40 cycles of 1 s denaturation at 95 ◦C
and 20 s of annealing/extension at 60 ◦C. Relative expression levels of target lncRNA were
determined using the comparative Pfaffl method [59], where the expression was presented
as the fold change relative to the control, as well as normalized to an endogenous reference
gene (relative quantification RQ = 1) (GAPDH: Hs02786624; Applied Biosystems, Waltham,
MA, USA). The results were expressed as means ± standard deviations. Statistical analysis
was performed using Student’s t-test (two-tailed) in Prism 8 software (GraphPad Software
Inc., San Diego, CA, USA). P-values were considered statistically significant at p < 0.05 (***).

3. Results
3.1. Mapping and Clustering of FGR-Affected RNA-Seq Libraries

High-throughput sequencing of the control (n = 6) and study group (n = 6) generated
660,603,254 raw paired-end reads; among these, 577,078,812 reads passed the quality
control procedure of PHRED33 >20 and minimum (90 bp) sequence length filtration. The
252,001,839 paired-end reads were uniquely mapped to the reference human genome. The
following mean distribution of mapped reads was obtained: 55% were derived from coding
regions, 35% from untranslated regions (UTR), 2% from intergenic regions and 8% from
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introns. All unannotated transcripts (9.5%) were localized on chromosome 1, while 3%
were on the sex chromosomes; out of these, 2307 were on the X and 85 on the Y.

3.2. Identification of lncRNAs in FGR-Affected Placentas

The annotated transcripts were divided into two main categories: known and novel.
The first dataset comprised 80,837 protein-coding and 18,874 known long non-coding
transcripts (red line in Figure 2), while the second dataset contained 77,301 expressed and
novel (unannotated) transcripts. The 70,422 multi-exon transcripts with sequences longer
than 200 bp were scanned for potential coding probability. The intersecting part of the
five algorithms’ results encompassed 6212 transcripts without protein-coding potential.
Furthermore, the Rfam and Pfam databases were searched and 1949 RNAs were excluded
(blue line in Figure 1). The final dataset included 18,874 known and 4263 novel placental
long non-coding RNAs (lncRNAs) transcripts that were combined in the common dataset
of 23,137 lncRNAs (orange line in Figure 2).

The dataset of identified lncRNAs was characterized by an average length of 1379 bp
(median 773 bp), a mean exon number of 3.2 (median 3), a mean exon length of 429.9
and the mean of expression values (FPKM) equal to 0.80819. According to the ENSEMBL,
the most frequent biotypes of known long non-coding RNA annotations (85.5%) were:
antisense RNA (8295 transcripts) and lincRNA (7894 transcripts). A detailed classification
is provided in Table 2).

Table 2. Overall statistics of known lncRNAs. Transcripts’ biotypes were classified according to the
ENSEMBL database.

Transcript Biotypes Transcripts

antisense_RNA 8295
lincRNA 7849

processed_transcript 484
retained_intron 441
sense_intronic 657

sense_overlapping 250
TEC 722

others 176

3.3. DEGs and lncRNAs in a Female Fetus Affected by FGR (ff-FGR)

Differentially expressed transcripts (Figure 3a) for both genes (DEGs) and lncR-
NAs (DELs) were analyzed according to the normalized read counts, set significance
(q-value < 0.05) and fold change (absolute log2 fold change > 1).
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In total, 19 transcriptionally active regions (TARs) were differentially expressed in
FGR-affected female fetus placentas, of which five were identified as DELs (two novel:
XLOC_053187, XLOC_056099; three known: ACTA2-AS1, PVT1 and AL390726). Among
the remaining TARs, 12 were protein-coding genes and all of them were downregulated
(Table 3, Table S1).

Gene ontology (GO) enrichment analysis reflected the functional annotations of the
seven DEGs that were qualified as two biological processes (BP), four cellular components
(CC) and one molecular function (MF). In the BP category, the ‘muscle contraction’ and
‘muscle system process’ were enriched. DEGs (MYO1A, ACTC1, PDLIM3, MYH3) were
then assigned to cellular components (including the ‘actin cytoskeleton’, ‘sarcomere’ and
‘actin filament’ terms). The most relevant genes (SULF1, MYH3, TAC3) were engaged
in reproductive biology, especially playing a crucial role in the regulation of vascular
endothelial growth factor production, postnatal growth retardation and female pregnancy.
The top 10 terms of GO enrichment are presented in Figure 4a and all results are shown in
Table 4.
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Table 3. Differentially expressed genes identified in ff-FGR samples. Normalized fold changes (log2

fold change) were calculated on the locus level (XLOC). Loci containing lncRNAs are marked in
the “lncRNA” column as known (referring to annotated lncRNA) and novel (referring to lncRNAs
identified in this study). “-” in the “lncRNA” column means that in this specific locus, lncRNA has
not been detected.

Gene ID Gene Name Log2 Fold
Change ENSEMBL ID lncRNA

XLOC_000619 - Inf NA -

XLOC_006184 ACTA2-AS1 −3.55 ENSG00000180139 known

XLOC_006962 - -Inf NA -

XLOC_013293 MYO1A,TAC3 −4.60 ENSG00000166866,
ENSG00000166863 -

XLOC_013509 PPFIA2 −4.98 ENSG00000139220 -

XLOC_019012 ACTC1 −6.02 ENSG00000159251 -

XLOC_019742 - -Inf NA -

XLOC_023789 CAMKK1,P2RX1 −2.88 ENSG00000004660,
ENSG00000108405 -

XLOC_023922 MYH3 −3.55 ENSG00000109063 -

XLOC_040198 - Inf NA -

XLOC_042821 PDLIM3 −2.30 ENSG00000154553 -

XLOC_044217 SGCD −3.63 ENSG00000170624 -

XLOC_048901 THBS2 −3.24 ENSG00000186340 -

XLOC_051439 TMEM130 −4.53 ENSG00000166448 -

XLOC_052796 SULF1 −4.39 ENSG00000137573 -

XLOC_053187 MIR1204,PVT1,
PVT1_1,PVT1_3 3.38

ENSG00000283710,
ENSG00000249859,
ENSG00000276443,
ENSG00000278324

-, novel, known

XLOC_054578 - -Inf NA -

XLOC_054962 ALDH1B1 −3.37 ENSG00000137124 -

XLOC_056099 ANKRD18A,FAM95C −2.75

ENSG00000180071,
ENSG00000225345,
ENSG00000250989,
ENSG00000273036,
ENSG00000272934,
ENSG00000272904,
ENSG00000283486

-, novel, known
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Figure 4. Gene Ontology enrichment plot of the top 10 categories, classified by p-values (x-axis of
the plots), of downregulated ff-FGR (a), and upregulated (b) and downregulated (c) mf-FGR genes.
The circles represent terms described along the y-axis, colors reflect the GO classes: blue—molecular
function, green—biological process, red—cellular component. Each circle’s area corresponds to the
number of genes (numerical values near to circles) enriched in each term.
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Table 4. The results of Gene Ontology analysis for differentially expressed genes detected in ff-FGR
samples.

Term Name Term ID Source p-Value * Gene Names

muscle contraction GO:0006936 BP 3.3074 × 10−3 P2RX1,SULF1,ACTC1,SGCD,MYH3
muscle system process GO:0003012 BP 1.2096 × 10−2 P2RX1,SULF1,ACTC1,SGCD,MYH3

actin filament GO:0005884 CC 8.5988 × 10−3 PDLIM3,ACTC1,MYO1A
filamentous actin GO:0031941 CC 3.7185 × 10−2 PDLIM3,MYO1A
actin cytoskeleton GO:0015629 CC 4.0095 × 10−2 PDLIM3,ACTC1,MYO1A,MYH3

sarcomere GO:0030017 CC 4.2036 × 10−2 PDLIM3,ACTC1,MYH3
carbohydrate derivative

binding GO:0097367 MF 4.4875 × 10−2 CAMKK1,P2RX1,SULF1,ACTC1,
MYO1A,THBS2,MYH3

* calculated with the g:SCS algorithm.

3.4. DEGs and lncRNAs in a Male Fetus Affected by FGR (mf-FGR)

Meanwhile, 232 TARs were significantly modulated, according to their expression
values, in mf-FGR (Figure 3b, Tables S2 and S3). Among all TARs, 33 encompassed novel
lncRNAs and 176 known lncRNAs. In sequence, 52 DEGs were upregulated and 180
displayed decreased expression in mf-FGR. Upregulated TARs were significantly enriched
in 14 BP, 3 MF and 19 CC functional association networks (Table S4 and Figure 4b). The
overexpressed chorionic gonadotropin family (CGB1, CGB5, CGB8), AC008687.1 and leptin
(LEP) were significantly enriched in ‘hormone activity’. Further, ‘tissue development’ and
‘muscle contraction’ were represented by 18 (SORBS2, SERPINB7, COL11A1, DSG3, SPRR3,
HAND1, etc.) and 7 (NPNT, DES, CNN1, MYH14, ACTG2, ACTC1, ACTA1) upregulated
DEGs, respectively. Downregulated genes were classified to 40 BP, 3 MF and 14 CC relations
(Table S5 and Figure 4c). The identified DEGs were expressively assigned to ‘anatomical
structure development’, ‘neuron differentiation‘, ‘leukocyte migration’, ‘immune response’
and ‘primary immunodeficiency’, etc. Leukocyte migration as a part of immune reactions
was displayed by downregulated genes (IL1B, RET, CCL8, THY1, LCK, WNT5A, CYP7B1,
CXCR4, CD44). Both reproductive and immune systemic reactions were under the control
of underexpressed genes (LCN2, ALOX15, IL15, IL7R, CRISP3). Neuronal differentiation
as a complex developmental process was also significantly enriched with multiple genes
(CNR1, HOXD10, SPOCK1, DKK1, DTX1, MAP1A, CDH11, WNT16, etc.).

3.5. lncRNA—Target Gene Relationships

The co-expression analysis of DELs vs. DEGs in ff-FGR placentas indicated one
lncRNA (ACTA2-AS1) that was significantly correlated with five DEGs (Table 5). Trans-
correlation analysis of mf-FGR placentas revealed 25 TARs associated with DELs correlated
with 157 unique DEGs (Table S6). Five DELs demonstrated a high correlation coefficient
(r > 0.9) and the most frequent ones were linked with 133 and 134 target DEGs. In total,
5 and 1623 trans-relations were detected in the ff-FGR and mf-FGR libraries, respectively.
Based on the genomic localization, 20 lncRNAs were identified as potential cis-regulators
of seven target genes in ff-FGR, where four relations were intergenic and 39 were intragenic
(Table S7). In mf-FGR, 77 lncRNA transcripts were in a location close to 28 target genes
(Table S8).

Table 5. Trans-relations between lncRNAs and differentially expressed genes in ff-FGR samples.

lncRNA DEG lncRNA Name DEG Name Correlation p-Value

XLOC_006184 XLOC_019012 ACTA2-AS1 ACTC1 0.960 2.3481 × 10−3

XLOC_006184 XLOC_042821 ACTA2-AS1 PDLIM3 0.948 4.0051 × 10−3

XLOC_006184 XLOC_044217 ACTA2-AS1 SGCD 0.943 4.8411 × 10−3

XLOC_006184 XLOC_052796 ACTA2-AS1 SULF1 0.933 6.6462 × 10−3

XLOC_006184 XLOC_054962 ACTA2-AS1 ALDH1B1 0.976 8.6087 × 10−4

ToppCluster was used to analyze direct and indirect relations such as co-expression
and miRNA interactions, according to data available in PubMed. The relations common to
both sets of mf- and ff-FGR, selected from three databases (Coexpression Atlas, ToppCell At-
las and microRNA), were visualized as a functional Cytoscape network (Figure 5; Table S9).
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3.6. Circular Organization of Transcripts

Sequencing data analysis of ff- and mf-FGR placentas, revealed seven and three
backsplicing circRNAs processes, respectively. Of the detected circRNA cases, two macro-
molecules were detected in both sexes: the first one in the range of the intron of the
SEPT14 pseudogene (chr1:629,675–629,725) and second within the first exon of H19 lncRNA
(chr11:1,997,424–1,997,475). All circRNAs, for which the host gene was H19, were encoded
within its first exon, and two of them were formed by an alternative splicing process. Data
obtained during the circRNAs detection workflow are presented in Table 6. A comparison
of ff-FGR vs. mf-FGR did not reveal any significant differences in circRNA expression.

Table 6. All detected circular RNA molecules in ff-FGR and mf-FGR samples.

Sample Set Chr Start End Host Gene Strand Region

ff-FGR 1 629,675 629,725 AL669831.3 - intron
ff-FGR 1 207,336 713 207,336,763 CD55 + exon 7
ff-FGR 11 1,997,400 1,997,475 H19 - exon 1
ff-FGR 11 1,997,424 1,997,475 H19 - exon 1
ff-FGR 11 1,997,697 1,997,767 H19 - exon 1
ff-FGR KI270721.1 52,582 52,657 not annotated - intergenic
ff-FGR KI270721.1 52,606 52,657 not annotated + intergenic

mf-FGR 1 629,675 629,725 AL669831.3 - intron
mf-FGR 11 1,997,424 1,997,475 H19 - exon 1
mf-FGR 21 41,178,852 41,178,960 BACE2 + intron

3.7. Validation of RNA-Seq Results Using External Transcriptomic Datasets

Validation with external data confirmed the presence and expression tendencies of the
detected DELs and DEGs. Chosen placental transcriptomic data regarding FGR-affected
and physiological samples from the microarray (Figure 6b; ID: GSE147776) and RNA-Seq
(Figure 6c; ID: GSE114691) projects were normalized in log10(FPKM + 1) and RMA units,
respectively. The general expression patterns (Figure 6a–c), as well as the expression values
for specific loci, were compared (Figure 6d). Expression data showed high homogeneity,
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both within the projects (between samples) and between the compared projects. As the
results obtained for external data were largely consistent with our results, this indicates the
reliability of the performed analyses.
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3.8. Validation of RNA-Seq Results Using Quantitative Real-Time PCR (RT-qPCR)

To validate the RNA-Seq results, lncRNA with detected significantly different expres-
sion were used for RT-qPCR. Statistical analysis using the Pfaffl method [59] proved the
significant changes in the expression levels of three lncRNA compared with the control
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(Figure 7). The results showed that two lncRNAs, UCA1 and AC244205, were upregulated
and one, ACTA2-AS1, was downregulated. The expression level of HAND2-AS was not
statistically significant. The expression profiles of UCA1, HAND2-AS and ACTA2-AS1
determined by RT-PCR were similar to those obtained in the sequencing experiment.
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above the bars. p-values were considered statistically significant at p < 0.05 (***).

4. Discussion

Among the diversified molecules involved in the regulation of eukaryotic gene expres-
sion, lncRNAs may coordinate physiological processes, and their dysfunction may have an
impact on the process of pathologies and diseases [60,61]. The mode in which lncRNAs
act is multifarious and involves binding with DNA, RNA and proteins to regulate their
function by affecting activation, expression level or its inhibition. [62]. To date, lncRNAs
have mainly been investigated in various cancers [63] but currently, due to their confirmed
regulatory potential, have been more often studied in other diseases and reported to be
involved in physiological and complicated pregnancies [30,61,64–66]. The mechanisms
leading to FGR are not well defined and attempts to identify the regulatory elements linked
with this disorder have been limited to single lncRNAs [32,67]. Thus, the results obtained
in this study are the first that describe the global pattern of lncRNA expression and indicate
potential target genes in a case–control study of FGR.

In the current study, we evaluated the physiological and FGR-affected placentas of
female and male fetuses separately. Sex-biased placental gene expression is still under
investigation [19,68], so the genetic background of FGR pathology may also vary between
the sexes. However, this does not exclude the possibility that some of the dysregulated
pathways may lead to FGR development in either female or male fetuses. Thus, to fully
investigate FGR pathophysiology, both approaches to comparing placentas, within and
between the sexes, should be performed. To validate the results of the current study,
the obtained datasets were compared with recent similar projects [69,70]. In general, the
expression tendencies were comparable, but the aforementioned projects lacked crucial
information concerning the fetal sex of each sample. A collation of analyses performed be-
tween sexes and in the cohort group additionally underlined the need for both approaches
to investigating the FGR background.
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In placentas from female fetuses, we identified five lncRNAs and 12 genes that were
differentially expressed due to the FGR. Among the detected DELs, ACTA2-AS1 was
strongly downregulated (log2FC = −3.55) and indicated positive co-expression with po-
tential target genes: ACTC1, PDLIM3, SULF1. According to the NONCODE database
expression profile, ACTA2-AS1 is highly expressed in the placenta compared with the other
tissues. In the ff-FGR group, the co-expression Atlas database revealed the association
of ACTA2-AS1 with several DEGs (PDLIM3, SULF1, TAC3, THBS2), which may affect
angiogenesis, vasculature or blood circulation, which are crucial during pregnancy.

ACTC1 encodes Actin Alpha Cardiac Muscle 1 and is classified as highly conserved
proteins involved in various types of cell motility [71]. A lack of ACTC1 may induce apop-
tosis, which plays a crucial role in embryological development and may also lead to dis-
ruption of organ differentiation, specifically defects associated with heart diseases [72,73].
PDLIM3, involved in the determination of pregnancy-associated cardiomyopathy (PAC) [74],
is potentially regulated by ACTA2-AS1. Besides inflammatory, immunologic and envi-
ronmental factors, PAC may be triggered by a mutation in PDLIM3 [75]. Genes known
to be associated with heart diseases may also influence FGR determination, especially as
fetal growth depends on the functional capacity of the placenta to transfer nutrients and
oxygen from the mother to the fetus. It cannot be excluded that the downregulation of
ACTC1 and PDLIM3 in the placenta may result in an insufficiency in substrate supply to
the fetus. Nutrient supply below the demand prevents the fetus from achieving its genetic
growth potential and leads to FGR [76]. A high lncRNA–gene co-expression coefficient
(0.93) between ACTA2-AS1 and downregulated SULF1 (log2FC = −4.39) in ff-FGR was also
detected. The function of the protein coded by SULF1 is to release 6-O-sulfate groups from
the heparan sulfate, which, in consequence, modifies the growth factor-binding sites in
proteoglycans [77]. Therefore, sulfatase plays a major role in many important processes,
such as angiogenesis, cell signaling and embryogenesis [78,79]. Research performed in mice
revealed that SULF mutations are responsible for brain and skeletal malformations, abnor-
mal innervations of smooth muscle and even embryonic lethality [80,81]. Multiple SULF1
effects arise from the modulation of the BMP, Hedgehog and Wnt signaling pathways, as
well as fibroblast growth factors. An association between SULF1 mutation and occurrences
of recurrent miscarriage has also been postulated [82]. Thus, the detected changes in SULF1
expression patterns between physiological and FGR-complicated placentas may play an
important role in the determination of this pregnancy pathology.

Single-cell RNA-Seq showed that tachykinin 3 (TAC3) was upregulated in first- and
second-trimester placentas, specifically in cells of extravillous trophoblasts and cytotro-
phoblasts [83]. Additionally, dysregulation of TAC3 may be implicated in PE, pregnancy-
related hypertension and, therefore, in adverse pregnancy outcomes [84]. Therefore, un-
derexpression of TAC3 (log2FC = −5.04) in the third-trimester placenta may be specific
to FGR occurrence. In the placentas of the patients with PE, significantly increased ex-
pression levels of THBS2 are mediated by miRNAs and influence trophoblast growth,
invasion, migration and cell apoptosis suppression [85]. Our research revealed positive
expression associations between ACTA2-AS1 and both TAC3 (log2FC= −4.6) and THBS2
(log2FC = −3.24) in ff-FGR. Enrichment analysis revealed a link between ACTA2-AS1
and upregulated PVT1 (log2FC = 3.4), also known as a lncRNA. The reverse tendency,
downregulation of PVT1, was observed in gestational diabetes mellitus (GDM) and PE
placentas [86]. PVT1 knockdown significantly promotes apoptosis, and inhibits the pro-
liferation, migration and invasion of trophoblast cells; its overexpression contributes the
opposite effects. PVT1 affects numerous miRNAs and genes engaged in maintaining the
physiological action of the placenta [66,86]. Thus, PVT1, considered to be an important
oncogene, may also be a critical lncRNA regulator in placenta physiology and therefore
pregnancy diseases. A metadata analysis showed associations between PVT1 and MYH3.
Research performed in the rat model for PE revealed that MYH3, MYH8 and TNNI1 were
enriched in the ‘striated muscle contraction’ pathway [87]. The involvement of myosins,
major contractile proteins, in the pathophysiology of experimental PE [87] may suggest
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that dysregulation of MYH3 expression is also associated with other pregnancy disorders.
One of the conditions required to diagnose FGR is an estimation of vessel flow as poor
or a cerebroplacental ratio below the fifth percentile or a mean uterine artery pulsatility
index higher than the 95th percentile [31]. In our studies, the MYH3 expression pattern
was determined as significantly downregulated (log2FC= −3.5), which may be directly
associated with reduced placental vessel flow underlying the FGR pathophysiology. Our
previous investigation of FGR placentas [31] revealed that some DEGs crucial for pregnancy
development may be involved in the pathophysiology of different pregnancy disorders in
PE samples. The identified ff-FGR DEGs may be correlated with the expression patterns
of regulatory elements such as ACTA2-AS1, which significantly emphasize the validity of
lncRNAs in the course of pregnancy.

In male fetuses’ placentas, among the 43 detected DELs, 17 transcripts were classified
as a novel. Based on their close distance, 28 potential target genes were identified, and
a co-expression analysis revealed 1511 significant relationships with DELs. One mf-FGR
DEL, AC092017.4, displayed enhanced regulative potential of 134 trans-target genes. Posi-
tive correlations were measured between AC092017.4 (log2FC= −5.09) and solute carrier
family genes (SLC1A2 and SLC38A5), which were also downregulated (log2FC= −3.80
and log2FC= −2.72, respectively). However, in mf-FGR placentas, another SLC family
member, SLC22A2, was upregulated (log2FC= 3.40). Among the diverse SLC family, which
specializes in transmembrane transport, the members SLC1A2, SLC38A5 and SLC22A2
encode glutamate [88], sodium-coupled neutral amino acid [89] and polyspecific organic
cation [90] transporters, respectively. OCT2, a product of SLC22A2, is responsible for the
re-uptake of norepinephrine and serotonin from the extracellular fluid, which regulates
vasoconstriction and blood flow across the placenta to the fetus [91]. Previous studies
indicated that underexpression of the amino acid transport system precedes FGR [64,66].
Generally, it is known that altered placental transport of essential nutrients and molecules
directly contributes to FGR [92–94] but the contributing regulatory mechanisms remain
unknown. The obtained results may suggest that dysregulation of transporters is an effect
of AC092017.4’s action in mf-FGR placentas, and its outcome concerns insufficient nutrient
supply to the placenta and fetus. Moreover, AC092017.4 is positively correlated with DEGs
(IL1B, RET, CCL8, WNT5A, CYP7B1, ALOX15, and IL15) assigned to immune reactions.
Animal models demonstrated that obesity and excessive nutrition increased the concentra-
tions of IL1B and other proinflammatory cytokines, which resulted in the development of
insulin resistance and inordinate fetal growth [95,96]. Conversely, we can presume that
fetal malnutrition and growth deficiency in the course of FGR may be a consequence of
decreasing IL1B (log2FC = −5.11) expression. Il15 encodes a cytokine required for NK-cell
lineage development. Studies of a Il15-deficient rat model revealed a lack of uterine NK
(uNK) cells, which normally regulate blood flow to the placenta through the development
of the uterine vasculature [97]. In humans, changes in uNK cell number or activity lead to
failure of the uterine vascular system [98,99] and notably disturb fetal growth [100]. The
uNK cells synthesize immunoregulatory cytokines, particularly IFN-γ, which significantly
upregulates chemokines such as CXCL9, CXCL10, CCL8 and CCL5 [101]. A decreased
level of CCL8 expression (log2FC=−4.06) in mf-FGR samples may be the result of uNK and
immune response dysregulation caused by DELs and DEGs, such as AC092017.4 and Il15.

Another gene that may be dysregulated by AC092017.4 is the RET proto-oncogene
(RET) which plays a signaling role in the immune system by its receptor localized on NK,
monocytes and B and T lymphocyte cells [102]. RET has been demonstrated to regulate
pathways that are involved in cellular survival, proliferation, differentiation, migration and
chemotaxis [103], which are significant processes during pregnancy. Pregnancy outcome
also depends on WNT5A, and any disturbances in its signaling pathway during early
pregnancy reflect defective decidualization and placentation, which, in late pregnancy, are
manifested as various abnormalities [104]. AC092017.4 may also affect the expression of
enzyme genes, such as ALOX15 and CYP7B1. ALOX15 encodes a lipoxygenase respon-
sible for resolvin and protectin formation, which function as inflammation mediators.
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Interestingly, in rats, ALOX15 expression increases toward term and is higher in female
fetuses’ placentas [105]. The significant underexpression of ALOX15 (log2FC= −3.30) in
mf-FGR placentas, accompanied by dysregulation of CYP7B1 (log2FC= −2.71) and other
genes involved in inflammation, additionally underlines the role of immune response
pathways in this pregnancy disorder. CYP7B1 encodes oxysterol 7α-hydroxylase, which is
essential for cholesterol transformation into structurally distinct metabolites. Oxysterols
have pleiotropic roles and act through diverse receptors, triggering metabolic signals to
coordinate immune activity and inflammation [106,107]. AC092017.4 may regulate trans-
target genes responsible for the modulation of immune reactions at various levels and
different modes. The mechanisms underlying spontaneous abortion, pre-term labor and
pre-term pre-labor rupture of the membranes are associated with an altered inflammatory
response [108]. It has been suggested that they may also be involved in FGR [31] and the
currently obtained results seem to confirm that supposition. Therefore, we propose the
detected lncRNAs as regulatory elements that are useful for identifying biomarkers and
developing therapies to target specific molecular pathways in FGR treatment.

Among the DELs identified in mf-FGR samples, UCA1 was upregulated (log2FC = 1.66)
and co-expressed with GABRP (log2FC = 3.07) and NLRP2 (log2FC = 1.62). UCA1 is in-
creased in various cancers and promotes processes such as proliferation, migration and
immune escape, and inhibits apoptosis [32,109]. Although the specific role of the UCA1
in the course of pregnancy is unknown, besides the above functions, it may be associated
with trans-target genes such as GABRP and NLRP2, impacting placenta wellbeing. Pi, a
subunit of gamma-aminobutyric acid type A receptor (GABRP), affects pathways during
decidualization of the stromal cell [110], and also has implications in preeclampsia [111].
NLR Family Pyrin Domain Containing 2 (NLRP2), by impacting the caspase-1 and NF-kB
pathway, is believed to modulate the immune response [112]. The female mouse model
revealed that a lack of NLRP2 manifested as more frequent early embryonic loss and devel-
opmental disruptions [113]. Thus, NLRP2 and GABRP, the potential trans-target genes for
differentially expressed UCA1, may be the key genes whose dysregulation leads to adverse
pregnancy.

The performed global lncRNAs, which are characteristic in FGR case–control studies,
were upgraded, with an analysis of the circular RNAs (circRNAs). Covalent bond linking
of the 3′ and 5′ ends generated by backsplicing characterizes this novel class of non-coding
RNA—circRNA [114]. It appears that circRNAs, previously considered as splicing by-
products, have the potential to regulate gene expression [115], and emerging evidence
indicates that circRNAs might play an important role in severe PE [116]. CircRNAs detected
in the currently studied FGR placentas targeted H19 loci, known as lncRNA. Loss of H19
imprinting is suspected to be involved in the pathomechanism of preeclampsia and growth
restriction during pregnancy [61,117]. Moreover, H19 downregulation inhibits the TGF-β
signaling pathway, which affects trophoblast cell migration and invasion, directly leading
to FGR [118]. H19 did not reveal differences in its expression profile, although our research
may shed new light on novel circRNA regulations within the first exon of this lncRNA
specific to the placenta. Furthermore, an analysis of mf-FGR placentas identified the
circRNA encoded in the first intron of the BACE2 gene. This may suggest that the sex-
specific process of BACE2 pre-mRNA maturation is regulated by the circRNA. During PE,
placental BACE2 expression is upregulated [119,120], which may also indicate the impact
of this gene on FGR pathogenesis. The influence of circRNAs on the pre-mRNA maturation
process and, therefore, on the protein content in cells, may affect abnormalities in fetal
development in the long term.

In view of the previous studies, our results indicate that disturbed expression of
regulatory elements and their target genes involved in various processes may be one of the
major FGR causes [30]. Our current studies have revealed that the genetic background for
FGR may differ between sexes. In female placentas, DELs and DEGs were associated mainly
with the vasculature, while in male placentas, disturbed expression predominantly affected
immune processes. Any abnormalities during angiogenesis and, further, in placental
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vessels flow lead to disorders in the efficient transfer of nutrients, which is essential for
proper fetus growth [121]. However, disturbances in the course of the immune response
are linked with several pregnancy pathologies [108]. Despite different DELs and DEGs
between sexes, the outcome may be the same—a growth-restricted male or female fetus.

5. Conclusions

The in utero environment has profound implications for fetal development and long-
term effects in childhood and later life. The mechanisms responsible for such connections
are poorly understood but are likely to be modulated by gene expression and transcrip-
tional regulatory mechanisms [122]. While FGR-complicated offspring are prone to various
diseases, it cannot be excluded that this is an effect of specific DEG and DEL disruption,
linked with FGR etiology. To summarize, global differences in expression between male
and female lncRNAs and their potential target genes were analyzed and the possible associ-
ations underlying FGR were indicated. Nevertheless, FGR is the final phenomenon, which
is caused by maternal, fetal or placental conditions, and also their combinations, and it has
not been determined how much placental gene expression may affect FGR pathoetiology.
Moreover, the cause–effect relationship between gene expression and FGR occurrence is
still unclear. Therefore, further studies are necessary to reveal FGR’s pathophysiology.
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described separately for each transcript (the “transcripts_ff-FGR” sheet). Transcripts annotated
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