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Abstract: Fungi represent one of the most diverse and abundant eukaryotes on earth, and their
ubiquity and small proteolytically active products make them pervasive allergens that affect humans
and other mammals. The immunologic parameters surrounding fungal allergies are still not fully
elucidated despite their importance given that a large proportion of severe asthmatics are sensitized
to fungal allergens. Herein, we explore fungal allergic asthma with emphasis on mouse models that
recapitulate the characteristics of human disease, and the main leukocyte players in the pathogenesis
of fungal allergies. The endogenous mycobiome may also contribute to fungal asthma, a phenomenon
that we discuss only superficially, as much remains to be discovered.
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1. Introduction

Symptoms of asthma have been described in ancient literature, with the first detailed
description by Sir John Floyer dating back to 1698 [1]. Asthma is a respiratory syndrome
with high incidence and economic burden worldwide [2,3]. This heterogenous syndrome
has many subtypes and phenotypes, but typical symptoms generally include chest tight-
ness, wheezing, and shortness of breath [4,5] that can result from narrowing of large airways
due to heightened inflammation, mucus, and smooth muscle cell constriction (Figure 1).
Asthma is generally classified as allergic and nonallergic, wherein allergic asthma is defined
by the presence of atopy, i.e., allergen-specific IgE in plasma and positive skin-prick test
to common aeroallergens [6–9]. Genetics, epigenetics, the endogenous microbiome, and
environmental factors influence the development, exacerbation, and severity of allergic
asthma [9–11]. During early development, genetics and epigenetics shape the immune
system, thus playing an important foundational role in determining the allergic asthma
endotype [12]. Sensitivity to indoor and outdoor aeroallergens results as a secondary
trigger in individuals that are genetically prone to developing allergic asthma. Common
aeroallergens include house dust mite and cockroach antigens, molds, and pollen [13].

Fungi are ubiquitous in both indoor and outdoor environments and widespread
worldwide, making up the largest organic component in air particulates [14,15]. Owing to
effective antifungal host mechanisms such as antimicrobial peptides, effective clearance by
the mucociliary escalator, and macrophage phagocytosis, most often, fungi fail to cause
infections in immunosufficient individuals. However, fungal components are important
aeroallergens for asthma development, exacerbation, and severity. Alternaria alternata,
Aspergillus fumigatus, and Cladosporium herbarum are known triggers of allergic sensitization
in humans [16]. Although fungi are predominant triggers of asthma exacerbations, and
severe asthma with fungal sensitization (SAFS) is often steroid resistant and difficult to
treat/control, the pathophysiology of SAFS and its molecular pathways are yet to be fully
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elucidated. The possibility that SAFS may protect the host from subsequent respiratory
virus infections [17] also elevates the need to understand the immunobiology of SAFS.
We focus this review on SAFS and known effector functions of key immune players that
may shape the pathogenesis of fungal allergies in the lungs as regulated by a plethora of
cytokines and chemokines (Table 1).

Figure 1. Overview of airway pathophysiology in health and asthma. Asthma triggers include
fungal allergens which are abundant in the environment. While healthy individuals do not respond
to inhaled fungal allergens, in the presence of confounders including genetic susceptibility and an
altered microbiome as in atopic individuals, fungal exposures can lead to alterations to the mucosa.
Typical occurrences after fungal exposure in asthmatics include inflammation of the airways, mucus
hyperproduction, smooth muscle thickening, and remodeling events.

Table 1. Immunological and Inflammatory Events Following Fungal Exposure.

Source Mediator Effect References

Fungi Serine proteases
Membrane permeability
Disruption of tight junctions
Airway smooth muscle constriction

[18–24]

Epithelial cells
Interleukins -25 and -33
TSLP
TGF-β

Inflammation
Leukocyte activation
Airway remodeling

[25–30]

Dendritic cells
Pattern recognition receptors
Interleukin-6
TNF-α

Fungal recognition
Interleukin-17A production
Neutrophil recruitment

[31–34]

TH2 cells
Interleukin-4
Interleukin-5
Interleukin-13

Inflammation
B cell class switching
Eosinophil activation
Mucus cell activation

[26,27,31,35]

TH17 cells Interleukin-17A Neutrophil recruitment
Epithelial cell activation [33]

Plasma cells Immunoglobulin E
Immunoglobulin A

Mast cell activation
Fungal neutralization [26,27,31,35–37]

Eosinophils Interleukins -17 and -23
DNA traps

Inflammation
Fungal neutralization [38,39]
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2. Overview of Fungal Allergen-Mediated Immune Responses Leading to SAFS

More than 2 million species of fungi exist globally [40], but only a small fraction
of these species are considered to be human pathogens [41] as the human immune sys-
tem is highly efficient at safeguarding the host from environmental fungi that enter [42].
Fungus-sensitized individuals can have pathophysiologic changes in the lungs (Figure 1)
resulting in the symptoms that are associated with asthma. At the respiratory interface,
epithelial cells act as the primary blockade against environmental fungal colonization.
Airway epithelial cells use physical barrier components such as the mucociliary escalator
and antimicrobial peptides as a strategy to hinder fungal entry and germination within
lung tissue [43,44]. Numerous pattern recognition receptors (PRRs) on the surface of the
respiratory epithelia, including the proteinase-activated receptor (PAR), toll-like receptors
(TLRs), C-type lectin receptors (CLRs), mannose receptors (MRs), and dectins, recognize a
broad range of fungal antigens and are able to trigger epithelial cells to release cytokines to
recruit and activate innate leukocytes to counter any invading fungi [42,45,46]. Similarly,
dendritic cells (DCs) sampling the airways can become activated by fungal antigens and
mucosal cytokines, allowing them to cause a fungal-specific T cell response [42,45,46]
(Figure 2). Cumulatively, these immune responses in the airways can augment physiologic
changes, thereby eliciting an asthma attack.

Figure 2. Fungal allergen-mediated early activation of the respiratory barrier as a trigger for asthma
development. Environmentally ubiquitous fungi can be inhaled and travel deep into the lungs owing
to their small size and surface properties. Fungal pattern recognition molecules on the respiratory
epithelia may be triggered to release cytokines and chemokines that can recruit and activate a
number of leukocytes. Intraepithelial dendritic cells that survey the airways may also be activated
by fungal antigens and traffic into draining lymph nodes in search of antigen-specific T cells that
are subsequently activated. These fungal antigen-specific T cells then accumulate at the respiratory
barrier to induce resident and recruited leukocytes and structural cells to become activated and
respond culminating in the characteristics of allergic asthma. Illustration drawn with BioRender.

3. Animal Models of Severe Asthma with Fungal Sensitization

Epidemiological data have established the association of fungi with asthma [47–52].
Fungal asthma is broadly characterized by the occurrence of fungal sensitization or al-
lergy in patients that present with asthma hallmarks [53,54]. SAFS is mainly differen-
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tiated from allergic bronchopulmonary aspergillosis by the absence of bronchiectasis
and fungal growth in lungs and sensitivity to antifungal treatments [55]. The severity of
SAFS can vary from mild to severe airway inflammation and airway hyperresponsiveness
(AHR) [49,51,52]. SAFS is usually TH2 biased and characterized by inflammatory cell (pre-
dominately eosinophil) recruitment, elevated serum IgE, peribronchial and perivascular
inflammation, increased AHR, mucus hypersecretion, and airway remodeling [56]. Asth-
matics with fungal sensitization have similar characteristics to those that are not sensitized
to fungi except for lower age of symptom onset and significantly higher levels of IgE and
IL-33 in the serum [57].

Animal models that recapitulate characteristics of human asthma are important, as
they provide opportunities to dissect the underlying mechanisms of asthma pathology.
Ovalbumin (OVA)-induced asthma-like inflammation, the first mouse model for asthma, is
more than 100 years old, and replicates a number of features of allergic asthma. However,
there are several arguments against this model due to two main shortcomings. Firstly, OVA
is not a clinically relevant aeroallergen; secondly, chronic exposure to OVA may lead to
immune tolerance and less robust inflammation [58,59]. However, OVA is still a commonly
used antigen to induce acute airway inflammation, largely due to the ease of use and
the plethora of research reagents (including mouse strains) for immune assays that have
been developed using OVA antigen. In the past two decades, however, more clinically
relevant antigens, including fungal antigens, have been used effectively to model the
characteristics of allergic asthma in mice [60] owing to the ubiquity and clinical relevance
of fungi as aeroallergens. Approximately 80% of asthmatics in the United States show
positive skin tests for one or more fungal allergens [61,62]. Compared with grass and
pollen, fungal conidia have 1000-fold higher exposure and are among the most important
clinically relevant allergens for asthma [55,62].

The establishment of a mouse model with a clinically relevant allergen, Aspergillus fu-
migatus, occurred in 1984. This model uses extract from cultured A. fumigatus to develop the
immune response during allergen exposure. Furthermore, researchers developed conidia-
based models to recapitulate the pathophysiology of fungal asthma. Various routes of
conidia delivery of different fungi, including intranasal (IN), intratracheal (IT), or inhalation
(IH) challenge, have been attempted [26,35,63,64]. Havaux et al. performed IN challenge
of BALB/c mice with resuspended A. alternata and C. herbarum spores after sensitization.
The model showed immune cell infiltration into the airway, perivascular and peribronchial
eosinophilic inflammation, and increased AHR and goblet cell metaplasia [64]. As exposure
to this airborne fungus nearly doubles the odds of experiencing asthma symptoms [65]
Alternaria mouse models are important. Alternaria is independently capable of inducing
allergic inflammation in mice and also enhances the strength and TH2-polarization in mice
inoculated with other allergens [66,67].

Fungal exposure in humans occurs through the inhalation of airborne dry fungal
particles. As fungi are complex, with several stages in their life cycle in which physical
changes during growth and germination result in variations in the antigenic signatures [68],
the ability to mimic the natural nature of inhaled fungi is important to model SAFS. To
date, A. fumigatus is the only clinically relevant fungus utilized in dry inhalation models.
Hoselton et al. developed an IH fungal asthma model by exposing fungal extract-sensitized
BALB/c mice to dry unmanipulated airborne A. fumigatus conidia for 10 min. This exposure
strategy led to AHR, mixed granulocytic airways inflammation, goblet cell metaplasia,
increased serum IgE, reversible airway wall fibrosis, and smooth muscle hyperplasia [35]. A
second IH exposure administered two weeks following the first led to marked eosinophilia
and worsening of the above characteristics in C57BL/6 mice [69], a strain that has a TH1
immune bias and therefore difficult to model AHR in [70,71]. Samarasinghe et al. compared
the asthma output in the IH and IT models of fungal asthma in C57BL/6 mice and showed
that IH challenge leads to more robust eosinophilic inflammation, serum IgE, and airway
wall remodeling events compared to IT challenge with suspended conidia [63]. However,
sensitization to whole fungal extract is required for a robust and long-lasting asthma
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phenotype in Aspergillus models; the use of live conidia for IH elicits a robust immune
response compared to irradiated (dead) conidia [72]. Buskirk et al. exposed BALB/c mice
to a specific amount of A. fumigatus conidia with an acoustical generator, and showed that
inflammation and goblet cell metaplasia peaked two days after the final exposure [73].
In summary, IH exposure to A. fumigatus recapitulates the hallmarks of SAFS observed
in patients.

4. Mechanisms of SAFS Induction at the Respiratory Barrier

Major asthma-causing fungal allergens belong to genera Alternaria and Aspergillus [55,74].
Aspergillus conidia are roughly <3 µm [75], i.e., small enough to penetrate the deep bron-
choalveolar spaces in the lower airway. Fungal conidia can interact with the airway
epithelial barrier, triggering inflammatory signals in response. The major pathogen associ-
ated molecular patterns (PAMPs) of fungi include chitin, β-glucans, proteases, glycosidases,
and fungal nucleic acids. Receptors for fungal products include TLRs, CLRs, PARs, and re-
ceptor for glycation end products (RAGE). Figure 3 illustrates some inflammatory cascades
that can be initiated during fungal interaction at the lung epithelial cell (LEC) interface.

Figure 3. Immunologic events orchestrated by fungal exposure at the airway surface. Fungal conidia and products bind to
receptors present on epithelial cells. Activated epithelial cells release cytokines and growth factors that are responsible
for TH2 cell recruitment. Fungal proteases may also disrupt the tight junctions of the epithelial barrier, thus inducing
membrane permeability. Newly differentiated TH2 or TH17 cells induced by dendritic cells activated at the barrier arrive at
the respiratory barrier to regulate local immune responses to the fungal exposure. TH2 cells promote differentiation of B
cells into plasma cells, which secrete IgE in the presence of IL-4 and IL-13, while IL-5 supports the survival of recruited
eosinophils. TH2 cytokines also induce airway remodeling by altering the extracellular matrix. Conversion of hyaluronan
from high to low molecular weight forms can further promote B cell recruitment and activation to secrete neutralizing
antibodies that also activate leukocytes like mast cells at the respiratory barrier. IL-17 and IL-22 produced by TH17 cells also
enhance inflammation. On the luminal end, mucus and eosinophil extracellular nets may cause fungal entrapment while
eosinophil degranulation may neutralize fungal antigens.
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Fungal components such as β-glucan can be recognized by PRRs on DCs indepen-
dently or in conjunction [76,77], and fungal-antigen activated DCs can go on to trigger both
TH2 and TH17 cells [55,78]. Fungal β-glucans also induce dectin-1-dependent IL-6 produc-
tion in murine LECs [79]. Conidia surface constituent chitin induces TLR-2-dependent
IL-17A production by murine macrophages in vitro [80]. Moreover, exposure of murine
LECs to fungal chitin induces production of CCL2 [81,82]. LECs also produce IL-25, IL-33,
and thymic stromal lymphopoietin (TSLP) in response to fungal allergens [45,46], which
regulate downstream immune responses, as the deletion of one or more of these cytokine
genes in mice leads to reduced inflammation in response to chitin [83]. Eosinophils,
mast cells, and T-cells also secrete IL-25 [84], which is important to perpetuate airway
eosinophilia [85], while IL-33 plays a significant role in eosinophilia, goblet cell hyperplasia,
and airway remodeling in SAFS [86]. Fungal allergens induce IL-33 secretion in LECs
through oxidative stress responses and NADPH oxidase DUOX1 mediated activation of
calpain-2 and EGFR signaling [87]. IL-33 promotes CD11b, β-glucan, and ICAM-1 expres-
sion on eosinophils [88], which are important for eosinophil activation, and also promote
eosinophil survival [89]. While the presence of TH2 and TH17 cytokines in the airways is
prominent, early pro-inflammatory cytokines such as IL-1 and TNF-α are also produced in
response to fungal sensitization and challenge [90,91]. Resistin-like molecule (RELM)-β
is a secreted protein that is abundant in the gut, but is also produced by LECs [92,93].
Architectural changes in the lungs including goblet cell metaplasia and peribronchial fibro-
sis increase in the absence of RELM-β in A. fumigatus allergen-sensitized and challenged
mice [94]. Therefore, LEC products may also impede immunopathologic changes triggered
by fungal allergens and therefore be beneficial to mucosal immunity.

Fungal spores and conidia produce a variety of proteases during their life cycle, and se-
creted proteases are often immunogenic. These proteases are recognized by PARs [95] and
can be pro-inflammatory and lead to tight junction disruption between LECs [53,96–98],
thereby compromising the physical barrier. The deletion of lung tight junction protein
claudin-18 in mice causes elevated serum IgE levels and increased AHR after Aspergillus
sensitization [98]. Fungal components also induce ion secretion by stimulating the CFTR
and Ca2+ channels on epithelial cells thereby affecting mucociliary clearance in the air-
ways [99]. Due to protease-induced irritation, LECs in injured lungs release IL-33, which
interacts with its receptor (ST2) on recruited leukocytes including type 2 innate lymphoid
cells, resulting in further enhancement of the TH2-type cytokine production and immune
responses [100,101]. A TH2-biased immune response and airway remodeling can be trig-
gered by IN delivery of A. fumigatus matrix metalloprotease Asp f 5 and serine protease
Asp f 13 [102]. Typically, fungus-epithelial barrier interaction activates LECs to relay a
TH2 bias, which includes a specific type of cytokine/chemokine response and immune
cell profile.

5. T Cell Response to Fungal Allergen Exposure in the Airways

Immune responses that occur in the lungs in response to fungal allergens involve mast
cells, basophils, eosinophils, innate lymphoid cells (ILCs), M2-polarized macrophages, and
TH2 cells, all of which can produce TH2-type cytokines like IL-4, IL-5, and IL-13 [103–107].
Inhaled fungal allergens can be endocytosed by DCs, which process and present fungal
antigens using major histocompatibility complex II (MHC II). Activated DCs can then
migrate to draining lymphoid organs, where they control the differentiation of CD4+ T cells
into TH2 cells [107]. The differentiation of CD4+ T cells into TH2 cells depends upon TSLP,
CCL17, and CCL22. Once activated, TH2 cells produce inflammatory cytokines IL-4, IL-5,
IL-9, and IL-13 (Figure 2). TH2 cells also interact with allergen-specific B-cells, and IL-4
and IL-13 produced by TH2 cells cause B cell class switching to IgE production [108,109].
Major TH2-type cytokine, IL-13, induces goblet cell metaplasia, fibrosis, and AHR [110,111],
and, in conjunction with IL-5, promotes the proliferation and survival of eosinophils in
the airway [112]. In addition to these cytokines, chemokines CCL5 and CCL11 stimulate
eosinophil recruitment into the airway [108]. Cumulatively, these immune responses cul-
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minate pathophysiologically as airway constriction, a major hallmark of asthma symptoms
(Figure 2).

Recent research implicates IL-17 production by TH17 cells in SAFS (Figure 3). In addi-
tion to TH17 cells, ILCs, B-cells, neutrophils, γδ T cells, and natural killer T cells secrete
IL-17 [113–116]. IL-17 orchestrates asthma pathophysiology including inflammation (pri-
marily neutrophil recruitment), smooth muscle proliferation, and fibrosis. These functions
of IL-17 are regulated through the induction of type 2 cytokines, proallergic chemokines,
and proinflammatory cytokines [117]. Regulatory T cells are activated by TLR-2 signaling
in response to fungal antigens [118], and Tregs can elevate the functions of TH17 cells
or help suppress the functions of TH2 cells depending on the level of fungal antigens at
the mucosa [119]. Intriguingly, TLR-6 upregulated during A. fumigatus exposure [120]
contributes to IL-17A and IL-23 production by TH17 cells in response to fungal allergens
during asthma [32] (Figure 3).

6. Eosinophils in SAFS

Eosinophils are granulocytes with distinct, acentric bilobed nuclei and cytoplasmic
granules with cytotoxic properties. Since its first description by Paul Ehrlich in 1879,
eosinophils have been shown to have immunoregulatory and homeostatic functions [121].
During SAFS, TH2 cytokines IL-4, IL-5, and IL-13, as well as fungal antigens, stimulate
the production of eosinophil chemoattractant, CCL11 by LECs [122] (Figure 2). The most
potent growth factor and chemoattractant for eosinophils is IL-5, which is sensed by the
IL-5R complex expressed on both eosinophils and basophils [123,124]. Therefore, IL-5
produced by TH2 cells induces differentiation, proliferation, and maturation of eosinophils
during fungal allergies. As eosinophilia is a common manifestation in SAFS patients,
biologics that inhibit the effects of IL-5 (mepolizumab, reslizumab, and benralizumab)
may be efficacious at alleviating asthma symptoms [125]. Once recruited, eosinophils
may perform several functions in situ in response to fungal antigens, as they have been
shown to directly bind Alternaria [126], release granule proteins in response [127], and kill
A. fumigatus [128]. Eosinophils also produce extracellular DNA traps in response to A.
fumigatus, which are not fungicidal [39], but may be immunoregulatory in the context of
the allergic airways.

Eosinophils may contribute to fungal asthma pathophysiology by increasing AHR, ac-
tivating TH2 cells, and inducing airway remodeling. Eosinophils induce AHR by releasing
cytokines such as IL-13 [129] and inducing mast cell and basophil degranulation [130,131].
Intriguingly, β-integrin CD11b on the surface of human eosinophils specifically binds to
fungal wall β-glucan, causing eosinophil activation and degranulation which may pro-
mote fungal killing but could potentially contribute to asthma pathophysiology [126].
Eosinophils induce airway remodeling by releasing profibrotic mediators such as TGF-β
in the presence of IL-4 [132]. TGF-β induces extracellular protein production, fibroblast
proliferation, and smooth muscle cell proliferation [133,134]. However, eosinophil deple-
tion by anti-IL-5 treatment does not completely suspend airway remodeling [135,136],
as a number of cell types in the lungs, such as LECs and macrophages, produce TGF-β,
thereby limiting our understanding of the exact role of TGF-β produced by eosinophils
during fungal asthma. As RELM-β is important in lung fibrosis in response to A. fumi-
gatus [94], and LECs [137] and to a lesser degree leukocytes (including eosinophils) [138]
produce RELM-β, it is highly likely that additional mechanisms may be activated to induce
subepithelial fibrosis in response to fungi. Eosinophils are also a significant source of
IL-17 and IL-23 after fungal exposure [38]. As one of the most highly recruited leukocytes
in fungal asthma [139], eosinophils can indirectly contribute to asthma pathophysiology
through crosstalk with TH2 cells and other leukocytes in situ by releasing a plethora of
cytokines [140].

According to the current paradigm, peripheral eosinophils are considered end-stage
effector cells that play an active role in the initiation and prolongation of allergic asthma
pathology. Additionally, many organs in healthy individuals have resident eosinophils [141].
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This evidence questions the deleterious end-stage effector role of eosinophils. A large num-
ber of studies have demonstrated the tissue repair/remodeling, tissue homeostasis, and
developmental functions of eosinophils [141], and their role in regulating antiviral defense
mechanisms during fungal asthma [91,142,143]. Due to the multiple beneficial roles of
eosinophils, Lee et al. proposed the new hypothesis “local immunity and/or remodel-
ing/repair in both health and diseases” (LIAR), wherein eosinophil recruitment during
both healthy and pathological conditions, like fungal asthma, occurs to maintain tissue
homeostasis [121]. More recently, eosinophils have been shown to play host protective
functions against respiratory pathogens [144] that further support a role for eosinophils as
an ally to respiratory health. As significant eosinophil reduction through biologics does
not always result in the total ablation of asthma pathophysiology in patients [145], it may
be necessary to consider the impact of long-term eosinophil depletion on human health.

7. B Cells in SAFS

The discovery of B cells occurred in the mid 1960s. B cells significantly increase in
the blood stream and bronchial mucosa of asthmatic patients [146–148]. Mice rendered
allergic to A. fumigatus also show markedly increased B cells in the airways [103,117] and
mediastinal lymph nodes [37]. TH2 cytokines induce antibody class switching from IgG
to IgE [108,109]. IgE produced by B cells in fungal asthma bind to Fcε receptors on mast
cells and cross link upon contact with allergenic antigens, causing mast cell degranulation
and release of histamine and prostaglandins [149,150]. In our A. fumigatus-based murine
fungal asthma model, B cells produce high amounts of IgA and IgE, which are localized
to peribronchial and perivascular spaces in the lungs [37]. This finding indicates local
production of antibodies by mucosal B cells during fungal asthma. Ghosh et al. determined
that B cells play a significant role in regulating inflammation during fungal asthma, as
mice deficient in mature B cells (JH

−/− strain) have elevated pro-inflammatory cytokines
(IL-6 and IL-17A) and reduced canonical TH2 cytokines [117]. Using a combination of
allergens including OVA, house dust mite, Aspergillus and Alternaria, Drake et al. showed
that JH

−/− mice had reduced lung eosinophilia, increased AHR, and elevated cytokines
and chemokines compared to their wild-type counterparts [104,151]. Fungal allergic
inflammation promotes the enzymatic cleavage of hyaluronan to its low molecular mass
form which attracts B cells through CD44 engagement [103]. Together, these findings
highlight the possibility that B cells may play an immunomodulatory role during fungal
allergic asthma that surpasses that of antibody production.

8. Commensals and Allergic Asthma

The human body harbors a vast amount of diverse microbial communities. The com-
plex interactions between the microbiome and host in the gastrointestinal tract, skin, and
respiratory system is pivotal in development and health [152–155]. Historically, the lungs
were considered sterile in healthy individuals. However, recent research revealed that the
lungs of healthy individuals harbor low levels of diverse microbiota, mainly comprised
of bacteria. To date, data on the fungal population or mycobiome of the lungs are scarce.
Charlson et al. performed a comparative study on bronchoalveolar lavage samples from
healthy individuals and lung transplant recipients, and found that healthy individuals
showed minimal fungal ITS amplification compared to lung transplant recipients, sur-
mising that antibiotics and immunosuppressants prescribed to lung transplant recipients
likely caused the increased abundance of Candida spp., Aspergillus spp. and Cryptococcus
spp. [155]. An individual’s microbiome contributes to immune system development, while
dysbiosis in the lung may contribute to the etiology of allergic diseases like asthma [156,157].
The unique fungal population in the airway is also associated with an increased risk of
allergic asthma. In a human cohort study, the sputum of asthmatic patients showed 90 com-
mon fungal species including Psathyrella candolleana, Malassezia pachydermatis, Termitomyces
clypeatus and Grifola sordulenta, whereas the sputum of control subjects showed 46 common
species [57,158]. However, sputum samples do not truly represent the lung microbiome
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because of possible contamination from gut and oral microbiomes. Therefore, the lung
mycobiome with respect to allergic asthma requires further exploration.

Due to the gut–lung axis, gut microbiota can have a peripheral impact on the develop-
ment and regulation of the lung immune system. For example, dysbiosis in the gut may
increase the risk of allergic diseases such as asthma [152]. At present, most reports, includ-
ing ours [159], have characterized the bacterial microbiome in the context of allergic asthma,
and very few have characterized the mycobiome. In a recent mouse study, dysbiosis in
the gut mycobiome induced by fluconazole, an antifungal drug, reduced the number of
Candida spp. and expanded commensal fungi Aspergillus spp., Wallemia spp., and Epicoccum
spp. These antifungal-treated mice demonstrated severe allergic asthma in response to
intratracheally delivered house dust mite antigen with elevated eosinophil infiltration,
serum IgE, and cytokines IL-4, IL-5 and IL-10 [152]. Intriguingly, oral supplementation
with commensal fungus Wallemia mellicola was sufficient to recapitulate characteristics of
allergic asthma in mice [160]. These studies confirm that the gut mycobiome plays an im-
portant role in peripheral immune responses including those in the lungs. The contribution
of the mycobiome may help protect the barrier from invading environmental fungi and
other infectious agents. Mannan derived from Saccharomyces cerevisiae, a component of the
human gut mycobiome [161], can promote airway epithelial cell spreading and wound
healing [162]. However, the use of mannan therapeutically did not reduce the pathogenesis
of A. fumigatus-induced fungal asthma [163]. Our understanding is limited regarding
the complex interplay between the gut mycobiome and development/regulation of the
peripheral immune system during fungal asthma.

The reduction in parasitic infections has been considered to, at least partially, con-
tribute to the increase in allergic diseases in the Western world. While both positive
and negative impacts of parasites on the development of allergies have been demon-
strated [164,165], information that is specific to the relationship between parasitic infections
and the development of fungal allergies is limited. Mice pre-infected with gut parasite
Heligmosomoides polygyrus had altered responses to A. fumigatus sensitization and challenge
based on the age of parasite infection [166], suggesting that the age-related maturity of
the immune system has a direct impact on the development of fungal allergies during an
active parasite infection. As gut parasites alter the gut microbiota which, in turn, affect
the pathogenesis of allergic asthma [167], the interrelationship between parasites and the
development of fungal asthma may be multifaceted and remain to be fully elucidated.

9. Conclusions

Fungal allergies are a growing concern, as fungi are found both indoors and outdoors
in abundance in rural and city environments, making avoidance strategies difficult. Despite
the millions of fungal species found in the global environment, only a small fraction is
known cause human infections. Even fewer species are known allergens even with the
high incidence of fungal allergies in atopic individuals [168]. Why some patients are
susceptible to fungal sensitization while others are not remains to be determined. As fine
classifications of immune responses at the airway barrier, and differentiation of immune
responses at the initiation and perpetuation of fungal sensitization are not well understood
in humans, animal models that can recapitulate the hallmarks of SAFS in humans are of
immense importance. Elucidating the correlation between environmental fungal load and
sensitization may also be beneficial to determine if immune tolerance may be induced in
the clinical setting to offset sensitization.

Most SAFS patients have heightened eosinophilic inflammation [137]. While SAFS
is generally nonresponsive to corticosteroids, the advent of anti-eosinophilic biologics
has led to better management of asthma severity in SAFS patients [169]. The knowledge
that eosinophils play a host-protective role during virus infections [142,170], including
IAV infections [91,141,171] and possibly SARS-CoV-2 infection [172], raises the question
of whether fungal allergen-induced eosinophilia has some benefit, at least seasonally, and
if so, what the possible long-term complications may be of eliminating eosinophils in
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SAFS patients [173]. Much remains to be discovered on the immune pathogenesis of
fungal allergies and the consequences of fungal allergic disease on immune responses to
subsequent or concomitant infectious stimuli.
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