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Abstract: The T cell antigen receptor (TCR) is expressed on T cells, which orchestrate adaptive
immune responses. It is composed of the ligand-binding clonotypic TCRαβ heterodimer and the non-
covalently bound invariant signal-transducing CD3 complex. Among the CD3 subunits, the CD3ε
cytoplasmic tail contains binding motifs for the Src family kinase, Lck, and the adaptor protein, Nck.
Lck binds to a receptor kinase (RK) motif and Nck binds to a proline-rich sequence (PRS). Both motifs
only become accessible upon ligand binding to the TCR and facilitate the recruitment of Lck and Nck
independently of phosphorylation of the TCR. Mutations in each of these motifs cause defects in TCR
signaling and T cell activation. Here, we investigated the role of Nck in proximal TCR signaling by
silencing both Nck isoforms, Nck1 and Nck2. In the absence of Nck, TCR phosphorylation, ZAP70
recruitment, and ZAP70 phosphorylation was impaired. Mechanistically, this is explained by loss of
Lck recruitment to the stimulated TCR in cells lacking Nck. Hence, our data uncover a previously
unknown cooperative interaction between Lck and Nck to promote optimal TCR signaling.

Keywords: TCR; conformation; Lck; Nck; RK motif

1. Introduction

The T cell antigen receptor (TCR) is a multimeric transmembrane protein, exclusively
expressed on the surface of T cells. It is composed of the ligand-binding clonotypic
TCRαβ heterodimer and the noncovalently associated invariant CD3 signal-transducing

Cells 2021, 10, 834. https://doi.org/10.3390/cells10040834 https://www.mdpi.com/journal/cells

https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0003-3538-5214
https://orcid.org/0000-0002-3762-3872
https://orcid.org/0000-0003-3744-189X
https://orcid.org/0000-0002-2415-9468
https://orcid.org/0000-0001-8211-5538
https://doi.org/10.3390/cells10040834
https://doi.org/10.3390/cells10040834
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cells10040834
https://www.mdpi.com/journal/cells
https://www.mdpi.com/2073-4409/10/4/834?type=check_update&version=1


Cells 2021, 10, 834 2 of 13

complex [1]. This CD3 complex includes the CD3εγ, CD3εδ, and ζζ signal transduction
chains [2]. Each CD3 subunit has a single cytoplasmic immunoreceptor tyrosine-based
activation motif (ITAM) except the ζ cytoplasmic tail which has three ITAMs [3]. ITAMs
are crucial to transduce activation signals into the T cell. Although a complete structure of
the TCR is still unknown, accumulating evidence suggests that the TCR switches between
different conformational states [4–7]. Binding of the TCR’s ligand (major histocompatibility
complex bound to an antigenic peptide; pMHC) selects and stabilizes the TCR in active
conformations that were hardly visited in the absence of ligand binding (reviewed in) [8,9].
Only the active conformations support the transmission of activation signal from the
extracellular to the intracellular domains of the TCR [10–12].

Intracellular signaling is initiated by the phosphorylation of the ITAM tyrosines by
the lymphocyte-specific kinase (Lck) [13]. Phosphorylated ITAMs serve as docking sites for
the two Src homology 2 (SH2) domains of the ζ chain-associated protein of 70 kDa (ZAP70),
which is then phosphorylated by Lck to unleash ZAP70’s full catalytic activity [14,15].
ZAP70 then phosphorylates a number of signaling proteins, including the linker for the
activation of T cells (LAT) and the SH2-domain-containing leukocyte protein of 76 kDa
(SLP76), leading to signal progression. Once an activation signal is initiated, several
mechanisms contribute to intensify or sustain TCR signals. These mechanisms include
ligand-induced receptor clustering, recruitment of the co-receptors CD4 and CD8, or the
segregation of the TCR from phosphatases (reviewed in) [16].

Various reports have demonstrated that the CD3ε chain has a special role in TCR
signaling after ligand binding. The CD3ε cytoplasmic tail contains a number of unique
interaction motifs that are crucial for TCR signaling (reviewed in) [17]. These motifs
include (from the N- to C-terminus) a basic amino acid rich sequence (BRS), a proline-rich
sequence (PRS) and a receptor kinase (RK) motif. Ionic interactions of the BRS with acid
residues in the unique domain of Lck are known to contribute to TCR signaling [18]. In
addition, interactions of the BRS with p85 promote PI3K/AKT signaling [19]. The PRS,
which is only accessible in the active TCR conformations, serves as a docking site for the
adaptor protein non-catalytic region of tyrosine kinase (Nck) [4]. Out of the three SH3
domains and one SH2 domain of Nck, the SH3.1 domain binds to the CD3ε PRS [4]. Mice
expressing a CD3ε with a mutation in the PRS fail to recruit Nck to the TCR, and show
impaired ζ phosphorylation, reduced ZAP70 recruitment to the TCR, and consequently,
reduced ZAP70 phosphorylation [20]. Likewise, down-regulation of Nck expression in
human T cell lines impaired TCR-induced phosphorylation of the kinases ERK and MEK,
and subsequently reduced IL-2 and CD69 expression upon TCR stimulation [21]. The
RK motif has been recently identified as a new motif recruiting Lck to the ligand-bound
TCR [22]. Like the PRS [4] and the ITAM [10] of CD3ε, the RK motif is only exposed in
the active TCR conformation [22]. The discovery of the RK motif supports a new model
of how phosphorylation of the TCR is initiated: ligand binding stabilizes the active TCR
conformations, resulting in the exposure of the RK motif and the ITAMs; Lck binds with
its SH3 domain to the RK motif, recruiting Lck to the TCR to phosphorylate the ITAMs.
Recruitment of the CD4- or CD8-bound Lck might further enhance and/or stabilize TCR
signaling [23–26].

Interestingly, double mutation of the PRS and the RK motif in T cell lines showed
a profounder TCR signaling defect compared to single mutations of either the PRS or
the RK motif alone [22]. Likewise, mice and T cell lines modified to prevent the TCR
from switching to the active conformation, in which neither the PRS nor the RK motif are
exposed, exhibit an almost complete block in TCR function [27]. These results suggest that
both Nck and Lck recruitment might contribute to fostering TCR signaling. The cooperation
of Nck and Lck at the TCR might be more complex than anticipated as uncovered by the
existence of contradicting results in the literature. On the one hand, it has been shown
that Nck and Lck interact with each other through an adapter protein called T cell-specific
adaptor protein (TSAd) [28]. On the other hand, TSAd-independent binding of Nck to Lck
has also been observed [29].
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Here, we tested the hypothesis that recruitment of Nck and Lck to CD3ε promotes
proximal TCR signaling. Indeed, we could show that Nck silencing in Jurkat T cells led to
reduced phosphorylation of the TCR and ZAP70, resulting in a decrease in ZAP70 recruit-
ment to the TCR. Reduced TCR signaling was a consequence of a loss of Lck recruitment
to the TCR in the absence of Nck. Molecular modeling demonstrated that simultaneous
binding of the SH3.1 domain of Nck (Nck(SH3.1)) and the SH3 domain of Lck (Lck(SH3))
to the same CD3ε molecule is possible, fostering the idea that the recruitment of these
molecules to the TCR precedes and regulates ITAM phosphorylation upon ligand binding.
Finally, using an in vitro kinase assay, we show that Lck and Nck cooperate for optimal
CD3 phosphorylation.

2. Materials and Methods
2.1. Cell Lines

31–13.scTCRβ cells were already described. Briefly, TCRβ- deficient human Jurkat cell
line was stably transfected to express a TCRβ containing a nitro-iodo-phenol (NIP)-specific
single chain Fv fragment (scFv) coupled to the TCRβ chain. In 31–13 scTCRβ cells, TCRs
can be purified through the NP-specific scFv without altering the TCR conformation [5].
Silencing of Nck1 or Nck2 or both Nck isoforms by specific short hairpin RNA (shRNA) in
Jukat T cells (E6–1) was previously described [21]. Cells were maintained in RPMI 1640
medium (Gibco) supplemented with 10% heat-inactivated fetal bovine serum (FBS) (Gibco),
2 mM L-glutamine and 100 U/mL penicillin and 100 µg/mL streptomycin (HyClone,
Fisher) in a humidified incubator with 5% CO2 at 37 ◦C.

2.2. Antibodies and Chemicals

The following antibodies were used: anti-Nck1, anti-ZAP70, anti-Lck, anti-phospho-
Lck (Src416) and anti-phospho-ZAP70 (Y319, Cell Signaling Technology), anti-phospho-ζ
(Y142, Sigma-Aldrich), anti-idiotypic TCR (C305, Millipore), anti-CD3ε (M20, Santa Cruz
Biotechnology), anti-CD3ε (OKT3, eBioscience), anti-ζ antiserum 448 [4], anti-phospho-
CD3ε (Y188) [30], anti-GST (Bethly), anti-GAPDH (Sigma) and secondary antibodies for
immunoblotting (Perbio). Alexa Fluor 647-labeled anti-CD3ε (UCHT1, BioLegend) was
used for flow cytometry. Recombinant His-tagged Nck was from Sigma and recombinant
active Lck (aa61-aa509) was a generous gift from B.F. Lillemeier, Salk Institute for Biological
Studies, San Diego.

2.3. In Situ Proximity Ligation Assay (PLA)

PLA was performed as previously described [22,31,32]. Briefly, cells were starved
and harvested on diagnostic microscopic slides (Thermo Scientific) at 37 ◦C for at least
1 h. Cells were either left unstimulated as a control or stimulated with anti-TCR (C305,
1:50) or 10 µg/mL anti-CD3ε (OKT3) at 37 ◦C for 5 min, followed by a 15 min fixation step
with 2% paraformaldehyde. Cells were permeabilized using 0.5% saponin and blocked
for 30 min. Cells were then stained with antibody pairs between the goat anti-CD3ε (M20)
or anti-CD3δ (M20), both from Santa Cruz, and either a rabbit anti-ZAP70 or a rabbit
anti-Lck antibody (both Cell Signaling Technology) with an incubation overnight at 4 ◦C.
A proximity assay between CD3ε and ZAP70, and CD3δ and Lck molecules, shown by red
fluorescence signal dots, was carried out using the Duolink kit (Olink Bioscience) according
to the manufacturer’s instructions. Nuclei were stained with DAPI (Roth). Images were
taken with a fluorescence microscope (Nikon Eclipse Ti and Nikon C2) and analyzed with
the Blob-Finder program (Uppsala University).

2.4. Cell Stimulation and Lysis for Biochemistry Analysis

5 × 106–15 × 106 cells per sample were resuspended in serum-free RPMI medium
and incubated for 1 h at 37 ◦C. Cells were left unstimulated or stimulated with 1–5 µg/mL
of anti-CD3ε (OKT3) antibody at 37 ◦C at the indicated time points. After stimulation, cells
were lysed for 20 min on ice in 0.5–1 mL lysis buffer containing 20 mM Tris-HCl (pH 8),
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137 mM NaCl, 2 mM EDTA, 10% glycerol, protease inhibitor cocktail (Sigma), 1 mM PMSF,
5 mM iodoacetamide, 0.5 mM sodium orthovanadate, 1 mM NaF and 0.3% Brij96V. Lysis
was followed by a 15 min centrifugation to pellet the nuclei and insoluble materials. The
supernatants were subsequently used as indicated.

2.5. In Vitro Kinase Assay

30 × 106 31–13.scTCRβ cells [5] were incubated with the kinase inhibitor PP2 (10 µM)
for 1 h. Next, cells were left untreated or treated with 10 µg/mL anti-CD3ε (OKT3)
antibody for 1 h on ice to stabilize the active TCR conformation. Upon lysis, scTCRs
(and bound antibodies) were purified with nitro-phenol coupled-sepharose beads. After
washing, purified TCRs were subjected to an in vitro kinase assay. To this end, 45 nM
active, recombinant Lck alone, 45 nM recombinant His-tagged Nck (Sigma) alone or both
together and 0.4 mM ATP were added in kinase-buffer (40 mM HEPES, 10 mM MgCl2,
2 mM MnCl2) and incubated for 15 min at 30 ◦C. Reaction was stopped by adding sample
buffer followed by boiling for 5 min.

2.6. Pull-Down (PD) Assay, Immunoprecipitation (IP) and Immunoblotting

GST-Nck(SH3.1) and GST-Lck(SH3) were expressed in the E. coli strain BL21, coupled
to glutathione sepharose (GE Healthcare) and incubated with lysates as described [22]. For
TCR immunoprecipitation (TCR-IP), 2 µg of anti-CD3ε (OKT3) antibody together with
10 µL protein G coupled sepharose beads (GE Healthcare) were added to lysates. PD assay
and TCR-IP were performed by overnight incubation at 4 ◦C.

Proteins from lysate, PD or TCR-IP were subjected to SDS-PAGE followed by im-
munoblotting according to standard procedures. Protein bands were detected by chemilu-
minescence under a CCD camera (ImageQuant LAS 4000; GE Healthcare). Relative band
intensity was quantified by ImageJ software and ImageQuantTL software (GE Healthcare).

2.7. Molecular Modeling

Molecular modeling was performed as described in the results section using the
HADDOCK (High Ambiguity Driven biomolecular DOCKing) web server (version 2.2) [33]
to simulate the docking of the proteins Lck(SH3), Nck(SH3.1) and CD3ε. Homology
modeling was performed using MODELLER (v.9.13) [34] and a default ‘DOPE’ score was
chosen to select the best human CD3εmodel as specified in the result.

2.8. Quantification and Statistical Analysis

Data are represented as means ± SEM. Statistical significance was calculated by
Student’s t-test using GraphPad PRISM 6. Differences were considered significant when
the p values were <0.05.

3. Results
3.1. Impaired Proximal TCR Signaling in the Absence of Nck

The importance of Nck on distal TCR signaling was previously demonstrated, as
silencing of Nck1 and Nck2 resulted in the reduction of CD69 up-regulation and IL-2
secretion upon TCR stimulation [21]. Therefore, we aimed to investigate whether Nck also
regulates early proximal signaling events upon TCR triggering. One of these events is the
phosphorylation of ZAP70 on tyrosine 319 (Y319) by the Src family kinase Lck, which is
involved in ZAP70 activation [35] and serves as a docking site for other molecules control-
ling downstream signaling (reviewed in) [36]. In mouse models, mutations in the CD3ε
PRS prevent recruitment of Nck to the TCR resulting in impaired ZAP70 recruitment and
phosphorylation, which suggests that the early recruitment of Nck to the TCR modulates
ZAP70 activation [20].

To investigate ZAP70 phosphorylation upon TCR stimulation, we created Jurkat T cells
either mock-treated or shRNA-treated to silence both Nck1 and Nck2 (named shNck1/2)
(Supplementary Figure S1A,B). Importantly, absence of both, Nck1 and Nck2, did not
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affect surface TCR expression (Supplementary Figure S1B). Upon TCR stimulation with
an anti-CD3ε antibody, mock-treated cells showed an increase in the phosphorylation of
ZAP70 on Y319 as expected. However, TCR stimulation did not lead to an increase in
ZAP70 phosphorylation in shNck1/2 cells (Figure 1A,B).
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Figure 1. Nck is needed for ZAP70 phosphorylation and recruitment to the activated TCR. (A) Mock-treated or shNck1/2
knock-down Jurkat cells were left unstimulated (-) or stimulated with 1 µg/mL anti-CD3ε antibody (OKT3) for the indicated
times at 37 ◦C. Total cell lysates were subjected to immunoblot with anti-phospho-ZAP70 (Y319) and anti-ZAP70 antibodies.
(B) Data from three independent experiments as shown in A were quantified and unpaired Student’s t-test was performed
between the indicated samples. (C) In situ PLA between the TCR (CD3ε) and ZAP70 showing a TCR-ZAP70 distance
less than 80 nm (red fluorescent signal) in mock-treated or in shNck1/2 knock-down Jurkat cells. Cells were either left
unstimulated (uns) or stimulated with anti-TCR (C305) at 37 ◦C for 5 min. Nuclei were stained with DAPI. One representative
experiment is shown. (D) Quantification and statistical analysis of three independent experiments of data shown in C using
unpaired Student’s t-test. Mean values ± SEM are shown. * p < 0.05, ** p < 0.01, **** p < 0.0001, NS, not significant.

To test whether absence of ZAP70 phosphorylation was the result of a defect in ZAP70
recruitment to the TCR, we performed an in situ proximity ligation assay (PLA) between
the TCR and ZAP70. In this assay, the presence of a red dot indicates proximity between
the TCR and ZAP70. The specificity of this approach is demonstrated (Supplementary
Figure S1C). In resting cells, hardly any ZAP70 was found in the vicinity of the TCR. Upon
TCR stimulation with an anti-CD3 antibody, ZAP70 was recruited close to the TCR in mock-
treated cells as indicated by the detection of red dots. In contrast, ZAP70 recruitment to
the TCR after TCR stimulation was severely reduced in shNck1/2 cells compared to mock-
treated cells (Figure 1C,D). These results are in line with a previous report demonstrating
that Jurkat cells expressing a mutant Nck1, that was unable to bind to the TCR, also failed
to recruit ZAP70 to the stimulated TCR [31].

Tyrosine-phosphorylated ITAMs of the CD3 chains serve as docking sites for ZAP70 [13].
Therefore, we next investigated whether reduced ZAP70 recruitment to the TCR is a conse-
quence of impaired ITAM phosphorylation. While mock-treated cells showed an increase
in ζ phosphorylation after TCR stimulation, hardly any ζ phosphorylation was detected
in shNck1/2 cells (Figure 2A,B). Similar results were obtained for CD3ε phosphorylation
(Figure 2C,D). Altogether, these data support the hypothesis that Nck is required for proxi-
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mal early TCR signaling, namely for optimal ITAM phosphorylation, ZAP70 recruitment
to the TCR and subsequent ZAP70 phosphorylation.
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Figure 2. TCR phosphorylation depends on the presence of Nck. (A) Cells were left unstimulated (-)
or stimulated with 1 µg/mL anti-CD3ε antibody (OKT3) at the indicated times at 37 ◦C. Total cell
lysates were subjected to immunoblot with anti-phospho-ζ (Y142) and anti-ζ antibodies. (B) Data
from three independent experiments performed as in A were pooled and unpaired Student’s t-test
was performed between the indicated samples. (C) Cells were stimulated as in A. Total cell lysates
were subjected to TCR-immunoprecipitation and immunoblotting with anti-phospho-ε (Y188) and
anti-ε antibodies. (D) Data from three independent experiments performed as in C were pooled
and paired Student’s t-test was performed between the indicated samples. Mean values ± SEM are
shown. * p < 0.05, ** p < 0.01, **** p < 0.0001, NS, not significant.

3.2. Nck Is Required for Optimal Lck Binding to the TCR

Next, we investigated whether Lck binding to the TCR is affected by the absence
of Nck. Lck can be recruited to the phosphorylated ITAMs via its SH2 domain [37].
However, prior its binding via the SH2 domain, Lck needs to gain access to the ITAMs to
phosphorylate them. We have recently solved this apparent paradox by demonstrating
that Lck is first recruited to the unphosphorylated TCR via the interaction of Lck(SH3)
with the RK motif that is located in the CD3ε cytoplasmic tail. Importantly, the RK motif is
exposed only upon ligand binding to the TCR, explaining how Lck discriminates between
ligand-bound and resting TCRs [22].

Firstly, we quantified the binding of the TCR complex to Lck(SH3)-coated beads using
a pull-down assay followed by Western blot to detect ζ. Of note, ζ is the last subunit that is
incorporated to the TCR complex in the endoplasmic reticulum and therefore, it is broadly
used to detect the fully assembled TCR-CD3 complex [4,5,10,22]. As expected, Lck binding
to the TCR was increased in antibody-stimulated mock cells compared to resting cells
(Figure 3A,B). In contrast, stimulation of the TCR failed to induce TCR-Lck(SH3) binding
in shNck1/2 cells (Figure 3A,B). We performed then a pull-down assay using the SH3.1
domain of Nck and observed that stimulation of the TCR did not result in TCR-Nck(SH3.1)
binding in cells lacking Nck (Supplementary Figure S2A,B). These results suggest that
endogenous Nck might help to stabilize the open TCR conformation and thereby, facilitate
the exposure of the RK motif for Lck recruitment, of the PRS for Nck binding, and of the
ITAM of CD3ε for subsequent phosphorylation by Lck [4,10,22].
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beads followed by immunoblotting with the indicated antibodies. Lysates served as control to show Nck1/2 downregulation.
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shown. (D) Quantification of the experiment shown in C and analysis using an unpaired Student’s t-test. Mean values ±
SEM are shown. * p < 0.05, **** p < 0.0001.

Next, we investigated whether binding of endogenous Lck to the TCR was also
affected in cells lacking Nck. To this end, we performed a PLA between the TCR and Lck,
either in mock-treated or in shNck1/2 cells. Technical controls confirmed the specificity of
this approach (Supplementary Figure S2C). As previously described [22,32], we observed a
low level of Lck-TCR proximity in unstimulated mock cells (Figure 3C,D). Interestingly,
this basal proximity between Lck and TCR was significantly reduced in the absence of
Nck (Figure 3C,D). This observation supports the idea that Nck regulates the proportion
of TCRs that are in the active conformations even in resting T cells [10]. In mock cells,
TCR stimulation increased the proximity between the TCR and Lck as a result of multiple
interactions via the SH3 and the SH2 domains of Lck. In contrast, stimulation in the absence
of Nck failed to increase the recruitment of Lck to the TCR (Figure 3C,D). These data are in
line with the observed reduction of Lck(SH3) binding to the TCR (Figure 3A,B) and of the
absence of phosphorylation of the CD3 ITAMs observed in shNck1/2 cells (Figure 2).
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Altogether, our results demonstrate that Nck is needed for optimal binding of Lck to
the TCR, and explains the strong reduction of both Lck-mediated ITAM phosphorylation
and of TCR downstream signaling in cells lacking Nck.

3.3. Simultaneous Binding of Nck and Lck to the TCR Orchestrates Optimal TCR Phosphorylation

As the RK motif and the PRS are located close to each other in CD3ε, we were
interested to know whether Nck and Lck can bind simultaneously to the same CD3ε
chain. To address this, HADDOCK (High Ambiguity Driven biomolecular DOCKing)
web server was used to simulate the docking of Lck(SH3) and Nck(SH3.1) to CD3ε. We
utilized the three-dimensional apo structures of human Lck(SH3) (Protein Data Bank
entry 2IIM) and human Nck(SH3.1) (Protein Data Bank entry 2JS2). Since the structure of
human CD3ε is unavailable, a structural homology model was generated using the mouse
CD3ε structure as a template (Protein Data Bank entry 2K4F; sequence identity-90.91%).
Homology modeling was performed using MODELLER (version 9.13) [34] and default
‘DOPE’ score was chosen to select the best human CD3εmodel. HADDOCK allows for the
integration of a wide range of experimental data including the chemical shift perturbations
and site directed mutagenesis as ambiguous interaction restraints (AIRs). The information
for the interacting residues as AIRs for Nck(SH3.1)-CD3ε complex was collected from
literature [38,39]. The interacting amino acids as AIRs for the Lck(SH3)-CD3ε complex
were previously described by us [22]. The top structure, having the lowest total energy,
based on highest cluster size and most negative z-score, was selected as the final model
(Figure 4A). The results suggest that the binding of one SH3 domain (from Nck or Lck) does
not sterically hinder the binding of the second SH3 domain (from Lck or Nck, respectively)
to the same CD3εmolecule. Thus, simultaneous binding of both molecules, Lck and Nck,
to the same CD3ε is, at least theoretically, possible.
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of the modeled complex formed by Lck(SH3) and Nck(SH3.1) with the CD3ε cytoplasmic tail. Purple, Lck(SH3); pink,
Nck(SH3.1); multicolor, CD3ε. CD3εmotifs are depicted. Orange, Basic Rich Sequence, BRS; yellow, Proline-Rich Sequence,
PRS; green, Receptor Kinase, RK motif. (B) 31–13.scTCRβ cells are TCRβ-deficient Jurkat cells expressing an scTCRβ
composed of the nitro-iodo-phenol (NIP)-binding variable immunoglobulin domains of a NIP-specific antibody connected
by a flexible linker to the N-terminus of wild-type TCRβ. 31–13.scTCRβ cells were incubated with anti-CD3ε (OKT3)
antibody on ice for 1 h in the presence of PP2 and the TCR was purified using NP-coupled beads. An in vitro kinase assay
was performed in the presence of the indicated proteins followed by immunoblotting. ATP was added to all samples. One
representative experiment is shown. (C) Quantification of three experiments performed as in B is shown. Analysis was
done using a paired Student’s t-test. Mean values ± SEM are shown. * p < 0.05.
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We next tested whether simultaneous binding of Lck and Nck to CD3ε can promote
TCR phosphorylation. To exclude conformational change of the TCR during the TCR
purification step, we used 31–13.scTCRβ cells. These cells stably express a TCRβ chain
coupled via a flexible linker to a nito-iodo-phenol (NIP)-specific single chain variable
fragment (scFv). The scTCRβ is assembled within the TCR-CD3 complex and allows its
purification [5]. We first prevented TCR phosphorylation by incubating 31–13.scTCRβ
cells with the Src kinase inhibitor PP2, and thereby avoided the co-purification of any
endogenous signaling protein including Lck and Nck. Next, we incubated the cells with
antibodies that stabilize the active TCR conformation. The TCRs in the active conformation
were then purified using the NIP-specific scFv and incubated either without Lck, with
constitutively active recombinant Lck or with both, recombinant Lck and Nck and an
in vitro kinase assay was performed (Figure 4B,C). Constitutively, active Lck was detected
by phosphorylation of its kinase domain (Figure 4B and Supplementary Figure S3, pLck).
The TCR was only phosphorylated in the presence of active Lck validating the specificity
of our assay (Figure 4B,C and Supplementary Figure S3). When the in vitro kinase assay
was performed in the presence of both Lck and Nck, the phosphorylation of CD3ε and
ζ ITAMs was significantly increased compared to Lck alone (Figure 4B,C). Hence, these
results suggest that Lck and Nck cooperate for optimal TCR phosphorylation.

4. Discussion

Ligand binding to the TCR stabilizes the receptor in an active conformation exposing
the CD3ε cytoplasmic tail for interaction with signaling proteins (reviewed in) [8,9]. The
cytoplasmic tail of CD3ε contains motifs mediating protein–protein interactions prior to
phosphorylation. These motifs are thus appealing candidates for the initiation of TCR
signaling. Among these motifs, the PRS binds to the SH3.1 domain of Nck (Nck(SH3.1))
and thereby recruits Nck to the TCR independent of phosphorylation [4]. In addition, we
have recently identified the RK motif, a non-canonical binding motif for the SH3 domain
of Lck (Lck(SH3)). This motif is responsible for the recruitment of Lck to the TCR prior to
ITAM phosphorylation [22]. The importance of Lck for TCR signaling has already been
demonstrated [40–44]. However, Lck is a complex modular protein whose regulation at the
TCR remains to be fully understood. Catalytic activity of Lck is regulated by at least two
cooperative intramolecular interactions: (1) between the SH3 domain and a proline-rich
sequence situated in the linker connecting the SH2 and kinase domains, and (2) between
the SH2 domain and the phosphorylated Y505 in the C-terminal tail. The auto-inhibited
Lck is a sensitive mousetrap that can be activated by alternative interactions [45]. For
instance, SH3 domain displacement via binding to PxxP sequences or via the RK motif
increases the local activity of Lck [22,46–49]. Auto-phosphorylation of Y394 is the strongest
activator of Lck catalytic activity. In this study, we shed new light on the interplay between
Lck and Nck at the TCR, showing that they cooperate to phosphorylate the ITAMs and
thereby to recruit ZAP70 to the TCR.

The proximity of the PRS and the RK motif in the CD3ε cytoplasmic tail made us
wonder whether both SH3 domains (from Nck and Lck) are able to bind to the same
CD3ε molecule simultaneously. Alternatively, Nck and Lck could be recruited to two
different CD3εmolecules of the same TCR. Using molecular modeling, we demonstrated
that simultaneous binding of Nck(SH3.1) and Lck(SH3) to the same CD3ε chain is possible.
This model provides support for the hypothesis that CD3ε bridges Nck and Lck at the TCR,
and that these two molecules coordinate to regulate the phosphorylation of the ITAMs,
and thereby, proximal TCR signaling. This idea is further supported by our experiments
using T cells with either a single mutation in the RK motif or in the PRS of CD3ε, as well as
simultaneous mutations of both motifs. Mutation of the RK motif reduced TCR signaling,
including ITAM phosphorylation and T cell activation [22]. Mutation of the PRS in CD3ε
also caused reduced ITAM phosphorylation and T cell activation in primary murine
cells [20]. These results were reproduced using Jurkat-derived T cell lines alongside cells
expressing CD3εwith both mutations, in RK motif and PRS. The double mutants displayed
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much stronger defects in TCR signaling compared to the single individual mutations [22].
The reduction in TCR phosphorylation and T cell activation in cells expressing the double
mutations was comparable to cells expressing a CD3ε variant that cannot stabilize the
active conformation, and therefore cannot expose the motifs to recruit Lck nor Nck to
the TCR [22]. These data suggest that Nck might be required to promote proximal TCR
signaling. However, mutations in the PRS might have other biological effects beyond the
recruitment of Nck. In this study, we demonstrated that Nck promotes proximal TCR
signaling upon ligand binding. Using biochemical approaches and proximity ligation
assay (PLA), we showed that Nck is required for optimal TCR phosphorylation, ZAP70
phosphorylation by Lck, and ZAP70 recruitment to the TCR. Mechanistic insight came
from our finding that Lck was not in proximity to the TCR upon stimulation in the absence
of Nck. These data strongly suggest that Nck is needed for efficient Lck recruitment to
the ligand-bound TCR to phosphorylate the ITAMs. At least two, not mutually exclusive,
scenarios might explain these results: (1) Nck interacts, directly or indirectly, with Lck to
enforce the binding of Lck to the ligand-bound TCR and (2) Nck stabilizes the active TCR
conformation promoting the exposure of the RK motif and thereby the recruitment of Lck
to the ligand-bound TCR. Regarding the first scenario, previous reports have suggested
interactions between Nck and Lck [17,20,28]. An indirect interaction of Lck and Nck,
through the adaptor protein TSAd, has already been reported [28]. In addition, Lck and
Nck might interact with each other in a TSAd-independent manner, either by directly
binding to each other or through an unknown interaction partner [28]. Supporting the
second scenario are our results of pull-down assays with purified SH3 domains. In contrast
to mock cells, the stimulated TCR failed to bind to either the Lck(SH3)- or the Nck(SH3.1)-
coated beads in cells lacking Nck expression. This observation strongly suggests that
endogenous Nck might help to stabilize the active, open TCR conformation, and thereby
facilitate the exposure of the RK motif for Lck recruitment and the ITAMs for subsequent
phosphorylation by Lck. This second scenario is also compatible with direct or indirect
interactions between Lck and Nck.

Nevertheless, the idea of interplay between Nck and Lck to promote ITAM phosphory-
lation was additionally supported by our in vitro kinase assays. Adding recombinant Nck
to an Lck in vitro kinase assay significantly enhanced ITAM phosphorylation compared to
Lck alone. Thus, Nck and Lck seem to cooperate for TCR phosphorylation in the absence of
additional proteins such as TSAd, as demonstrated in our minimalistic in vitro kinase assay.
These results are in line with the notion of Nck supporting proximity between Lck and the
ligand-bound TCR as discussed above. Nck might also increase the local activity of Lck at
the TCR, for example, by providing alternative interactions (direct or indirect, see above)
to the endogenous auto-inhibiting ones, swinging active the sensitive Lck “mousetrap”.
Indeed, the amount of Lck in the active open conformation was increased after ligand
binding to the TCR [50,51].

Several mechanisms have been proposed to amplify or sustain TCR signals upon
ligand binding once the phosphorylation of the ITAMs is initiated. For instance, ligand-
induced receptor clustering, recruitment of the co-receptors CD4 and CD8, or the segrega-
tion of the TCR from phosphatases might be involved (reviewed in) [16]. In addition, the
formation of a trimolecular complex between Lck, Nck and TSAd at the cytoplasmic tail of
CD3εmight add to these amplifying mechanisms. It had been demonstrated that active
Lck phosphorylates TSAd, which in turn establishes multiple interactions with Lck: (1) via
the Lck(SH2) domain, and (2) between a PRS in TSAd and the Lck(SH3) domain [52]. These
multiple interactions could trigger the recruitment or opening of additional Lck molecules
or both, enhancing local Lck activity at the TCR [53]. Indeed, in our previous study, we
have shown that Lck’s activity increases in the vicinity of the ligand-bound TCR [22].

Overall, in this study we proposed a model in which Lck and Nck cooperatively
orchestrate optimal TCR signaling. First, ligand binding to the TCR stabilizes the active
TCR conformation, exposing the cytoplasmic tail of CD3ε to its interaction partners, namely
the PRS for the Nck(SH3.1) domain and the RK motif for the Lck(SH3) domain. In addition,
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the ITAMs are exposed to be phosphorylated by Lck. Binding of Nck to the PRS might help
to stabilize the TCR in the active conformation or the binding of the Lck via its SH3 domain
to the RK motif, or both. Of note, the latter interaction has been shown to be of low affinity
compared to the interaction of the Nck(SH3.1) domain to the PRS [22,54], and therefore
it might need some further Nck-mediated stabilization. Binding of the Lck(SH3) domain
to the RK motif results in an increase in local Lck activity at the TCR, and consequently
in ITAM phosphorylation. This increase might be mediated by three mechanisms: (1)
by augmentation of the number of Lck molecules at the TCR due to Lck recruitment to
CD3ε; (2) by Lck(SH3) domain intermolecular displacement via binding to the RK motif
increasing the opening and activation of Lck; and (3) by further increasing local activity of
Lck via opening of additional Lck molecules through interactions with TSAd or Nck or
both, in conjugation with further amplification mechanisms.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10040834/s1, Figure S1: Nck is needed for ZAP70 recruitment. Characterization of mock-
treated control cells and shNck1/2 cells, and technical PLA controls between the TCR and ZAP70.
Figure S2: Nck is required for Lck binding to the TCR. Binding of Nck(SH3.1) to the TCR assayed by
Pull-Down assay with GST-Nck(SH3.1)-coupled beads, and technical PLA controls between the TCR
and Lck. Figure S3: In vitro kinase assay of the TCR in the presence of Lck or Nck.
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