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Abstract: CD40-activated CD40L-mediated reverse signalling is a major physiological regulator of 
neurite growth from excitatory and inhibitory neurons in the developing central nervous system 
(CNS). Whereas in excitatory pyramidal neurons, CD40L reverse signalling promotes the growth 
and elaboration of dendrites and axons, in inhibitory GABAergic striatal medium spiny neurons 
(MSNs), it restricts neurite growth and branching. In pyramidal neurons, we previously reported 
that CD40L reverse signalling activates an interconnected and interdependent signalling network 
involving protein kinase C (PKC), extracellular regulated kinases 1 and 2 (ERK1/2), and c-Jun 
N-terminal kinase (JNK) signalling pathways that regulates dendrite and axon growth. Here, we 
have studied whether these signalling pathways also influence neurite growth from striatal inhib-
itory MSNs. To unequivocally activate CD40L reverse signalling, we treated MSN cultures from 
CD40-deficient mice with CD40-Fc. Here, we report that activation of CD40L reverse signalling in 
these cultures also increased the phosphorylation of PKC, ERK1/2, and JNK. Using pharmacolog-
ical activators and inhibitors of these signalling pathways singularly and in combination, we have 
shown that, as in pyramidal neurons, these signalling pathways work in an interconnected and 
interdependent network to regulate the neurite growth, but their functions, relationships, and 
interdependencies are different from those observed in pyramidal neurons. Furthermore, im-
munoprecipitation studies showed that stimulation of CD40L reverse signalling recruits the cata-
lytic fragment of Syk tyrosine kinase, but in contrast to pyramidal neurons, PKC does not partici-
pate in this recruitment. Our findings show that distinctive networks of three signalling pathways 
mediate the opposite effects of CD40L reverse signalling on neurite growth in excitatory and in-
hibitory neurons. 
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1. Introduction 
CD40-activated CD40L reverse signalling influences the growth and elaboration of 

neural processes in several kinds of neurons in both the peripheral and the central 
nervous systems. In the central nervous system (CNS), CD40-activated CD40L reverse 
signalling has strikingly opposite effects on the size and elaboration of the neurites (axon 
and dendrites) of excitatory and inhibitory neurons. Elimination of CD40/CD40L signal-
ling in Cd40−/− mice results in marked and opposite phenotypic changes in these neurons 
both in vivo and in vitro. Compared with wild-type mice, the neurites of the excitatory 
glutamatergic pyramidal neurons of the hippocampus are markedly stunted, whereas 
those of the inhibitory GABAergic medium spiny neurons (MSNs) of the striatum are 
much larger and more exuberant. In vitro experiments demonstrated that these pheno-
typic changes in both kinds of neurons are due to the elimination of CD40-activated 
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CD40L-mediated reverse signalling rather than to the elimination of CD40L-activated 
CD40 forward signalling. Indeed, CD40 forward signalling does not play any role in the 
regulation of the growth and elaboration of neural processes in MSNs and pyramidal 
neurons [1]. These morphological effects mediated by CD40L-reverse signalling are de-
pendent on protein kinase C (PKC); with PKCβ involved in pyramidal neurons and 
PKCγ in MSNs [1]. 

In pyramidal neurons, we recently reported that the activation of CD40L reverse 
signalling activates PKC, ERK1/2 (extracellular regulated kinases 1 and 2), and JNK 
(c-Jun N-terminal kinase) and that these proteins function as an interdependent and in-
terconnected signalling network regulating the growth of dendrites and axons [2]. Pre-
vious work has shown that these signalling pathways are individually involved in regu-
lating the growth of neural processes mediated by several factors from a variety of neu-
rons, mediating either enhancement or suppression of axon and/or dendrite growth 
[3–12]. Our findings in pyramidal neurons suggested instead that these signalling path-
ways do not function in a simple linear sequence, but rather they act interconnected and 
in a distinctively regulated network. Because in MSNs, CD40L reverse signalling also 
regulates the growth of neurites, the aim of the present study was to investigate the 
downstream mechanism in these inhibitory neurons following the activation of 
CD40L-mediated reverse signalling. We first analyzed whether PKC, JNK, and 
ERK1/ERK2 are also involved as in excitatory neurons. By analysing the function of these 
signalling proteins and their relationships, we determined the downstream signalling in 
these inhibitory neurons, identifying the similarities and differences between these two 
kinds of neurons that account for the distinctive neurite growth responses of excitatory 
and inhibitory neurons to CD40-activated CD40L-mediated reverse signalling. 

For these studies, we used MSN neurons cultured from CD40-deficient mice to 
eliminate any endogenous CD40/CD40L signalling, and activated CD40L reverse signal-
ling by treating the neurons with CD40-Fc. CD40-Fc protein is a chimeric protein con-
sisting of the extracellular domain of CD40 linked to the Fc part of the human IgG1 that is 
able to activate CD40L-reverse signalling [1,2,13,14]. Wild-type neurons are not useful for 
studying intracellular signalling activated by CD40L reverse signalling because treating 
wild-type neurons with CD40-Fc does not affect neurite length, as previously observed in 
several populations of neurons where the control of the dendrite or axon growth is in-
fluenced by CD40L reverse signalling [1,13]. Moreover, treating wild-type neurons with 
soluble CD40 (sCD40L) could not only activate CD40 forward signalling, but could also 
compete with the endogenous CD40L blocking the CD40L reverse signalling [1,13], 
making the results difficult to interpret. The activation of CD40L reverse signalling in 
cultured MSNs increased the phosphorylation levels of PKC, ERK1/2, and JNK. By using 
pharmacological activators and inhibitors of these signalling pathways singularly and in 
combination, we showed that these signalling pathways mediate the inhibitory effect of 
CD40L reverse signalling on neurite growth by functioning as a distinctive intercon-
nected and interdependent network. Whereas the morphological assays showed the hi-
erarchy by which these signalling pathways act, the phosphorylation studies provided 
their differential and distinctive regulation. As in hippocampal pyramidal neurons, the 
activation of CD40L reverse signalling also involves the recruitment of Syk, but unlike in 
these neurons, the receptor complex formed by CD40L and Syk in MSNs does not com-
prise PKC. These findings show that distinctive networks of three signalling pathways 
mediate the opposite effects of CD40L reverse signalling on neurite growth in excitatory 
and inhibitory neurons. 

2. Materials and Methods 
2.1. Mice 

Mice breeding was approved by the Cardiff University Ethical Review Board and 
was performed within the guidelines of the Home Office Animals (Scientific Procedures) 
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Act, 1986. Mice were housed in a 12 h light-dark cycle with access to food and water ad 
libitum. Cd40 null mutant mice in a C57BL6/J background were purchased from The 
Jackson Laboratory (Bar Harbour, ME, USA). These mice were back-crossed into a CD1 
background. Cd40+/− mice were crossed to generate Cd40−/− mice from which cultures were 
established. 

2.2. Neuron Culture 
To prepare the primary medium spiny neuron (MSN) cultures, striatal primordia 

were dissected from embryonic day 14 (E14) mouse fetuses and were triturated to pro-
duce a single cell suspension following trypsin digestion (Worthington, Lakewood, CA, 
USA) and DNase I treatment (Roche Applied Science, East Sussex, UK). Neurons were 
plated at a density of 15,000 cells/cm2 for the morphological analysis and at 20,000 
cells/cm2 for western blot experiments in plastic dishes coated with poly-L-lysine (Sig-
ma-Aldrich, Dorset, UK). Neurons were cultured with Neurobasal A (Invitrogen, Paisley, 
UK) supplemented with 2% NeuroCult SM1 neuronal supplement (StemCell, Cam-
bridge, UK), 1% Foetal Calf Serum (FCS) (Sigma-Aldrich, Dorset, UK), 100 units/mL 
penicillin, and 100 μg/mL streptomycin (Gibco BRL, Crewe, UK). To avoid large astro-
cyte proliferation, at 3 DIV, half of the medium was replaced with the same medium as 
before but without FCS, and from 7 DIV, the medium was replaced every 3–4 days with 
medium without FCS. The cultures were incubated at 37 °C in a humidified atmosphere 
containing 5% CO2. 

The cultures were treated with the following reagents as indicated in the text: 
CD40-Fc (1 μg/mL, ALX-522-016-C050), Fc protein (1 μg/mL, ALX-203-004-C050), 
SP600125 (1 μM, BML-EI305-0010) and U0126 (1 μM, BML-EI282-0001) from Enzo Life 
Sciences; Anisomycin (50 nM, cat. no. 1290), Fisetin (1 μM, cat. no. 5016), Go 6983 (500 
nM, cat. no. 2285), and U0124 (1 μM, cat. no. 1868) from Tocris Biosciences; phor-
bol-12-myristate-13-acetate (PMA) (500 nM, MERCK, cat. no. 524400). Fc and CD40-Fc 
were reconstituted with sterile H2O; the rest were reconstituted in dimethyl sulfoxide 
(DMSO) and subsequently diluted in culture medium to the concentrations indicated. No 
differences were observed between control cultures that received an equivalent level of 
DMSO, untreated cultures, and cultures treated with Fc. None of the treatments altered 
the neuronal viability or cell density. During and after treatments, the neurons showed 
healthy morphologies without any sign of cell death or damage. 

2.3. Analysis of Neurite Morphology 
For the analysis of neurite morphology, treatments were performed the next day 

after seeding the neurons. Treatments were added to the fresh medium when the me-
dium was partially replaced. MSN cultures were fixed with 4% paraformaldehyde after 
10 days in vitro, after which they were permeabilizated with 0.1% Triton-X100 and 
blocked with 1% bovine serum albumin (BSA) before labelled with anti-DARPP-32 (1:400 
Cell Signaling Technology, Danvers, MA, USA) to identify MSNs. Analysis of neuronal 
morphology was studied after double labelling with anti-βIII tubulin (1:1500; chicken 
ab41489, AbCam, Cambridge, UK). Secondary antibodies used to visualize labelling 
neurons were fluorescent Alexa antibodies (1:500; Thermofisher, Cambridge, UK, 
A-21206 and A-11042). Labelled neurons were visualized using a Zeiss LSM710 confocal 
microscope. 

Neurite length was assessed using Fiji (ImageJ) software with the semiautomated 
plugin Simple Neurite Tracer [15]. The mean and standard errors of the measurements 
from at least three independent experiments were plotted. 

2.4. Prediction of Protein-Protein Interactions with STRING 
As an in silico approach to determine possible protein-protein interactions (PPI) 

between CD40L and PKCγ, we used STRING database (STRING: functional pro-
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tein-protein interaction networks; https://string-db.org/ (accessed on 12 March 2021)). All 
possible interactions including text-mining, experiments, databases, co-expression, 
neighborhood, gene fusion, and co-occurrence with reliability scores more than 0.4 (0.4 
medium confidence) were analyzed for mouse CD40L and PKCγ. Table S1 shows all 
possible PPI for CD40L, PKCγ, and all that they share in common. 

2.5. CD40L Pull Down 
Protein interactions of CD40L after binding CD40-Fc were analyzed in 9 days in 

vitro MSNs cultures from Cd40−/− mice treated for 30 min with either Fc or CD40-Fc (1 
μg/mL). The neuron cells were then washed with ice-cold PBS, harvested, and lysed in 
ice-cold triton lysis buffer (NaCl 150 mM, EDTA 10 mM, Tris-HCl 10 mM pH 7.4, 1% 
Triton X-100, and protease and phosphatase inhibitor cocktail mix (Protease/Phosphatase 
inhibitor cocktail, 5872, Cell Signaling, London, UK)). After lysate clearance by centrifu-
gation and quantify for equal concentration, Fc fragments were pulled down from the 
supernatant by incubation overnight on an orbital shaker at 4 °C with protein 
G-Sepharose beads (Protein G Sepharose Fast Flow, P3296, Sigma, Dorset, UK) previ-
ously blocked with 5% BSA. The beads were washed 5× with ice-cold triton lysis buffer. 
Complexes were collected with elution citrate 0.1 M pH 2.5 buffer. The pH was adjusted 
by adding 1/6 neutralizing Tris HCl 1 M pH 8.5 buffer, and after adding Laemmli buffer, 
the samples were boiled for analysis by immunoblotting. 

2.6. Immunoblotting 
For the immunoblotting, dissected striatal primordia were placed in triton lysis 

buffer supplemented with protease and phosphatase inhibitor cocktail mix (Prote-
ase/Phosphatase inhibitor cocktail, 5872, Cell Signaling, London, UK). The tissue was 
disaggregated using a pellet pestle until completely homogenizated. For the cultured 
neurons from Cd40−/− mice after the indicated treatments, the neurons were scraped from 
the plates in ice-cold PBS, collected by centrifugation, and resuspended in ice-cold triton 
lysis buffer. For preparation of cytosolic and nuclear extracts, the neurons were resus-
pended in buffer A containing 10 mM Hepes pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 0.5 mM 
dithiothreitol (DTT) with protease and phosphatase inhibitor cocktail mix. Nonidet P40 
was added to a final concentration of 0.6% and vortexed for 10 s. Nuclei were separated 
from the cytosolic extracts by centrifugation. The nuclei were then washed once with 
buffer A and were incubated with buffer B that contained 20 mM Hepes pH 7.9, 25% 
glycerol, 400 nM NaCl, 1 mM ethylenediamine tetraacetic acid (EDTA), 0.5 mM dithio-
threitol (DTT), and protease and phosphatase inhibitor cocktail mix for 30 min with gen-
tle rocking at 4 °C. The suspensions were centrifugated at 15,000× g for 15 min at 4 °C. 
Equal quantities of protein were separated on 10% SDS-PAGE gels and were transferred 
to polyvinylidene difluoride (PVDF) membranes (Immobilon-P, Millipore, Dorset, UK). 
The blots were probed with anti-phosphoPKCThr514 (1:1000; rabbit 9379), an-
ti-phospho-p44/p42 MAPK (ERK1/2)Thr202/Tyr204 (1:1000; rabbit 9101), anti-p44/p42 (ERK1/2) 
(1:1000; mouse 9107), anti-phospho-SAPK/JNKThr183/Tyr185 (1:1000; rabbit 4671), anti-Syk 
(1:1000; rabbit 2712) that detects the 72 kDa and the 40 kDa because it is generated using 
an epitope at the carboxyl terminal, and anti-PKCγ (1:1000; rabbit 43806) from Cell Sig-
naling, London, UK; anti-PKC (1:1000; mouse clone M110 05-983, MERCK, Dorset, UK), 
anti-CD40L (1:700; rabbit ab2391, AbCam, Cambridge, UK), anti-PKCβ (1:1000; rabbit 
SAB4502358, Sigma, Dorset, UK), and anti-βIII tubulin (1:90,000; mouse MAB1195, R&D, 
Abingdon, UK). Binding of the primary antibodies was visualized with HRP-conjugated 
donkey anti-rabbit or anti-mouse secondary antibodies (1:5000; rabbit W4011, mouse 
W4021, Promega, Southampton, UK) and EZ-ECL kit Enhanced Chemiluminescence 
Detection Kit (Biological Industries, Geneflow Limited, Staffordshire, UK). 
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3. Results 
3.1. Activation of CD40L Reverse Signalling Phosphorylates PKC, ERK, and JNK 

Because CD40-activated CD40L-mediated reverse signalling enhances phosphory-
lation of PKC, ERK1/2, and JNK in hippocampal pyramidal neurons, we initially deter-
mined whether these three signalling pathways were also activated by CD40L reverse 
signalling in MSNs. We used western blotting to assess the phosphorylation levels of 
these proteins in MSN cultures after activating CD40L reverse signalling with CD40-Fc. 
To prevent CD40L reverse signalling in the absence of CD40-Fc, MSN cultures were es-
tablished from Cd40−/− mice. These cultures were treated with either CD40-Fc (Figure 1a) 
or Fc as a control (Figure 1b) for the times indicated collecting the lysates after a total of 9 
days in vitro. Lysates were analyzed by western blotting for the levels of phos-
pho-PKCThr514, phospho-ERK1/ERK2Thr202/Tyr204, and phospho-JNKThr183/Tyr185. Anti-βIII tu-
bulin was used for normalizing the relative phosphorylation of pPKC and pERK1/pERK2 
(cytosolic fraction), and naphthol blue for pJNK (nuclear fraction). 
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Figure 1. Protein kinase C (PKC), extracellular regulated kinases 1 and 2 (ERK1/2), and c-Jun 
N-terminal kinase (JNK) phosphorylation after stimulating CD40L reverse signalling. (a,b) Repre-
sentative western blots of lysates of Cd40−/− E14 striatal medium spiny neuron (MSN) cultures 
treated for the indicated times with (a) 1 μg/mL CD40-Fc or (b) 1 μg/mL Fc protein as a control. 
Lysates were prepared from all cultures after a total of 9 days in vitro. The blots were labelled with 
anti-phopho-PKCThr514 (pPKC), anti-phospho-p44/p42Thr202/Tyr204 MAPK (ERK1/2) (pERK 1/2), an-
ti-phospho-SAPK/JNKThr183/Tyr185 (pJNK). Anti-PKC (PKC), anti-p44/p42 (ERK1/2), and anti-βIII tu-
bulin (βIII tub) were used as loading control for the cytosolic fractions and naphthol blue was used 
as loading control in the nuclear fraction. (c) Densitometry of at least three independent western 
blots using βIII tubulin (βIII tub) for normalising pPKC and pERK1/2 and naphthol blue for pJNK 
(mean ± s.e.m.). 

There were significant increases in the levels of all three phospho-proteins in neu-
rons treated with CD40-Fc compared with unchanged basal levels detected in neurons 
treated with the control Fc (Figure 1). There was a pronounced peak of all three phos-
pho-proteins 20 min after treatment with CD40-Fc, but after this point, there were some 
differences in the time course of phosphorylation (Figure 1c). After a peak at 20 min, the 
level of phospho-PKC decreased to a steady level similar to that observed in Fc-treated 
cultures, whereas the decreases observed in phospho-ERK1/phospho-ERK2 and phos-
pho-JNK were less pronounced with a second less pronounced peak at 8 h. After this 
second peak at 8 h, the phosphorylation levels of phospho-ERK1/phospho-ERK2 induced 
by CD40-Fc remained elevated in relationship to those in neurons treated with Fc. The 
phosphorylation level of phospho-JNK gradually decreased after this time, reaching 
baseline by 30 h. These results indicate that CD40L-mediated reverse signalling increases 
the phosphorylation and activation of all three signalling pathways with a distinctive 
kinetic profile for each phospho-protein. 

3.2. Pharmacological Manipulation of Neurite Growth from Cd40−/− Cultured Striatal GABAergic 
Neurons 

We used specific activators and inhibitors of the PKC, JNK, and ERK1/ERK2 signal-
ling pathways to investigate the function of these signalling proteins in the control of 
neurite growth in response to CD40L reverse signalling. The pharmacological reagents 
plus either CD40-Fc or Fc were added to the neurons 24 h after plating. After a further 9 
days in vitro, the neurons were fixed and double immunolabelled for the analysis neurite 
length with anti-βIII tubulin (red) and an antibody to dopamine and cyclic 
AMP-regulated protein (DARPP-32) (green) to positively identify MSNs [16]. As we 
previously reported, MSNs cultured from E14 Cd40−/− embryos replicate the in vivo 
phenotype with exuberant and larger neurites, and the activation of CD40L reverse sig-
nalling by treatment with a CD40-Fc chimera restores the wild-type phenotype [1] (Fig-
ure 2a). Representative images and quantification of the total neurite length of Fc-treated 
(white bars) and CD40-Fc-treated (grey bars) Cd40−/− MSNs simultaneously treated with 
activators or inhibitors of PKC (Figure 2b,c), JNK (Figure 2d,e), and ERK1/ERK2 (Figure 
2f,g) are shown. 
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Figure 2. Effect of pharmacological reagents on neurite growth from MSNs. (a,b,d,f) Representative photomicrographs of 
Fc-treated and CD40-Fc-treated MSNs exposed to pharmacological reagents. (c,e,g) Quantification of the influence on 
total neurite length of pharmacological reagents. Cultures of striatal MSNs were established from E14 Cd40−/− embryos. 
The cultures were treated 24 h after plating with either 1 μg/mL of Fc (white bars) or 1 μg/mL of CD40-Fc (grey bars) to-
gether with pharmacological manipulators of PKC (either 500 nM phorbol-12-myristate-13-acetate (PMA) or 500 nM 
Go6983) (b,c), JNK (either 50 nM Ani or 1 μM SP600125) (d,e), and ERK1/ERK2 (either 1 μM Fisetin (Fis) or 1 μM U0126) 
(f,g). The neurons were double labelled for βIII tubulin (red) and DARPP-32 (green) to identify MSNs after a total of 10 
days in vitro. Scale bar, 50 μm. For clarity, the activators are labelled in green and the inhibitors in red. In the scatter 
charts, mean ± s.e.m of at least three independent experiments are shown. The dots represent the data obtained from in-
dividual neurons (number of neurons per condition are given in Supplementary Materials). One-way ANOVA with 
multiple Newman–Keuls statistical comparison. Key statistical significance differences are indicated (*** p < 0.001, ** p < 
0.01, and * p < 0.05). Comprehensive statistical analysis is provided in the Supplementary Materials. 
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In cultures of striatal MSNs from Cd40−/− embryos, the exuberant neurites observed 
in Fc-treated cultures were significantly suppressed when phorbol-12-myristate 
13-acetate (PMA) was added (Figure 2b,c). PMA is a PKC activator analogue of diacyl-
glycerol that activates conventional PKCs and novel PKCs [17]. This growth suppression 
mimicked that observed when the neurons were treated with CD40-Fc to activate the 
reverse signalling. When CD40L reverse signalling was additionally activated with 
CD40-Fc, the simultaneous addition of PMA had no effect on the extent of neurite growth 
(Figure 2b,c). The pan-PKC inhibitor Go6983 prevented the in vitro rescue of the neurite 
phenotype of CD40-deficient neurons when CD40L reverse signalling was activated with 
CD40-Fc (grey bar), but had no effect on neurite length in control neurons treated with Fc 
(white bar) (Figure 2b,c). There were no significant differences in total neurite length 
between MSNs treated with CD40-Fc plus Go6983 and neurons treated with either Fc 
protein or Fc plus Go6983 (Figure 2c). These results reaffirm the importance of PKC in the 
effect of CD40-activated CD40L mediates on neurite growth suppression from develop-
ing MSNs. 

The activation of JNK was prevented by treating the neurons with the anthrapyra-
zolone SP600125 [18]. SP600125 prevented rescue of the enhanced neurite growth phe-
notype of Cd40−/− by CD40-Fc (Figure 2d,e, grey bar), with no significant difference in the 
total neurite length of Cd40−/− MSNs treated with Fc and MSNs treated with Fc plus 
SP600125 (Figure 2d,e white bar). However, a small statistically significant reduction in 
neurite length was observed with SP600125 when CD40L reverse signalling was acti-
vated with CD40-Fc, indicating that when CD40L reverse signalling is activated, the in-
hibition of JNK partly prevented neurite growth (Figure 2e). JNK was activated by ani-
somycin (Ani), a translational inhibitor secreted by Streptomyces [19]. Ani did not inter-
fere with rescue of the enhanced neurite growth phenotype of Cd40−/− MSNs by CD40-Fc, 
although on its own, Ani reduced neurite growth from Cd40−/− MSNs as effectively as 
CD40-Fc (Figure 2d,e). Taken together, these findings suggest that JNK activity is neces-
sary for the enhanced neurite growth phenotype of Cd40−/− MSNs. 

ERK1/ERK2 was activated by the treatment with the flavonoid Fisetin (Fis) [20,21]. 
Treatment with Fis promoted a significant but partial reduction in neurite growth (white 
bar), but it significantly inhibited the rescue of the exuberant phenotype of Cd40−/− MSNs 
by CD40-Fc (grey bar) (Figure 2f,g). The activation of ERK1/ERK2 was prevented by 
treating the neurons with U0126, a selective MEK1/MEK2 inhibitor that interferes with 
MEK1/MEK2-dependent activation of ERK1/ERK2. U0126 did not prevent the rescue of 
the enhanced neurite growth phenotype of Cd40−/− MSNs by CD40-Fc (Figure 2f,g). No 
significant difference was observed in total neurite length of Cd40−/− MSNs treated with 
CD40-Fc and MSNs treated with CD40-Fc plus U0126 (Figure 2g). The treatment of 
Cd40−/− MSNs with Fc plus U0126 did significantly reduce neurite growth, though not as 
effectively as CD40-Fc alone or CD40-Fc plus U0126 (Figure 2g). This suggests that 
without CD40L reverse signalling, there is some basal activation of ERK1/ERK2 that fa-
vours the exuberant growth of MSN neurites. The analogue inactive control of U0126, 
U0124, had no significant effect on neurite length (not shown). Taken together, these re-
sults suggest that ERK1/ERK2 activation does not contribute to the reduced neurite 
growth response of MSNs to CD40L reverse signalling, although manipulation of 
ERK1/ERK2 signalling can affect MSN neurite growth. 

In a previously published study, we observed that CD40L reverse signalling, in ad-
dition to regulating the length of neurites, also modulates the number of branches points 
per neurite without affecting significantly the number of neurites emerging from the 
soma [1]. In this study, we also evaluated the effect of these pharmacological reagents on 
the number of ramifications per neurite. As shown in Figure S1, the manipulation of 
these signalling pathways produces a similar effect on the number of branches per neu-
rite as in the neurite growth, suggesting that CD40L reverse signalling also influences 
neurite branching. Because the regulation of neurite branching follows a similar pattern 
as neurite growth for the rest of the study, we focused on neurite growth. 
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Taken together, these findings suggest that PKC and JNK activity mediate the effect 
of CD40-activated CD40L reverse signalling on neurite growth suppression from devel-
oping MSNs, while ERK1/ERK2 has an opposite and modulated influence on neurite 
growth restraint. 

3.3. Effects on Neurite Growth of Manipulating PKC, JNK, and ERK1/ERK2 Signalling Pathways 
in Combination 

We used pharmacological activators (labelled in green) and inhibitors (labelled in 
red) of PKC, JNK, and ERK1/ERK2 in combination to determine their potential functional 
interactions in regulating the restraint of neurite growth by CD40L reverse signalling. In 
these experiments, we treated Cd40−/− MSNs with CD40-Fc to activate CD40L reverse 
signalling and either activated or inhibited either PKC or JNK or ERK1/ERK2 either alone 
or together with pharmacological manipulation (either activation or inactivation) of the 
remaining two signalling pathways. To simplify graphical presentation of the key data, 
only the combinations where the other pharmacological reagent has the opposite effect 
on growth are shown in Figure 3. For instance, CD40-Fc-treated neurons were stimulated 
with the activator of PKC, which restrains neurite growth when CD40L reverse signalling 
is activated, either alone or in combination with either the inhibitor of JNK or the acti-
vator of ERK1/ERK2 that reverse the effect of CD40L reverse signalling on growth re-
striction. For completeness, all combinations are shown in Figure S2. In these experi-
ments, MSN cultures were treated 24 h after plating with the combined reagents and an-
alyzed after 10 days in vitro. Individual treatments with either CD40-Fc or Fc were 
measured for comparison. 

 
Figure 3. The influence of pharmacological reagents in combination on neurite growth from MSNs. (a–c) Scatter charts of 
total neurite lengths of MSNs of E14 Cd40−/− embryos cultured for 10 days in vitro and treated 24 h after plating with 1 
μg/mL CD40-Fc (grey bars) plus either activators (green) or inhibitors (red) of (a) PKC, (b) JNK, or (c) ERK1/ERK2 in 
combination with the activators or inhibitors of the other two pathways (same concentrations were used as in Figure 2). 
For comparison, neurite lengths of neurons in cultures treated with 1 μg/mL control Fc alone (white bars) are shown. The 
mean ± s.e.m of at least three independent experiments are shown. The dots represent the data obtained from individual 
neurons (number of neurons per condition in Supplementary Materials). One-way ANOVA with multiple New-
man–Keuls statistical comparison, *** p < 0.001 and * p < 0.05. 

As shown in Figure 2, maximal depression of neurite growth by CD40L reverse 
signalling requires activation of PKC and JNK and the inhibition of ERK1/ERK2. When 
PKC was activated, the extent of neurite growth did not revert to the extent observed in 
Fc-treated neurons by manipulating either of the other two pathways (either inhibiting 
JNK or activating ERK1/ERK2) (Figure 3a). Similarly, when JNK was activated, neither 
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inhibition of PKC nor activation of ERK1/ERK2 affected the effect of JNK activation on 
suppression of neurite growth (Figure 3b). These results suggest that when CD40L re-
verse signalling is activated, the regulatory function on neurite growth of either PKC ac-
tivation or JNK activation are not regulated by negative manipulation of either of the 
other two signalling pathways. As already shown, treatment with the PKC inhibitor 
prevented the inhibition of neurite growth by CD40L reverse signalling (Figure 3a). This 
prevention of neurite growth inhibition by PKC activation was prevented by either sim-
ultaneous activation of JNK or by simultaneous inhibition of ERK1/ERK2 (Figure 3a). As 
already shown, inhibition of neurite growth by CD40L reverse signalling was prevented 
when JNK was inhibited (Figure 3b). However, the concomitant activation of PKC was 
able to significantly affect the effect of JNK inhibition (Figure 3b), although concomitant 
inhibition of ERK1/ERK2 did not affect the effect of JNK inactivation on growth (Figure 
3b). This suggests that the inhibition of ERK1/ERK2 when JNK is inhibited is not suffi-
cient to affect neurite growth. 

ERK1/ERK2 activation reduced the ability of CD40L reverse signalling to restrain 
neurite growth (Figure 3c). However, in agreement with the predominant role of activa-
tion of PKC and JNK in mediating neurite growth inhibition in response to CD40L re-
verse signalling, the concomitant activation of either PKC or JNK cancelled out the effect 
of activation of ERK1/ERK2 alone (Figure 3c). In the case of the combined activation of 
JNK and ERK1/ERK2, the restriction of neurite growing was even more effective than 
with CD40-Fc alone (Figure 3c and Supplementary Figure S2). Inhibition of ERK1/ERK2 
did not affect growth inhibition by CD40L reverse signalling and was not further affected 
by concomitant inhibition of PKC. However, the concomitant inhibition of JNK was able 
to partially but significantly affect neurite growth (Figure 3c). 

Activation of either JNK or PKC is required for suppression of neurite growth by 
activation of CD40L reverse signalling. The manipulation of the other two signalling 
pathways to suppress the neurite overgrowth is ineffective when PKC or JNK are acti-
vated (Figure 3a,b and Supplementary Figure S2). Interestingly, the activation of JNK 
even produces a more restricted growth than CD40-Fc alone (Figure S2). The inhibition of 
JNK that suppresses the control over neurite growth is only restored by activation of PKC 
(Figure 3b and Supplementary Figure S2). However, the inhibition of neurite growth by 
PKC activation is restored by both activating JNK and inhibiting ERK1/ERK2 (Figure 3a 
and Supplementary Figure S2). ERK1/ERK2 activation is unable to prevent the growth 
inhibitory effect of CD40L reverse signalling when JNK and PKC are simultaneously in-
hibited (Figure S2). As expected from the dominant role of JNK or PKC over the control 
of neurite growth, the prevention of CD40-Fc-induced neurite growth suppression by 
activation of ERK1/ERK2 is inhibited by activation of either JNK or PKC (Figure 3c and 
Supplementary Figure S2). While these results suggest a more dominant role for JNK and 
PKC activation on CD40-Fc-induced neurite growth inhibition, ERK1/ERK2 plays a 
modulatory role. Taken together, our data suggest that JNK, PKC, and ERK1/ERK2 sig-
nalling pathways participate in an interacting network to regulate neurite growth sup-
pression from MSNs by CD40L reverse signalling. 

3.4. Effect of Pharmacological Manipulation on Phosphorylation of Signalling Pathways 
By means of western blotting experiments, we determined the degree of phosphor-

ylation of JNK, PKC, and ERK1/ERK2 following the pharmacological manipulations of 
the other two signalling pathways; i.e., the effect on phospho-JNK of PKC and 
ERK1/ERK2 manipulation individually and in combination. With these experiments, we 
aimed to establish the effect on activity of these proteins of the pharmacological manip-
ulation of either one or both signalling pathways. Striatal MSNs from E14 embryos of 
CD40−/− mice plated with complete medium were treated after 9 days in vitro with either 
Fc or CD40-Fc without and with pharmacological reagents individually or in combina-
tion for 20 min, the time when all three phospho-proteins reach their respective peaks 
(Figure 1). After treatments, neuronal lysates were probed for either phospho-JNK, 
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phospho-PKC, or phospho-ERK1/phospho-ERK2. Representative western blots probed 
for phospho-JNK (Figure 4a), phospho-PKC (Figure 4b), and phos-
pho-ERK1/phospho-ERK2 (Figure 4c) are shown. To study the effect on phosphorylation 
when CD40L reverse signalling was activated, bar charts show the quantification of the 
relative densitometries from multiple blots for phospho-JNK (Figure 4d), phospho-PKC, 
(Figure 4e) and phospho-ERK1/phospho-ERK2 (Figure 4f) for the neurons treated as in-
dicated in the presence of CD40-Fc (grey bars). The quantification of the basal effect (with 
Fc) and the differences in phosphorylation levels for a particular reagent in the presence 
of Fc or CD40-Fc are shown in Figure S3. 

 
Figure 4. Regulation of JNK, PKC, and ERK1/ERK2 phosphorylation by pharmacological reagents in MSNs in the pres-
ence and absence of CD40L reverse signalling. (a–c) Representative western blots of lysates of MSNs of Cd40−/− E14 em-
bryos cultured for 9 days and treated for 20 min with either 1 μg/mL control Fc or 1 μg/mL CD40-Fc in combination with 
activators (green) and inhibitors (red) of PKC, JNK, and ERK as indicated. The concentrations were the same as those 
indicated in Figure 2. The western blots were probed with anti-pJNK after treatment with activators and inhibitors of 
PKC and ERK1/ERK2 (a), anti-pPKC after treatment with activators and inhibitors of ERK1/ERK2 and JNK (b), and an-
ti-pERK1/pERK2 after treatment with activators and inhibitors of PKC and JNK (c). Anti-βIII tubulin was used to nor-
malize western blots of cytosolic fractions and Naphthol blue for the nuclear fractions. (d–f) Quantification of at least 
three independent western blots. The grey bars show combined treatments in the presence of 1 μg/mL CD40-Fc, and the 
white bar, the control with 1 μg/mL Fc. The mean ± s.e.m are indicated (*** p < 0.001, ** p < 0.01, and * p < 0.05, one-way 
ANOVA with multiple Newman–Keuls statistical comparison). 

Confirming our previous results, there were significant increases in the levels of all 
three phospho-proteins after CD40-Fc treatment compared with Fc treatment after 20 
min (Figure 4a–f). In the presence of CD40L reverse signalling, a small, statistically in-
significant reduction of the phospho-JNK level compared with CD40-Fc was detected 
when ERK1/ERK2 was manipulated (Figure 4d). In the case of PKC, only its activation 
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caused a significant reduction in the phospho-JNK level compared to CD40-Fc treatment 
alone (Figure 4d). Interestingly, no significant differences compared to CD40-Fc were 
detected in the combined treatment with PKC activator and ERK1/ERK2 inhibitor (Figure 
4d) or with the combined treatment with PKC inhibitor and ERK1/ERK2 activator (Figure 
4d). However, in the presence of CD40L reverse signalling, the combined treatment with 
the activators of PKC and ERK1/ERK2 significantly increased the levels of phospho-JNK, 
while the individual activation of PKC or ERK1/ERK2 produced low levels of phos-
pho-JNK (Figure 4d). Likewise, combined treatment with the inhibitors of PKC and 
ERK1/ERK2, that individually did not have any significant effect on the phospho-JNK 
level, produced a significantly increased level of phospho-JNK (Figure 4d). These results 
indicate that when CD40L reverse signalling is activated, the level of phospho-JNK is 
differentially regulated depending on either combined activation or inhibition of either 
PKC and/or ERK. 

In the regulation of the level of phospho-PKC, manipulation of ERK1/ERK2 pro-
duced opposite effects on the level of phospho-PKC. While the inhibition of ERK1/ERK2 
drastically increased phospho-PKC, its activation significantly reduced phospho-PKC 
compared with CD40-Fc (Figure 4e). When JNK was manipulated, only its activation 
significantly increased phospho-PKC. In the presence of CD40L reverse signalling, in-
dependently of whether JNK was activated or inhibited, all combinations where 
ERK1/ERK2 were inhibited, the final level of phospho-PKC increased significantly com-
pared to CD40-Fc (Figure 4e). However, in the combinations in which ERK1/ERK2 was 
activated (which reduced pPKC level on its own) the effect produced was reversed by 
either activation or inhibition of JNK, although the effect of the inhibitor of JNK was not 
statistically significant compared to CD40-Fc (Figure 4e). Taken together, these results 
show that when CD40L reverse signalling is activated, the level of phospho-PKC is reg-
ulated by both JNK and ERK1/ERK2, although to a greater extent than regulation of 
phospho-JNK by PKC and ERK1/ERK2. 

In the presence of CD40L reverse signalling, manipulation of PKC produced oppo-
site effects on the phospho-ERK1/phospho-ERK2 level. While the activator of PKC pro-
duced elevated phosphorylation of ERK1/ERK2, inhibition of PKC significantly reduced 
the levels of phospho-ERK1/phospho-ERK2 (Figure 4f). The inhibition of JNK produced 
similar levels of phospho-ERK1/phospho-ERK2 as CD40-Fc alone, and its activation in-
creased more than CD40-Fc (Figure 4f). The elevated levels of phos-
pho-ERK1/phospho-ERK2 observed with the individual treatments with PKC or JNK ac-
tivators were maintained in the combined treatment (Figure 4f). However, the increase in 
phospho-ERK1/phospho-ERK2 with the activator of JNK was drastically reduced when 
JNK was activated simultaneously with the inhibition of PKC (Figure 4f). Independently 
of the activation or inhibition of JNK, the inhibition of PKC produced a significant re-
duction in the phospho-ERK1/phospho-ERK2 (Figure 4f). These results show that when 
CD40L reverse signalling is activated, the level of phospho-ERK1/phospho-ERK2 is reg-
ulated by both JNK and PKC, and the effect on the levels of phos-
pho-ERK1/phospho-ERK2, is differentially modulated depending on either combined 
activation or inhibition of either PKC and/or JNK. 

Taken together, the above findings suggest that JNK, PKC, and ERK1/ERK2 signal-
ling pathways regulate the growth of neural processes by functioning as an interacting 
regulatory network in which these signalling pathways influence and modulate the ac-
tivity of one another with distinctive final effects. However, these three signalling path-
ways influence neurite growth to different extents. The levels of phospho-PKC and 
phospho-ERK1/phospho-ERK2 are more influenced by the other two signalling path-
ways than the level of phospho-JNK. 
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3.5. Regulation of MSN Neurite Growth by CD40L Reverse Signalling Is Mediated by an 
Interacting Network Comprised of JNK, PKC, and ERK1/ERK2 

The results presented above suggest that neural growth from MSNs is regulated by 
an interacting network comprised of at least three well-established signalling pathways. 
The interaction between JNK, PKC, and ERK1/ERK2 and their consequences on growth 
are summarized in Figure 5. 

 
Figure 5. Schematic summary. Graphic summary of the interactions between the JNK, PKC, and ERK1/ERK2 down-
stream of the activation of CD40L reverse signalling and the effect on neural process growth. The direction of influence is 
indicated by the arrows. Solid arrows indicate the influence of activation that is opposite to the influence of inhibition 
(i.e., activator of ERK1/ERK2 reduces phospho-PKC and the inhibitor of ERK1/ERK2 increases phospho-PKC; or activator 
of PKC increases phospho-ERK1/phospho-ERK2 and the inhibitor of PKC reduces phospho-ERK1/phospho-ERK2); 
dashed arrows indicate the influence of activation that do not have any influence when inhibiting (i.e., activator of PKC 
reduces phospho-JNK, but the inhibitor does not have any effect). The change in the level of phosphorylation is indicated 
by colour (green denotes increased phosphorylation and red denotes decreased phosphorylation). 

Activation of CD40L reverse signalling enhances the phosphorylation and hence 
activation of JNK, PKC, and ERK1/ERK2. Activation of JNK increases the phosphoryla-
tion of PKC with the concomitant restrain in growth independent of the activation state 
of ERK1/ERK2. However, when the inhibitor of JNK, which does not have any effect over 
the phosphorylation of PKC, is added simultaneously with the inhibitor of ERK1/ERK2, 
the level of phospho-PKC increases, and depending on the final balance of PKC activa-
tion, neurite overgrowth will or will not be restrained (see in Figure S2: CD40-Fc + JNK + 
ERK + PKC vs. CD40-Fc + JNK + ERK + PKC). By contrast, the activator of PKC negatively 
modulates phospho-JNK, but the simultaneous addition of the activator of ERK1/ERK2 
increases phospho-JNK with the restriction of neurite overgrowth. As occurred with 
PKC, depending on the final level of JNK activation, the simultaneous inhibition of PKC 
and ERK restrains or not the neurite overgrowth (see in Figure S2: CD40-Fc + PKC + ERK 
+ JNK vs. CD40-Fc + PKC + ERK + JNK). The phosphorylation of PKC and ERK are re-
ciprocally regulated. The activator of PKC increases phospho-ERK1/phospho-ERK2 and 
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the inhibitor of PKC reduces phospho-ERK1/phospho-ERK2, while the activator of 
ERK1/ERK2 reduces phospho-PKC and the inhibitor of ERK1/ERK2 increases phos-
pho-PKC. Activation of JNK also modulates positively the level of phos-
pho-ERK1/phospho-ERK2. The simultaneous activation of JNK and PKC increases 
phospho-ERK1/phospho-ERK2. However, the inhibition of PKC that reduces phos-
pho-ERK1/phospho-ERK2 is able to reduce the phosphorylation of ERK1/ERK2 even 
when JNK is simultaneously activated. Because in both situations, JNK is activated, in-
dependently on the effect on phospho-ERK1/phospho-ERK2 level, there is a restrain in 
the overgrowth. The simultaneous inhibition of JNK and PKC also reduces the level of 
phospho-ERK1/phospho-ERK2, but in this case, there is not restriction in the overgrowth. 
However, in contrast with JNK and PKC, this loss of restrain over the growth is not reg-
ulated by the final balance of ERK1/ERK2 activation. 

Taken together, these findings suggest that, due to the restraint in the neurite 
growth brought about by CD40L reverse signalling, activation of JNK is decisive. Indeed, 
all conditions in which JNK was activated produced an even more restricted neurite 
growth. Moreover, the function of JNK is little modulated by the activation state of PKC 
or ERK1/ERK2. The activation state of PKC also influences, decisively, neurite out-
growth. However, in this case, the function of PKC is regulated by the other two signal-
ling pathways. Finally, ERK1/ERK2 appears to have a modulator role, especially over the 
function of PKC. Interestingly, the inhibition of ERK1/ERK2 is sufficient to prevent the 
overgrowth of MSN neurites even when PKC is inhibited as long as JNK is active. As 
with PKC activity, the activation of ERK1/ERK2 is also highly regulated by the other two 
signalling pathways. 

3.6. The Syk Tyrosine Kinase Is Expressed in Striatal Medium Spiny Neurons 
In pyramidal neurons, activation of CD40L reverse signalling leads to recruitment of 

the protein Syk tyrosine kinase to the membrane together with PKCβ [2]. The protein Syk 
(spleen tyrosine kinase) is a non-receptor tyrosine kinase whose function has been ex-
tensively studied in the immune system [22,23]. In addition to the immune cells, recent 
work has shown that Syk mediates a variety of diverse biological functions in several 
different cell types after its activation and recruitment to the cell membrane (reviewed in 
[24]). 

Initially, we analyzed the expression of Syk by western blotting in striatal lysates 
from Cd40+/+ and Cd40−/− mice over a range of ages, from embryonic E14 to adult (Figure 
6a). Full-length Syk is a 72 kDa protein that is proteolytically cleaved to generate a 40 kDa 
protein fragment that contains the catalytic domain [25]. Both the 72 kDa and 40 kDa 
isoforms were detected in striatal lysates from Cd40+/+ and Cd40−/− mice. The pattern of the 
40 kDa catalytic fragment was comparable between Cd40+/+ and Cd40−/− mice. With few 
variations, the expression was similar over the range of ages analyzed (Figure 6a). In both 
cases, expression of the 72 kDa protein Syk began during the perinatal period and in-
creased with the age. The expression pattern of the 40 kDa and 72 kDa isoforms observed 
in vivo was replicated in lysates of neurons cultured from Cd40−/− mice with time in vitro 
(Figure 6b). 
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Figure 6. Expression of Syk, PKCβ, PKCγ, and CD40L. (a) Representative western blot of the expression of Syk, PKCβ, 
PKCγ, and CD40L in striatal lysates from Cd40+/+ and Cd40−/− at the indicated ages. (b) Representative western blot of the 
expression of Syk, PKCβ, PKCγ, and CD40L in Cd40−/− striatal neurons cultured for the days indicated. Anti-βIII tubulin 
was used as a loading control. * indicates nonspecific bands. 

We also analyzed the expression of PKCβ (the main isoform that mediates the neu-
rite growth-promoting effects of CD40L reverse signalling in hippocampal pyramidal 
neurons), PKCγ (the isoform that mediates the neurite growth-restraining effects of 
CD40L reverse signalling in MSNs), and CD40L. No clear differences in the expression of 
these two PKC isoforms were observed between lysates from Cd40+/+ and Cd40−/− mice 
(Figure 6a). The expression of the two isoforms of PKCβ (βI/βII) started to be clearly ex-
pressed from E18 onward (Figure 6a). Interestingly, the expression of PKCγ started at P1 
and its expression increased markedly with the age thereafter (Figure 6a). As observed in 
pyramidal neurons [2], the expression of CD40L showed some differences between 
Cd40+/+ and Cd40−/−. In wild-type mice, the expression began earlier and appeared more 
sustained during early life of the animals, while the expression in CD40-null animals was 
slightly delayed and more robust (Figure 6a). In cultured neurons from Cd40−/− mice, the 
expression of PKCβ, PKCγ, and CD40L was similar to the expression observed in striatal 
lysates from CD40-null mice (Figure 6b). 

3.7. CD40-Activated CD40L Reverse Signalling Recruits Syk but Not PKCγ 
We conducted immunoprecipitation experiments to identify membrane-associated 

molecular components of the activated CD40L receptor complex. For these experiments, 
we cultured E14 striatal MSNs from Cd40−/− for 9 days. Neurons were treated with either 
Fc or CD40-Fc for 30 min. After pulling down the Fc fragment from the neuronal lysates 
with protein G-Sepharose, we used western blotting to detect the physical interaction of 
CD40L, Syk, PKCβ, and PKCγ (Figure 7a). Quantification of the associated proteins after 
immunoprecipitation is shown in Figure 7b. As expected, after stimulation of CD40L 
reverse signalling, we detected the association of CD40L in cultures treated with CD40-Fc 
but not in cultures treated with Fc (Figure 7a,b). Both the 72 kDa and 40 kDa Syk were 
expressed at 9 days in vitro. After immunoprecipitation (IP), a slight interaction was de-
tected with the 72 kDa isoform in the CD40-Fc-treated cultures (Figure 7a), but no statis-
tical differences were detected between Fc and CD40-Fc (Figure 7b). The interaction of 
the 40 kDa Syk catalytic fragment was clearly detected after treating the neurons with 
CD40-Fc, showing a statistical difference compared with neurons treated with Fc (Figure 
7a,b). Although both PKC isoforms were clearly detectable in the lysates prior to 
G-Sepharose pull down, neither of these PKC isoforms (PKCβ or PKCγ) was detected 
after IP (Figure 7a,b). 
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Figure 7. Pull down of Syk in Cd40−/− striatal MSNs after CD40-activated CD40L reverse signalling. (a) Representative 
western blots of the expression of CD40L, Syk, PKCβ, and PKCγ in Cd40−/− neurons from E14 embryos cultured for 9 days 
and treated for 30 min with either 1 μg/mL Fc or 1 μg/mL CD40-Fc, before pulled-down Fc fragment (input) and after 
pulled-down Fc fragment (IP). * = nonspecific band. (b) Quantification of at least three independent western blots of the 
quantity of CD40L, 40 kDa Syk, 72 kDa Syk, PKCβ, and PKCγ after IP normalizing to the total quantity of those proteins 
in the input. T-test: ** p < 0.01 and * p < 0.05. 

These results indicate that activation of CD40L reverse signalling in striatal MSNs 
promotes the recruitment of Syk, in particular, the 40 kDa catalytic fragment. However, 
in contrast to excitatory pyramidal neurons, PKC does not form part of this signalling 
complex. This agrees with the fact that PKCγ, the main isoform of PKC that mediates the 
morphological effects of CD40L reverse signalling in MSNs, does not interact with Syk, as 
does PKCβ. In silico determination using the STRING database (http://string-db.org/ 
(accessed on 12 March 2021)) of all possible protein-protein interactions (based on ex-
periments, co-expression, co-occurrence, gene fusion, neighbourhood, databases, and 
text-mining) between mouse CD40L and PKCγ showed that this PKC isoform does not 
interact with Syk (Table S1). However, CD40L and PKCγ interact with some common 
partners that include members of JNK and ERK and associated regulatory proteins of 
these signalling pathways (Table S1). 

4. Discussion and Conclusions 
Both CD40L-activated CD40 forward signalling and CD40-activated CD40L reverse 

signalling are relevant physiological regulators of growth and elaboration of neural 
processes in several population of neurons over different developmental periods 
[1,12,13,26,27]. Distinctive cellular responses are activated by reverse or forward signal-
ling [28,29]. In the developing CNS, CD40-activated CD40L reverse signalling has oppo-
site effects on neurite growth from excitatory hippocampal pyramidal neurons and in-
hibitory striatal MSNs. In pyramidal neurons, CD40L reverse signalling enhances den-
drite and axon growth, while in MSNs, it represses neurite growth [1]. Using a variety of 
pharmacological reagents, we previously revealed that in pyramidal neurons, PKC, 
ERK1/ERK2, and JNK signalling pathways act as an interconnected and interdependent 
signalling network to mediate effects of CD40L reverse signalling [2]. Here we have 
demonstrated that these three signalling pathways also participate in an interconnected 
and interdependent signalling network, but their interdependencies and interconnec-
tions differ from those in pyramidal neurons. 

Western blot studies revealed that CD40-activated CD40L reverse signalling pro-
moted the phosphorylation, and therefore the activation, of PKC, JNK, and ERK1/ERK2. 
Treatment with either activators or inhibitors of PKC, JNK, and ERK1/ERK2 showed that 
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these signalling proteins regulate neurite growth responses to CD40L reverse signalling 
in distinctive ways. In MSNs, activators of PKC and JNK produced a similar effect to 
CD40L and did not significantly affect CD40L-restrained growth. Accordingly, inhibitors 
of either PKC or JNK eliminated the control exercised by CD40L reverse signalling but 
had no effect in the absence of CD40L reverse signalling. The effects observed using ac-
tivators or inhibitors of ERK1/ERK2 showed that the function of this signalling pathway 
is opposite to PKC and JNK. In the presence of CD40L reverse signalling, the activator of 
ERK1/ERK2 eliminated the effect of CD40L, but the inhibitor of this signalling pathway 
did not affect the influence of CD40L reverse signalling. These findings suggest that PKC 
activation and JNK activation are involved in mediating the effects of CD40L reverse 
signalling in MSNs, whereas ERK1/ERK2 activation is not. Taken together, our results 
suggest that although the signalling pathways involved in mediating the opposite effects 
of CD40L reverse signalling on neurite growth from pyramidal and MSNs are the same 
(JNK, PKC, and ERK1/ERK2), they are involved in distinctive ways. In contrast to MSNs, 
the growth-promoting of CD40L reverse signalling on pyramidal neurons requires inhi-
bition of JNK together with the activation of PKC and ERK1/ERK2 [2]. 

Our studies, using a combination of pharmacological reagents, besides revealing the 
importance and potential functional interaction within the signalling network, also reveal 
similarities and differences in the regulation of neurite growth in response to CD40L re-
verse signalling in excitatory pyramidal neurons and inhibitory striatal MSNs. In py-
ramidal neurons, JNK plays a dominant role, its inhibition being essential to allow the 
growth-promoting actions of PKC and ERK1/ERK2 [2]. In MSNs, JNK has a predominant 
role, its activation being required for the restriction of neurite overgrowth, and only ac-
tivation of PKC restores control over neurite overgrowth when JNK is inhibited. Indeed, 
in Cd40−/− MSNs, the activator of JNK produces shorter neurites than CD40-Fc alone. The 
data raise the possibility that the primary function of JNK is related to determining the 
extension of growing processes. In pyramidal neurons, where CD40L reverse signalling 
promotes axon and dendrite growth, JNK controls the termination of the growth re-
sponse and in MSNs, where CD40L reverse signalling restrains neurite growth, it con-
trols excessive growth. 

The activation of PKC is a common requirement in the morphological effects on 
neural processes brought about by CD40L reverse signalling in both neurons. However, 
while in pyramidal neurons, its function is not regulated by ERK1/ERK2, in MSNs, PKC 
function is modulated by ERK1/ERK2. In both kinds of neurons, ERK1/ERK2 seems to 
play a modulatory role whose function is regulated by the other two signalling pathways 
in the network. However, in pyramidal neurons, its activation participates in mediating 
the effect of CD40L on axon and dendrite growth, while in MSNs, its inhibition is re-
quired for the effect of CD40L on neurite growth. Thus, ERK1/ERK2 allows growth when 
activated and restricts growth when inhibited. 

The phosphorylation studies show that the degree of phosphorylation, and conse-
quently the activation, of a particular signalling protein is modulated by the other two 
signalling proteins in the interacting regulatory network. In the presence of CD40L re-
verse signalling, the level of phospho-JNK is less influenced than phospho-PKC and 
phospho-ERK1/phospho-ERK2 by manipulating the other two signalling pathways in the 
regulatory network either individually or in combination using activators or inhibitors. 
This highlights another difference between MSNs and pyramidal neurons. In the pres-
ence of CD40L reverse signalling, in pyramidal neurons, the level of phospho-JNK is 
more influenced by the other two signalling pathways, both individually or in combina-
tion, than the influence of the other two signalling pathways on phospho-PKC or phos-
pho-ERK1/phospho-ERK2 [2]. 

We reported that the intracellular signalling initiated downstream CD40L in py-
ramidal neurons involves recruitment of the protein Syk to the membrane. Because 
CD40L, like other members of the tumor necrosis factor superfamily (TNFSF), lacks en-
zymatic activity, it needs to recruit adaptor and effector proteins to initiate reverse sig-
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nalling [28]. Syk functions not only as a tyrosine kinase that phosphorylates downstream 
substrates, but also as an adaptor protein with the ability to bind to diverse signalling 
proteins. The signalling outcome depends on the particular proteins with which Syk in-
teracts, for example, cell proliferation or differentiation in the case of B cells [23]. We 
demonstrated by in silico analysis and immunoprecipitation studies that CD40L, PKCβ, 
and Syk form a receptor complex following activation of CD40L reverse signalling in 
hippocampal pyramidal neurons [2]. Syk is also expressed in MSNs, although the ex-
pression pattern shows some differences from that observed in hippocampal neurons. In 
hippocampal pyramidal neurons, the 40 kDa catalytic fragment is expressed during 
perinatal age, and from postnatal 6 days (P6), decreases with age to low, undetectable 
levels in adults [2]. In MSNs, the expression level of the 40 kDa isoform is fairly constant 
from E14 to adult. The expression of the 72 kDa full-length isoform is similar in both 
kinds of neurons. It is undetectable until P3 in hippocampal neurons and until P1 in 
MSNs, after which it increases to achieve the highest level in the adult. Immunoprecipi-
tation studies showed that following activation of CD40L reverse signalling in MSNs, the 
40 kDa catalytic Syk interacts with CD40L, but we did not detect interaction with either 
PKCγ or PKCβ. 

PKC proteins are serine/threonine kinases that are classified into three subfamilies 
(classical or conventional, novel, and atypical) depending on their second messenger 
requirements. They play key roles in signalling pathways that regulate a variety of cel-
lular functions, including regulating the growth and branching of neural processes 
[1,10,30–34]. By activating different PKC isoforms, CD40L reverse signalling regulates 
both the growth-promoting and the growth-inhibitory effects in different kinds of neu-
rons [1]. The intracellular signalling complex initiated downstream CD40L in pyramidal 
neurons is different from the signalling complex in MSNs. In striatal GABAergic MSNs, 
activation of CD40L reverse signalling is followed by the recruitment of Syk, and alt-
hough PKCγ is involved in the morphological effects of CD40L reverse signalling, PKCγ 
does not form part of the initial signalling complex. PKCγ is also involved in the devel-
opment of Purkinje cells [35,36], which are GABAergic neurons located in the cerebellum. 
PKCγ functions as a negative regulator of dendritic growth and branching in these 
GABAergic neurons [37,38]. PKCγ-deficient mice have altered dendritic Purkinje cell 
development with dendritic trees larger and with more branching points compared with 
wild-type Purkinje neurons. The activation of PKC with PMA reduces the dendritic ar-
bors restoring the wild-type phenotype, while PKC inhibition does not produce any sig-
nificant morphological change [38]. 

CD40L reverse signalling promotes axon and dendrite growth in pyramidal neurons 
and restrains neurite growth in MSNs. These different outcomes result from the partici-
pation of the same elements. Both neuron types also express CD40L, PKCβ, PKCγ, and 
Syk. However, differences in temporal window expression, protein levels, and different 
protein context in each kind of neuron produce a different initial signalling complex fol-
lowing activation of CD40L reverse signalling. This difference in the initial signalling 
complex might explain the differences in the phosphorylation kinetics observed in both 
kind of neurons after activation of CD40L reverse signalling in absence of pharmacolog-
ical reagents. Because the control of neural process growth evolves over time, these dif-
ferences might influence the temporal interaction and participation of other factors. It 
should be noted that in spite of the described specificity of the activators and inhibitors 
used in this study, as with all pharmacological reagents, off-target effects may occur. 
Thus, while additional studies using alternative approaches may be beneficial, our work 
has begun to characterize the role and potential interactions of JNK, PKC, and 
ERK1/ERK2 in the control of neural process growth following CD40L reverse signalling. 

Supplementary Materials: The following are available online at 
www.mdpi.com/2073-4409/10/4/829/s1, Figure S1: Effect of pharmacological reagents on the mean 
of branches per neurite from MSNs, Figure S2: Total neurite length with all pharmacological rea-
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gents in combination, Figure S3: Basal effects on JNK, PKC and ERK1/ERK2 phosphorylation by 
pharmacological reagents, Table S1: Protein-protein interactions (PPI) for mouse CD40L and PKCγ 
and in common between CD40L and PKCγ. 
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