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Abstract: Graphene oxide–silver nanoparticle (GO-AgNPs) nanocomposites have drawn much
attention for their potential in biomedical uses. However, the potential toxicity of GO-AgNPs in
animals and humans remains unknown, particularly in the developing fetus. Here, we reported
the GO-AgNP-mediated cytotoxicity and epigenetic alteration status in caprine fetal fibroblast
cells (CFFCs). In brief, the proliferation and apoptosis rate of GO-AgNP-treated CFFCs (4 and
8 µg/mL of GO-AgNPs) were measured using the cell-counting kit (CCK-8) assay and the annexin
V/propidium iodide (PI) assay, respectively. In addition, the oxidative stress induced by GO-
AgNPs and detailed mechanisms were studied by evaluating the generation of reactive oxygen
species (ROS), superoxide dismutase (SOD), lactate dehydrogenase (LDH), malondialdehyde (MDA),
and caspase-3 and abnormal methylation. The expression of pro- and anti-apoptotic genes and
DNA methyltransferases was measured using reverse transcription followed by RT-qPCR. Our data
indicated that GO-AgNPs cause cytotoxicity in a dose-dependent manner. GO-AgNPs induced
significant cytotoxicity by the loss of cell viability, production of ROS, increasing leakage of LDH
and level of MDA, increasing expression of pro-apoptotic genes, and decreasing expression of
anti-apoptotic genes. GO-AgNPs incited DNA hypomethylation and the decreased expression of
DNMT3A. Taken together, this study showed that GO-AgNPs increase the generation of ROS and
cause apoptosis and DNA hypomethylation in CFFCs. Therefore, the potential applications of
GO-AgNPs in biomedicine should be re-evaluated.

Keywords: graphene oxide; silver nanoparticles; caprine fetal fibroblast cells (CFFCs); reactive
oxygen species (ROS); epigenetic

1. Introduction

Nanotoxicity involves the understanding of the adverse biological effects of nanopar-
ticles using both in vitro and in vivo model systems such as cells, tissues, organs, and
organisms [1]. In vitro assays are the first approach to determining the cytotoxicity of nano-
materials. Several studies have been dedicated to examining the effects of graphene and
graphene-related nanomaterials in various cell culture systems, including HeLa, MCF-7,
SKBR3, NIH3T3, epithelial lung carcinoma, primary mouse embryonic fibroblast, human
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breast cancer, and ovarian cancer cells [2–5]. It has been shown that graphene and graphene-
related nanomaterials lead to a pro-inflammatory response in the liver and kidney [6,7],
cause genotoxicity and DNA damage [8], and adversely impact the function of the lungs,
heart, intestines, and spleen [9–11]. In addition, depending on the size, oxidative status,
and concentration of nanoparticles, and the used experimental model, graphene, graphene
oxide (GO), and reduced GO have shown different levels of cytotoxicity [12,13]. Previous
research showed the involvement of different nanocomposites in the abnormal methylation
of mammalian DNA [14]. However, the role of the graphene-derived nanocomposite in the
aberrant methylation status of DNA in livestock species has not been reported yet.

Silver nanoparticles (AgNPs) are one of the most frequently used nanoparticles in a
variety of biomedical applications [15]. Recently, investigating the potential of using hybrid
nanomaterials such as graphene oxide–silver nanoparticle (GO-AgNPs) nanocomposites
is becoming popular in biomedical research because of their unique functions and prop-
erties [16]. For example, attaching AgNPs on to the surface of GO sheets can prevent the
AgNPs from aggregating, allowing for a more controlled release of AgNPs+ ions, and lead
to an increase in antibacterial and anticancer activity [17,18]. The commercial use of this
kind of nanocomposite might cause a slow but chronic exposure to human, animal, and
other forms of environmental elements. For instance, exposure to AgNPs causes their accu-
mulation in cells and animal tissues (such as the heart, kidney, and other organs) [19–21],
which may interfere with transport pathways, nuclear signaling, endocytosis, reproductive
behavior, and general defenses by alteration of gene expression [22,23]. Therefore, the
potential toxicity of our synthesized GO-AgNPs needs to be explored in detail.

Our previous study aimed at the use of nanomaterials in veterinary treatment showed
that 1 µg/mL of AgNPs is effective against multidrug-resistant (MDR) bacteria in dairy
goats [24]. However, AgNPs could be translocated to the bloodstream and transported
throughout the organs of the body, including reproductive organs, which might cause
disruption of reproductive system development, birth weight reduction, and other fetal–
maternal disorders [25]. Thus, it becomes essential to investigate the potential cytotoxic and
genotoxic effects of our newly synthesized GO-AgNP nanocomposite before its application
in the treatment of bovine and caprine mastitis. The current research was undertaken to
investigate the cytotoxic and genotoxic effects of GO-AgNPs in caprine fetal fibroblast cells
(CFFCs), which is a suitable in vitro model for studying the nanomaterial-mediated toxicity
to the fetus. The results showed that GO-AgNPs cause aberrant methylation of CFFCs. To
the best of our knowledge, this is the first evidence showing that GO-AgNPs could impair
the epigenetic status of fetal fibroblasts in livestock species.

2. Materials and Methods
2.1. Chemicals

All chemicals and reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA)
unless otherwise stated.

2.2. Synthesis and Characterization of GO-AgNPs

A GO-AgNP nanocomposite was synthesized using the biomolecule quercetin, as
described previously [26], and then lyophilized and kept in a lab at 4 ◦C until use. Briefly,
50 mg of GO was dispersed in 30 mL of water and sonicated for 60 min. Then, 1 mM AgNO3
was dissolved in 15 mL of water in a 500 mL round-bottom flask. Next, 30 mL of the GO
dispersion was added, followed by addition of 5 mL of aqueous 1 mM quercetin, and then
stirred at 60 ◦C for 12 h. The resultant mixture was washed and centrifuged three times with
water. Physicochemical characterization of GO-AgNPs was checked by Fourier-transform
infrared spectroscopy and X-ray diffraction. The size and shape were observed under a
transmission electron microscope (TEM; HT7800, Hitachi High-Technologies Corporation,
Tokyo, Japan).
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2.3. Cell Culture

CFFCs were isolated from 70-day-old fetuses that were recovered surgically from
a Boer goat obtained from the Yangzhou University farm, as previously described [27].
Briefly, pregnant goats were anesthetized using an intramuscular injection of serazine
hydrochloride (0.02 mL/kg body weight), and fetuses were collected. After removal
of the head and internal organs, the remaining tissues of fetuses were dissociated into
small pieces using scissors and digested with 0.25% trypsin (Thermo Fisher Scientific,
Waltham, MA, USA). Then, cells were washed three times, centrifuged to recover them,
and cultured in Dulbecco’s Modified Eagle’s Medium/F12 (DMEM/F12; Thermo Fisher
Scientific, Waltham, MA, USA) supplemented with 10% fetal bovine serum (FBS; Hangzhou
Sijiqing Hangzhou, China) at 37 ◦C in a humidified atmosphere of 5% CO2. The cells were
used at passages 3–10.

2.4. Cell Viability Assay

The cell viability was assessed by using an in vitro cell-counting kit (CCK-8; Rockville,
MD, USA) assay, as described previously [28]. CFFCs were seeded in a 96-well or 6-well
plate and cultured for 24 h to allow adherence and stabilization. GO-AgNPs were sonicated
for 20 min before use. Then, the GO-AgNP suspension was dispersed in DMEM/F12
at different concentrations (1, 4, 8, 12, and 16 µg/mL) for 24 h at 37 ◦C. After culture,
10 µL of CCK-8 was added to each well and incubated for 30 min at 37 ◦C in the dark.
The absorbance at 450 nm was measured using a microplate reader (BioTek Synergy 2,
Winooski, VT, USA). After calculating the LC50 value from the resultant cell viability data,
4 and 8 µg/mL concentrations were selected for further experiments. This study was
designed and blinded throughout all stages of the methodological process.

2.5. Cell Morphology

CFFCs were seeded in a 24-well plate for 24 h and then treated with 0, 4, and 8 µg/mL
of GO-AgNPs for 24 h. Cell morphology was observed using an Olympus BX-UCB
microscope (Tokyo, Japan).

2.6. Annexin V–FITC/PI Staining Assay

CFFCs were seeded in a 75 mm culture plate and treated with different concentrations
of GO-AgNPs (0, 4, and 8 µg/mL) for 24 h. Cell apoptosis of CFFCs was detected by
the annexin V–FITC and propidium iodide (PI) staining assay according to the manu-
facturer’s instructions (Bipec Biopharma Corporation, Warminster, PA, USA). The cells
were harvested, centrifuged for 5 min, rinsed with phosphate-buffered saline (PBS) twice,
resuspended in 500 µL of binding buffer containing 5 µL of PI and 5 µL of annexin V–FITC,
and then incubated for 15 min at room temperature in the dark. The cell suspension was
analyzed by flow cytometry to analyze the apoptotic rate.

2.7. Measurement of ROS Production

Dichlorodihydrofluorescein diacetate (DCFH-DA) was used to detect intracellular
ROS induced by 0, 4, and 8 µg/mL of GO-AgNPs, as described earlier [28]. In brief, CFFCs
were incubated in 10 µM DCFH-DA for 30 min at 37 ◦C. The cells were rinsed with PBS
twice, and then the intracellular accumulation of ROS was measured by flow cytometry
(Beckman-Coulter, Irving, TX, USA).

2.8. Measurement of Total Superoxide Dismutase (SOD) Enzyme Activity

The SOD assay kit (Beijing Solarbio Science & Technology, Beijing, China) was used to
detect the activity of SOD in the CFFCs treated with 0, 4, and 8 µg/mL of GO-AgNPs for
24 h [28]. In brief, after treatment with GO-AgNPs, the cells were washed with PBS twice
and lysed with lysis buffer on ice. The lysates were then centrifuged for 15 min. Then,
the supernatant was analyzed with a UV–VIS spectrophotometer (Nanodrop, Thermo,
Waltham, MA, USA) at 550 nm.
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2.9. Measurement of Malondialdehyde (MDA) Production

MDA, a convenient index for detecting the extent of lipid peroxidation reactions,
was measured using the MDA assay kit (Beijing Solarbio Science & Technology, Beijing,
China) according to the manufacturer’s instructions [29]. Cells were plated in 6-well plates
at a density of 1.0 × 105 cells per well and cultured for 24 h to allow adherence, before
exposure to 0, 4, and 8 µg/mL of GO-AgNPs for 24 h. Then, the cells were washed with
PBS twice and MDA activities were quantitated by reading optical densities at 532 nm
using a Synergy 2 multi-mode microplate reader (BioTek, USA).

2.10. Measurement of Lactate Dehydrogenase (LDH) Production

CFFCs were seeded in a 24-well culture plate and treated with 0, 4, and 8 µg/mL of
GO-AgNPs for 24 h. LDH levels of cells in the culture medium were quantified using the
LDH-cytotoxicity assay kit (Beijing Solarbio Science & Technology, Beijing, China) [29].
LDH activities were quantitated by reading optical densities at 490 nm using a Synergy
2 multi-mode microplate reader (BioTek, USA).

2.11. Measurement of Caspase-3 Activity

Caspase-3 activity was measured using a caspase-3 activity kit (Beijing Solarbio Science
& Technology, Beijing, China) according to manufacturer’s instructions. Briefly, CFFCs
were seeded in a 24-well culture plate and treated with 0, 4, and 8 µg/mL of GO-AgNPs
for 24 h. Then, the cells were washed twice in PBS, lysed using lysis buffer, and centrifuged
at 16,000× g at 4 ◦C for 10 min, and the supernatant was incubated with 10 µL of caspase-3
substrate for 7 h at 37 ◦C. Substrate cleavage was measured at 405 nm using a Synergy
2 multi-mode microplate reader (BioTek, USA).

2.12. Determination of Global 5-mC

Genomic DNA from cultured cells was purified with the DNeasy blood and tissue kit
(Qiagen, Inc, Hilden, Germany). Global DNA methylation was determined according to
the Methyl Flash Methylated DNA Quantification Kit (Colorimetric; Epigentek Group Inc.,
New York, NY, USA). Briefly, the percentage of 5-mC in 100 ng of DNA was proportional
to the OD intensity in an ELISA plate reader at 450 nm. DNA methylation was calculated
using the formula [((Sample OD – M3OD)/S)/((M4OD – M3OD) × 2)/P] × 100, where
OD is the optical density; M3 is the negative control, an unmethylated polynucleotide
containing 50% of cytosine; S is the amount of input sample DNA in nanograms; M4 is the
positive control, a methylated polynucleotide containing 50% of 5-methylcystosine; and P
is the amount of input positive control in nanograms. The relative amount of methylated
DNA was expressed as a percentage of total DNA.

2.13. Quantitative Reverse Transcription PCR (RT-qPCR) Analysis

Total RNA was extracted from CFFCs using an RNA Isolation Kit (Thermo Scientific,
Waltham, MA, USA) according to the manufacturer’s instructions. RNA samples were
stored at −80 ◦C until use. The mRNA samples were reverse-transcribed into first-strand
cDNA using the iScript cDNA Synthesis Kit (Bio-Rad Laboratories, Hercules, CA, USA)
according to the manufacturer’s instructions. Quantitative analysis of the cDNA samples
was performed using a CFX96 instrument (Bio-Rad Laboratories), using SYBR Green
(Vazyme). Primers were designed based on the mRNA sequences of selected genes available
in GenBank (Table 1). The PCR cycle was as follows: initial denaturation at 95 ◦C for 30 s,
followed by 41 cycles of denaturation at 95 ◦C for 15 s, annealing at 60 ◦C for 15 s, and
extension at 72 ◦C for 30 s. RT-qPCR was performed independently four times. The target
genes were quantified by the delta-delta Ct method using CFX manager V1.1 software
(Bio-Rad Laboratories). Normalization was performed using β-actin as the reference gene.
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Table 1. Primers used for quantitative reverse transcription PCR analysis.

Gene Primer sequence (5‘–3‘) Product Size (bp)

caspase-3 F: CCATGGTGAAGAAGGAATCATTT
R: TCCCCTCTGAAGAAACTTGCTAA 78

BAX F: GCATCCACCAAGAAGCTGAG
R: CCGCCACTCGGAAAAAGAC 120

Smac F: TGTTCCAGTCGTGGCTAACTT
R: AAAGACACAGCCCTCCTCATT 171

BCL2 F: ATGTGTGTGGAGAGCGTCA
R: AGAGACAGCCAGGAGAAATC 113

Hsp70 F: TCAGGACTCAATCTGCATCG
R: ATCCGCATTTCTGGTTATCA 210

DNMT3A

DNMT3B

DNMT1

β-actin

F: CTTGGAGAAGCGGAGTGAGC
R: GTGCAGCAGCCATTCTCTACAG

F: AGCCCCTACCTCACCATC
R: CTGATACTCGGTGCTGTCTGC
F: GAGGAGGCTGCCAAGGACT

R: CAAACACCGCATACGACACAC
F: TCACGGAGCGTGGCTACAG

R: CCTTGATGTCACGGACGATTT

138

156

134

127

Abbreviations: F, forward; R, reverse.

2.14. Statistical Analysis

The assessors were blinded to any stage of the methodological process. All results
were expressed as the mean ± SD and analyzed using Origin 8.0 and SPSS 18.0 (IBM
Corp., Armonk, NY, USA). The statistical significance of the changes between tested groups
and the control group was analyzed by one-way ANOVA followed by Dunnett’s multiple
comparison. The level of statistical significance was set at p < 0.05. All experiments were
performed at least three times.

3. Results
3.1. Characterization of GO-AgNPs

TEM analysis was conducted to confirm the structural and surface morphology of the
GO-AgNP nanocomposite. The size distribution of the AgNPs was about 20 nm, as shown
in the image of TEM (Figure 1). GO-AgNPs images clearly showed transparent, single-layer
sheets containing flake-like wrinkles in which AgNPs were homogeneously arranged on
the micron scale of the GO sheets, which presented no evidence of agglomeration.

Figure 1. Size determination analysis of graphene oxide–silver nanoparticle (GO-AgNP) nanocompos-
ites by transmission electron microscopy (TEM). The TEM image showed that the size of GO-AgNPs
was about 20 nm.
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3.2. Effect of GO-AgNPs on Caprine Fetal Fibroblast Cell (CFFC) Viability

For assessment of the potential cytotoxic effect of GO-AgNPs on CFFCs, cell viability
following GO-AgNPs treatment was determined using the CCK-8 assay. As shown in
Figure 2, there were no significant differences in cell viability between control cells and
those exposed to 1 µg/mL of GO-AgNPs for 24 h; however, the viability of cells was
significantly reduced when the concentration increased (4, 8, 12, and 16 µg/mL), suggesting
that GO-AgNPs induce toxicity in CFFCs in a dose-dependent manner.

Figure 2. Effects of GO-AgNPs on the proliferation of caprine fetal fibroblast cells (CFFCs). CFFCs
were exposed to 0, 1, 4, 8, 12, and 16 µg/mL of GO-AgNPs for 24 h. The percentage of cell viability
was then calculated relative to the control group (0 µg/mL). Values are presented as the mean ± SD
of four independent experiments (*p < 0.05).

3.3. Effect of GO-AgNPs on Cell Morphology

The morphologies of CFFCs after exposure to GO-AgNPs for 24 h are shown in
Figure 3. Cell morphology of the control group was uniform with spindle-shaped cells.
CFFCs that had been exposed to 4 and 8 µg/mL of GO-AgNPs exhibited marked mor-
phological changes and showed cell membrane breakage, with obvious reduction in the
number of cells in the group exposed to 8 µg/mL of GO-AgNPs.

Figure 3. Cell morphology following treatment with GO-AgNPs. Caprine fetal fibroblast cells (CFFCs) were treated with 0,
4, and 8 µg/mL of GO-AgNPs for 24 h and then visualized under a phase-contrast microscope (magnification, 100×). Scale
bar = 20 µm.

3.4. Effect of GO-AgNPs on Reactive Oxygen Species (ROS) Production

To study whether GO-AgNPs induce an oxidative impact involving apoptosis, the
intracellular ROS level in CFFCs was analyzed. As shown in Figure 4, the level of intra-
cellular ROS in CFFCs significantly increased (p < 0.05) when the cells were treated with
4 and 8 µg/mL of GO-AgNPs for 24 h compared to the control group.
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Figure 4. Total reactive oxygen species (ROS) generation in GO-AgNP-treated cells. Caprine fetal
fibroblast cells (CFFCs) were treated with 0, 4, and 8 µg/mL of GO-AgNPs for 24 h and analyzed by
FACS (A). The percentage of ROS generation relative to the untreated control group (0 µg/mL) (B).
Values are presented as the mean ± SD of four independent experiments (* p < 0.05).

3.5. Effects of GO-AgNPs on Apoptosis

The effect of GO-AgNPs on cell apoptosis was tested. An annexin V/PI apoptosis kit
was used to quantify, by flow cytometry, the percentage of CFFCs undergoing apoptosis
and dying. The results suggested that GO-AgNPs induce significant apoptosis and cell
death in CFFCs (Figure 5).

Figure 5. Evaluation of GO-AgNP-induced apoptotic cell death with the annexin V–FITC/propidium
iodide (PI) staining assay. Caprine fetal fibroblast cells (CFFCs) were treated with 0 (A), 4 (B), and
8 µg/mL (C) of GO-AgNPs for 24 h, and FACS was carried out for detection of fractions of early
apoptotic, late apoptotic, and necrotic CFFCs. The corresponding linear diagram of flow cytometry is
shown in (D). Values are presented as the mean ± SD of five independent experiments (* p < 0.05).
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3.6. Effects of GO-AgNPs on SOD Production

Effects of GO-AgNPs on the production of the anti-oxidant indicator SOD in CFFCs
were determined with an SOD assay kit. As shown in Figure 6, the SOD activity decreased
significantly (p < 0.05) in CFFCs treated with 4 µg/mL of GO-AgNPs for 24 h compared to
the control group. Furthermore, CFFCs treated with 8 µg/mL of GO-AgNPs significantly
decreased (p < 0.01) SOD activity compared to untreated CFFCs.

Figure 6. Measurement of superoxide dismutase (SOD) production in GO-AgNP-treated cells.
Caprine fetal fibroblast cells (CFFCs) were treated with 0, 4, and 8 µg/mL of GO-AgNPs for 24 h. The
percentage of SOD relative to the control group (0 µg/mL) was determined. Values are presented as
the mean ± SD of four independent experiments (* p < 0.05; ** p < 0.01).

3.7. Effects of GO-AgNPs on MDA Production

The production of MDA in CFFCs was determined using the MDA assay kit after
treatment with 0, 4, and 8 µg/mL of GO-AgNPs for 24 h. The results showed that the
levels of the oxidative damage indicator MDA increased significantly (p < 0.05) in the 4 and
8 µg/mL groups compared to the control group (Figure 7).

Figure 7. Measurement of malondialdehyde (MDA) production in GO-AgNP-treated cells. Caprine
fetal fibroblast cells (CFFCs) were treated with 0, 4, and 8 µg/mL of GO-AgNPs for 24 h. The
percentage of MDA relative to the control group (0 µg/mL) was determined. Values are presented as
the mean ± SD of four independent experiments (* p < 0.05).

3.8. Effects of GO-AgNPs on LDH

CFFCs were treated with 0, 4, and 8 µg/mL of GO-AgNPs for 24 h, and the level
of leakage of LDH was measured. The results indicated that GO-AgNPs significantly
increased the leakage level of LDH in CFFCs compared to the control group (Figure 8;
p < 0.05).



Cells 2021, 10, 682 9 of 15

Figure 8. Measurement of lactate dehydrogenase (LDH) activity in GO-AgNP-treated cells. Caprine
fetal fibroblast cells (CFFCs) were treated with 0, 4, and 8 µg/mL of GO-AgNPs for 24 h. The
percentage of LDH activity relative to the control group (0 µg/mL) was determined. Values are
presented as the mean ± SD of five independent experiments (* p < 0.05).

3.9. Effects of GO-AgNPs on the Caspase-3 Activity

To confirm whether caspase-3 is involved in the apoptosis of CFFCs treated with
different concentrations of GO-AgNPs (4 and 8 µg/mL), caspase-3 activity was measured
by a caspase-3 kit. The activity of caspase-3 in the 4 and 8 µg/mL groups was significantly
(p < 0.05) higher after treatment than that in the control group (Figure 9).

Figure 9. Measurement of caspase-3 activity in GO-AgNP-treated cells. Caprine fetal fibroblast cells
(CFFCs) were treated with 0, 4, and 8 µg/mL of GO-AgNPs for 24 h. The percentage of caspase-
3 activity relative to the control group (0 µg/mL) was determined. Values are presented as the
mean ± SD of four independent experiments (* p < 0.05).

3.10. Effects of GO-AgNPs on Gene Expression

To elucidate the possible molecular mechanisms underlying the negative effect of
GO-AgNPs, the mRNA levels of pro- and anti-apoptotic genes as well as cell-death- and
survival-related genes, including caspase-3, BAX, Smac, Hsp70, and BCL2, were measured
in CFFCs treated with GO-AgNPs (0, 4, and 8 µg/mL) for 24 h. The results showed that
the level of caspase-3, BAX, Smac, and Hsp70 were significantly (p < 0.05) upregulated in
GO-AgNP-treated cells compared to control cells (Figure 10). The level of the anti-apoptosis
gene BCL2 was significantly (p < 0.05) downregulated in GO-AgNP-treated cells compared
to control cells (Figure 10).
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Figure 10. Effects of GO-AgNPs on apoptotic gene expression levels. Caprine fetal fibroblast cells (CFFCs) were treated
with 0, 4, and 8 µg/mL of GO-AgNPs for 24 h. Relative mRNA levels of genes related to apoptosis were determined. Values
are presented as the mean ± SD of four independent experiments (* p < 0.05).

3.11. Effects of GO-AgNPs on Global DNA Methylation

Global DNA methylation levels decreased in CFFCs exposed to GO-AgNPs (4 and
8 µg/mL) compared to untreated CFFCs. The mean values of the 4 and 8 µg/mL GO-AgNP-
treated CFFCs decreased to 62% and 10% (p < 0.05) of control cells, respectively (Figure 11A).
As shown in Figure 11B, the mRNA expression levels of Dnmt3A significantly increased
after exposure to GO-AgNPs (p < 0.05, p < 0.01). However, there was no significant
difference in the expression of Dnmt1 and Dnmt3B between GO-AgNP-treated groups
and controls.

Figure 11. Effects of GO-AgNPs on global DNA methylation and gene expression levels. Caprine
fetal fibroblast cells (CFFCs) were treated with 0, 4, and 8 µg/mL of GO-AgNPs for 24 h. Relative
global DNA methylation (A) and mRNA levels of DNMTs (B) were determined. Values are presented
as the mean ± SD of four independent experiments (* p < 0.05; ** p < 0.01).



Cells 2021, 10, 682 11 of 15

4. Discussion

Graphene-based nanomaterials have enormous applications in the field of nanomedicine
due to their excellent biocompatibility and physicochemical properties [30]. As efficient
support materials, graphene sheets can disperse and stabilize silver nanoparticles by pre-
venting their agglomeration, which opens a way for the development of hybrid nanomateri-
als using both graphene and silver composites. Consequently, graphene-and-AgNP-based
hybrid nanocomposites have been widely produced to evaluate their antibacterial and
anticancer activity [31]. However, AgNPs can easily enter cells, thus affecting the physiol-
ogy of organisms, which may show potential toxicity to both human and animal health
or ecosystems [11]. Therefore, the adverse effects of GO-AgNP nanocomposites have
been considered a major limitation for their broad applications. Numerous studies have
proved the toxicological effects of GO-AgNP nanocomposites on normal animal and hu-
man cells [20,31,32]. However, the toxic effects of GO-AgNPs on the developing fetus (cells
originating from the fetus) of livestock species have not been explored yet. In the present
study, a GO-AgNP nanocomposite was synthesized using quercetin, and its surface and
structural morphology as well as the uniform distribution of AgNPs on the GO sheets was
confirmed using TEM. After that, the potential toxicity level of the synthesized GO-AgNPs
on CFFCs was explored.

It has been reported that animals and human are frequently exposed to AgNPs via the
routes of inhalation, dermal contact, and oral ingestion [11]. As an in vitro model, cell lines
are frequently used for testing the toxic effects of different nanomaterials. For example,
several studies have demonstrated that AgNPs induce toxicity via oxidative stress and
apoptosis in mouse and rat cell lines [33,34]. AgNPs with a smaller particle size can easily
enter and get distributed throughout cytoplasmic organelles [35]. However, smaller AgNPs
(6 nm) are reported to be non-toxic to the mouse fibroblast line and the human keratinocyte
cell line [36]. Similar results were reported that 5 µg/mL of rGO-Ag nanocomposite did not
induce cytotoxicity in human normal cells (CHANG cells) but could slightly induce a toxic
effect on HepG2 cells [32], which may ascribe the differences in toxicity mechanisms to
the particular cell type [37]. The present data showed that 20 nm GO-AgNPs reduced cell
growth and viability and induced morphological changes in a concentration-dependent
manner. In our previous study, GO-AgNPs significantly decreased the human ovarian
cancer cell viability with an IC50 of 5 µg/mL [26], which is lower than that in the present
study, suggesting that CFFCs are less sensitive to GO-AgNPs than human cancer or mouse
cells. AgNPs with different sizes and surface coatings or without coatings are likely to
contribute to these different results. Lopes et al. [38] reported that coated AgNPs have a
better dispersion ability and are exposed to cells in a better way than non-coated AgNPs. In
addition, the toxicity level varies among the type and origin of the cell lines. For example,
compared to L02 cells, HepG2 cells are more sensitive to AgNPs at the exposure level of
20-160 µg/mL [39].

One of the main mechanisms of toxicity induced by nanomaterials is that it causes
oxidative stress through the generation of ROS and causes damage to cellular compo-
nents, including DNA damage, abnormal activation of transcription factors, depletion of
anti-oxidant molecules, binding and disabling of proteins, and damage to the cell mem-
brane [11]. Oxidative stress inducing ROS is one of the proposed toxicological mechanisms
of various nanomaterials such as Ag or Ag–graphene nanocomposites and can cause mito-
chondrial damage and initiation of lipid peroxidation [26,28,40]. Cytotoxicity of AgNPs is
associated with increased production of ROS, which plays an important role in apoptosis
induced by AgNPs [41]. Compared to pristine AgNPs, GO-AgNPs significantly induce
the generation of ROS in the macrophages in a dose-dependent manner [42]. Especially,
the generation of ROS and its association with oxidative stress in cells have been reported
as critical indicators of graphene-based-nanomaterial-mediated toxicity, which causes
DNA damage and reduced cell viability. A previous study investigated graphene-based-
nanomaterial-mediated toxicity in biological systems as well as its response in various
molecular pathways such as activating base excision repair and PI3K pathways in zebrafish
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larvae [43]. In the current study, GO-AgNPs treatment enhanced the generation of ROS by
1.4- and 1.8-fold in CFFCs treated with 4 and 8 µg/mL of GO-AgNPs for 24 h, respectively.
Our results are consistent with previous reports on various cancer cell lines with graphene
and graphene-related materials [16,26]. The upregulated ROS level in CFFCs alters mi-
tochondrial functions and plays a key role in apoptosis induction, which was proved by
the data of the annexin V/PI double-labeling assay and increasing levels of caspase-3.
Present data suggest that the possible mechanisms of GO-AgNP-mediated toxicity in CF-
FCs include the stimulation of oxidative stress, which is responsible for upregulation of
pro-apoptotic genes as well as downregulation of anti-apoptotic genes in CFFCs [16].

The increased levels of MDA and LDH are generally considered to imply cell injury.
One of the adverse effects of oxidative stress is the lipid peroxidation of cell membranes.
Many types of cells treated with AgNPs and GO have shown significantly increased levels
of MDA, which is one of the final products of polyunsaturated fatty acid peroxidation in
the cells [2,16,43–45]. Assessing the release of intracellular LDH in a cell, which results
from the breakdown of and alteration in the permeability of the plasma membrane, is
one of the markers for estimating cytotoxicity [16,40]. For instance, rGO-Ag increases
LDH leakage in human cancer cells, thus resulting in cell death [16,26,46]. In the present
study, the LDH level in the 4 µg/mL group was slightly higher than the control group,
which is the same as the cell viability and apoptotic cell data. It means that although a
low concentration of GO-AgNPs (4 µg/mL) seems to be toxic to cells, it may also result
in some change in the cells. The present data indicated that the mechanism of increased
levels of MDA and LDH in GO-AgNP-treated CFFCs may be due to ROS formation, which
influenced the viability and proliferation of the cells, suggesting the possible cytotoxic
effects of GO-AgNPs on CFFCs.

The apoptosis of cells is a highly conserved mechanism, and ROS is an important
factor involved in the apoptotic process [47]. ROS induced by nanomaterials could result
in nuclear DNA damage as well as leakage of lipids, proteins, and carbohydrates in the
cell [34,45]. ROS production and lipid peroxidation induced by GO-AgNPs affect cellular
redox homeostasis and decrease anti-oxidant levels [46]. It is well known that SOD plays
an important role in anti-oxidant defense against oxidative stress in cells that can combat
the accumulation of ROS and reduce oxidative injury. A decrease in SOD activity is an
indicator of impairment of protective mechanisms and significantly contributes to cell
damage [48]. It has been reported that AgNPs directly interact with SOD and CAT and
altered the expression and activity of anti-oxidant enzymes (CAT, SOD, and GPX) [48]. The
present data showed that the level of SOD significantly decreased in GO-AgNP-treated
CFFCs. It suggests that GO-AgNPs decrease the levels of anti-oxidant molecules in the
cells, which might be the reason for cytotoxicity.

Similarly, apoptotic and anti-apoptotic genes play an important role in cell survival
and death. Several studies have reported oxidative stress and DNA damage as the mecha-
nism for GO-AgNP-induced cytotoxicity and apoptosis of cancer cells [20]. A similar study
reported that GO-AgNPs can cause oxidative damage and leakage of LDH and enhance
the expression of apoptotic genes p53, caspase-3, caspase-9, Bax, and c-myc, thus leading
to mitochondrial dysfunction and triggering apoptosis [29], and all apoptotic pathways
appear to terminate in the activation of the caspase family of proteases [49]. Moreover,
oxidative stress induced by GO-AgNPs is reported to increase the total expression of Bax
in a dose-dependent manner and downregulate the expression of the anti-apoptotic gene
BCL-2 [46]. Heat shock protein 70 (HSP70) allows cells to adapt to gradual environment
changes and is considered to play a crucial role in environmental stress tolerance [50].
The present data also showed that GO-AgNPs upregulate the expression of HSP70 and
pro-apoptotic genes such as caspase-3, Bax, and Smac and downregulate anti-apoptotic genes
such as Bcl-2. Similarly, rGO-Ag was reported to cause dynamic balance troubles in the
level of Bcl-xl and Bcl-2, and downregulation of c-myc triggers apoptosis along with p53 [29],
which may induce apoptosis of CFFCs.
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It has been reported that nanomaterials induce epigenetic changes, including DNA
methylation, histone modifications, and noncoding RNA-mediated regulation of gene
expression [50]. Nanoparticle-mediated global DNA hypomethylation or hypermethy-
lation can be corroborated with increased generation of ROS [14], which is now known
to cause many human diseases, including cancer [51]. Nanomaterial-induced epigenetic
changes are also shown to be cell type, time, and dose dependent. For example, ZnO-NPs
induced increasing levels of ROS and significantly resulted in global reduction in 5-mC [52],
while AgNP exposure to pregnant mice via intravenous infusion significantly altered the
methylation levels of differentially methylated regions of Zac1 and disrupted the imprinted
gene expression [53]. However, exposure of AgNPs via the abdominal subcutaneous route
had detrimental effects on spermatogenesis and the quality of sperm in neonatal mice [54].
The current research showed that GO-AgNP treatment causes a significant reduction in
global 5-mC in CFFCs, which was further proved by the decreased expression of DNMT3A.
After recovering from the treatment of AgNPs, HT22 mouse hippocampal neuronal cells
showed increased levels of 5-mC, DNMT3A, and DNMT3B [54]. The different expressions
of DNMT3A and DNMT3B in our study may be explained as Dnmt3a or Dnmt3b selectively
recognizing heterochromatin [55]. Therefore, the global DNA hypomethylation in the
GO-AgNP-treated CFFCs might be the result of aberrant oxidative stress.

Author Contributions: Y.-G.Y. designed the study, analyzed the data, drafted the manuscript, and
performed experiments for nanoparticles and toxicity of cells. H.-Q.C. rand J.-L.W. performed cell
culture. A.M. performed statistical analysis of the data and aided in data analysis. A.M.M.T.R.
and L.C. reviewed and revised the manuscript, as well as supported the writing of the manuscript.
L.L. and C.Q. developed and performed qPCR analysis. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported by the Priority Academic Program Development of Jiangsu
Higher Education Institutions (PAPD), Yangzhou City and Yangzhou University Corporation (YZ2020185),
the Open Project Program of Jiangsu Key Laboratory of Zoonosis (no. R1807), and the Joint Inter-
national Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of
China, Yangzhou University (JRK2018-11/JILAR-KF202015).

Institutional Review Board Statement: The study was approved by the Animal Ethics Committee
of Yangzhou University. Goats were handled in accordance with the Animal Ethics Procedures and
Guidelines of the People’s Republic of China. All procedures collecting 70 d caprine fetuses were
approved by the Animal Ethics Committee of Yangzhou University (no. 2018.1109).

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available in a publicly accessible repository.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pinho, A.R.; Martins, F.; Costa, M.; Senos, A.; Silva, O.; Pereira, M.L.; Rebelo, S. In vitro cytotoxicity effects of zinc oxide

nanoparticles on spermatogonia cells. Cells 2020, 9, 1081. [CrossRef] [PubMed]
2. Gurunathan, S.; Kim, J.H. Graphene oxide-silver nanoparticles nanocomposite stimulates differentiation in human neuroblastoma

cancer cells (SH-SY5Y). Int. J. Mol. Sci. 2017, 18, 2549. [CrossRef] [PubMed]
3. Gies, V.; Zou, S. Systematic toxicity investigation of graphene oxide: Evaluation of assay selection, cell type, exposure period and

flake size. Toxicol. Res. 2018, 7, 93–101. [CrossRef] [PubMed]
4. Gurunathan, S.; Han, J.W.; Eppakayala, V.; Dayem, A.A.; Kwon, D.N.; Kim, J.H. Biocompatibility effects of biologically synthesized

graphene in primary mouse embryonic fibroblast cells. Nanoscale. Res. Lett. 2013, 8, 393. [CrossRef]
5. Thapa, R.K.; Kim, J.H.; Jeong, J.H.; Shin, B.S.; Choi, H.G.; Yong, C.S.; Kim, J.O. Silver nanoparticle-embedded graphene

oxide-methotrexate for targeted cancer treatment. Colloids. Surf. B. Biointerfaces 2017, 153, 95–103. [CrossRef] [PubMed]
6. Syama, S.; Paul, W.; Sabareeswaran, A.; Mohanan, P.V. Raman spectroscopy for the detection of organ distribution and clearance

of PEGylated reduced graphene oxide and biological consequences. Biomaterials 2017, 131, 121–130. [CrossRef] [PubMed]
7. Nurunnabi, M.; Khatun, Z.; Huh, K.M.; Park, S.Y.; Lee, D.Y.; Cho, K.J.; Lee, Y.K. In vivo biodistribution and toxicology of

carboxylated graphene quantum dots. ACS. Nano 2013, 7, 6858–6867. [CrossRef]
8. Ivask, A.; Voelcker, N.H.; Seabrook, S.A.; Hor, M.; Kirby, J.K.; Fenech, M.; Davis, T.P.; Ke, P.C. DNA melting and genotoxicity

induced by silver nanoparticles and graphene. Chem. Res. Toxicol. 2015, 28, 1023–1035. [CrossRef] [PubMed]

http://doi.org/10.3390/cells9051081
http://www.ncbi.nlm.nih.gov/pubmed/32357578
http://doi.org/10.3390/ijms18122549
http://www.ncbi.nlm.nih.gov/pubmed/29182571
http://doi.org/10.1039/C7TX00278E
http://www.ncbi.nlm.nih.gov/pubmed/30090566
http://doi.org/10.1186/1556-276X-8-393
http://doi.org/10.1016/j.colsurfb.2017.02.012
http://www.ncbi.nlm.nih.gov/pubmed/28231500
http://doi.org/10.1016/j.biomaterials.2017.03.043
http://www.ncbi.nlm.nih.gov/pubmed/28388498
http://doi.org/10.1021/nn402043c
http://doi.org/10.1021/acs.chemrestox.5b00052
http://www.ncbi.nlm.nih.gov/pubmed/25781053


Cells 2021, 10, 682 14 of 15

9. Hyun, J.S.; Lee, B.S.; Ryu, H.Y.; Sung, J.H.; Chung, K.H.; Yu, I.J. Effects of repeated silver nanoparticles exposure on the histological
structure and mucins of nasal respiratory mucosa in rats. Toxicol. Lett. 2008, 182, 24–28. [CrossRef] [PubMed]

10. Rosas-Hernandez, H.; Jimenez-Badillo, S.; Martinez-Cuevas, P.P.; Gracia-Espino, E.; Terrones, H.; Terrones, M.; Hussain, S.M.; Ali,
S.F.; González, C. Effects of 45-nm silver nanoparticles on coronary endothelial cells and isolated rat aortic rings. Toxicol. Lett.
2009, 191, 305–313. [CrossRef] [PubMed]

11. Rezvani, E.; Rafferty, A.; McGuinness, C.; Kennedy, J. Adverse effects of nanosilver on human health and the environment. Acta.
Biomater. 2019, 94, 145–159. [CrossRef]

12. Jia, P.P.; Sun, T.; Junaid, M.; Yang, L.; Ma, Y.B.; Cui, Z.S.; Wei, D.P.; Shi, H.F.; Pei, D.S. Nanotoxicity of different sizes of graphene
(G) and graphene oxide (GO) in vitro and in vivo. Environ. Pollut. 2019, 247, 595–606. [CrossRef] [PubMed]

13. Seabra, A.B.; Paula, A.J.; de Lima, R.; Alves, O.L.; Durán, N. Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol.
2014, 27, 159–168. [CrossRef] [PubMed]

14. Pogribna, M.; Hammons, G. Epigenetic Effects of nanomaterials and nanoparticles. J. Nanobiotechnol. 2021, 19, 2. [CrossRef]
15. Uzair, B.; Liaqat, A.; Iqbal, H.; Menaa, B.; Razzaq, A.; Thiripuranathar, G.; Rana, N.F.; Menaa, F. Green and cost-effective synthesis

of metallic nanoparticles by algae: Safe methods for translational medicine. Bioengineering 2020, 7, 129. [CrossRef]
16. Gurunathan, S.; Han, J.W.; Park, J.H.; Kim, E.; Choi, Y.J.; Kwon, D.N.; Kim, J.H. Reduced graphene oxide-silver nanoparticle

nanocomposite: A potential anticancer nanotherapy. Int. J. Nanomed. 2015, 10, 6257–6276. [CrossRef]
17. Gurunathan, S.; Hyun Park, J.; Choi, Y.J.; Woong Han, J.; Kim, J.H. Synthesis of graphene oxide-silver nanoparticle nanocompos-

ites: An efficient novel antibacterial agent. Curr. Nanosci. 2016, 12, 762–773. [CrossRef]
18. Cobos, M.; De-La-Pinta, I.; Quindós, G.; Fernández, M.J.; Fernández, M.D. Graphene Oxide-Silver Nanoparticle Nanohybrids:

Synthesis, Characterization, and Antimicrobial Properties. Nanomaterials 2020, 10, 376. [CrossRef] [PubMed]
19. Akter, M.; Sikder, M.T.; Rahman, M.M.; Ullah, A.K.M.A.; Hossain, K.F.B.; Banik, S.; Hosokawa, T.; Saito, T.; Ku-rasaki, M. A systematic

review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J. Adv. Res. 2017, 9, 1–16. [CrossRef]
20. Courtois, P.; Rorat, A.; Lemiere, S.; Guyoneaud, R.; Attard, E.; Levard, C.; Vandenbulcke, F. Ecotoxicology of silver nanoparticles

and their derivatives introduced in soil with or without sewage sludge: A review of effects on microorganisms, plants and
animals. Environ. Pollut. 2019, 253, 578–598. [CrossRef] [PubMed]

21. Brami, C.; Glover, A.R.; Butt, K.R.; Lowe, C.N. Effects of silver nanoparticles on survival, biomass change and avoidance
behaviour of the endogeic earthworm Allolobophora chlorotica. Ecotoxicol. Environ. Saf. 2017, 141, 64–69. [CrossRef] [PubMed]

22. Ong, C.; Lee, Q.Y.; Cai, Y.; Liu, X.; Ding, J.; Yung, L.Y.; Bay, B.H.; Baeg, G.H. Silver nanoparticles disrupt germline stem cell
maintenance in the Drosophila testis. Sci. Rep. 2016, 6, 1–10. [CrossRef]

23. Vadalasetty, K.P.; Lauridsen, C.; Engberg, R.M.; Vadalasetty, R.; Kutwin, M.; Chwalibog, A.; Sawosz, E. Influence of silver
nanoparticles on growth and health of broiler chickens after infection with campylobacter jejuni. BMC Vet. Res. 2018, 14, 1.
[CrossRef] [PubMed]

24. Yuan, Y.G.; Peng, Q.L.; Gurunathan, S. Effects of Silver Nanoparticles on Multiple Drug-Resistant Strains of Staphylococcus
aureus and Pseudomonas aeruginosa from Mastitis-Infected Goats: An Alternative Approach for Antimicrobial Therapy. Int. J.
Mol. Sci. 2017, 18, 569. [CrossRef]

25. Zhang, X.F.; Park, J.H.; Choi, Y.J.; Kang, M.H.; Gurunathan, S.; Kim, J.H. Silver nanoparticles cause complica-tions in pregnant
mice. Int. J. Nanomed. 2015, 10, 7057–7071.

26. Yuan, Y.G.; Wang, Y.H.; Xing, H.H.; Gurunathan, S. Quercetin-mediated synthesis of graphene oxide-silver nanoparticle
nanocomposites: A suitable alternative nanotherapy for neuroblastoma. Int. J. Nanomed. 2017, 12, 5819–5839. [CrossRef]

27. Yuan, Y.G.; Song, S.Z.; Zhu, M.M.; He, Z.Y.; Lu, R.; Zhang, T.; Mi, F.; Wang, J.Y.; Cheng, Y. Human lactoferrin efficiently targeted
into caprine beta-lactoglobulin locus with transcription activator-like effector nucleases. Asian-Australas. J. Anim. Sci. 2017, 30,
1175–1182.

28. Yuan, Y.G.; Zhang, S.; Hwang, J.Y.; Kong, I.K. Silver nanoparticles potentiates cytotoxicity and apoptotic potential of camptothecin
in human cervical cancer cells. Oxid. Med. Cell. Longev. 2018, 2018, 6121328. [CrossRef] [PubMed]

29. Choi, Y.J.; Gurunathan, S.; Kim, J.H. Graphene oxide-silver nanocomposite enhances cytotoxic and apoptotic potential of
salinomycin in human ovarian cancer stem cells (OvCSCs): A novel approach for cancer therapy. Int. J. Mol. Sci. 2018, 19, 710.
[CrossRef]

30. Gurunathan, S.; Kim, J.H. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related
materials. Int. J. Nanomed. 2016, 11, 1927–1945. [CrossRef]

31. He, K.; Zeng, Z.; Chen, A.; Zeng, G.; Xiao, R.; Xu, P.; Huang, Z.; Shi, J.; Hu, L.; Chen, G. Advancement of ag-graphene based
nanocomposites: An overview of synthesis and its applications. Small 2018, 14, e1800871. [CrossRef] [PubMed]

32. Ali, D.; Alarifi, S.; Alkahtani, S.; Almeer, R.S. Silver-doped graphene oxide nanocomposite triggers cytotoxicity and apoptosis in
human hepatic normal and carcinoma cells. Int. J. Nanomed. 2018, 13, 5685–5699. [CrossRef] [PubMed]

33. Zhang, X.F.; Choi, Y.J.; Han, J.W.; Park, J.H.; Gurunathan, S.; Kim, J.H. Differential nanoreprotoxicity of silver nanoparticles in
male somatic cells and spermatogonial stem cells. Int. J. Nanomed. 2015, 10, 1335–1357.

34. Xu, F.; Piett, C.; Farkas, S.; Qazzaz, M.; Syed, N.I. Silver nanoparticles (AgNPs) cause degeneration of cytoskeleton and disrupt
synaptic machinery of cultured cortical neurons. Mol. Brain. 2013, 6, 29. [CrossRef] [PubMed]

35. Hondroulis, E.; Liu, C.; Li, C.Z. Whole cell based electrical impedance sensing approach for a rapid nanotoxicity assay. Nanotech-
nology 2010, 21, 315103. [CrossRef]

http://doi.org/10.1016/j.toxlet.2008.08.003
http://www.ncbi.nlm.nih.gov/pubmed/18782608
http://doi.org/10.1016/j.toxlet.2009.09.014
http://www.ncbi.nlm.nih.gov/pubmed/19800954
http://doi.org/10.1016/j.actbio.2019.05.042
http://doi.org/10.1016/j.envpol.2019.01.072
http://www.ncbi.nlm.nih.gov/pubmed/30708322
http://doi.org/10.1021/tx400385x
http://www.ncbi.nlm.nih.gov/pubmed/24422439
http://doi.org/10.1186/s12951-020-00740-0
http://doi.org/10.3390/bioengineering7040129
http://doi.org/10.2147/IJN.S92449
http://doi.org/10.2174/1573413712666160721143424
http://doi.org/10.3390/nano10020376
http://www.ncbi.nlm.nih.gov/pubmed/32098083
http://doi.org/10.1016/j.jare.2017.10.008
http://doi.org/10.1016/j.envpol.2019.07.053
http://www.ncbi.nlm.nih.gov/pubmed/31330350
http://doi.org/10.1016/j.ecoenv.2017.03.015
http://www.ncbi.nlm.nih.gov/pubmed/28319860
http://doi.org/10.1038/srep20632
http://doi.org/10.1186/s12917-017-1323-x
http://www.ncbi.nlm.nih.gov/pubmed/29291752
http://doi.org/10.3390/ijms18030569
http://doi.org/10.2147/IJN.S140605
http://doi.org/10.1155/2018/6121328
http://www.ncbi.nlm.nih.gov/pubmed/30647812
http://doi.org/10.3390/ijms19030710
http://doi.org/10.2147/IJN.S105264
http://doi.org/10.1002/smll.201800871
http://www.ncbi.nlm.nih.gov/pubmed/29952105
http://doi.org/10.2147/IJN.S165448
http://www.ncbi.nlm.nih.gov/pubmed/30288041
http://doi.org/10.1186/1756-6606-6-29
http://www.ncbi.nlm.nih.gov/pubmed/23782671
http://doi.org/10.1088/0957-4484/21/31/315103


Cells 2021, 10, 682 15 of 15

36. Abdel-Mohsen, A.M.; Abdel-Rahman, R.M.; Fouda, M.M.; Vojtova, L.; Uhrova, L.; Hassan, A.F.; Al-Deyab, S.S.; El-Shamy, I.E.;
Jancar, J. Preparation, characterization and cytotoxicity of schizophyllan/silver nanoparticle composite. Carbohydr. Polym. 2014,
102, 238–245. [CrossRef]

37. Sahu, S.C.; Zheng, J.W.; Graham, L.; Chen, L.; Ihrie, J.; Yourick, J.J.; Sprando, R.L. Comparative cytotoxicity of nanosilver in
human liver HepG2 and colon Caco2 cells in culture. J. Appl. Toxicol. 2014, 34, 1155–1166. [CrossRef]

38. Lopes, I.M.D.; de Oliveira, I.M.; Bargi-Souza, P.; Cavallin, M.D.; Kolc, C.S.M.; Khalil, N.M.; Quináia, S.P.; Romano, M.A.; Romano,
R.M. Effects of silver nanoparticle exposure to the testicular antioxidant system during the prepubertal rat stage. Chem. Res.
Toxicol. 2019, 32, 986–994. [CrossRef] [PubMed]

39. Xue, Y.; Wang, J.; Huang, Y.; Gao, X.; Zhang, T.; Tang, M.; Tang, M. Comparative cytotoxicity and apoptotic pathways induced by
nanosilver in human liver HepG2 and L02 cells. Hum. Exp. Toxicol. 2018, 37, 1293–1309. [CrossRef] [PubMed]

40. Yuan, Y.G.; Peng, Q.L.; Gurunathan, S. Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian
cancer cells: Combination therapy for effective cancer treatment. Int. J. Nanomed. 2017, 12, 6487–6502. [CrossRef]

41. Lee, Y.H.; Cheng, F.Y.; Chiu, H.W.; Tsai, J.C.; Fang, C.Y.; Chen, C.W.; Wang, Y.J. Cytotoxicity, oxidative stress, apoptosis and the
autophagic effects of silver nanoparticles in mouse embryonic fibroblasts. Biomaterials 2014, 35, 4706–4715. [CrossRef] [PubMed]

42. De Luna, L.A.; de Moraes, A.C.; Consonni, S.R.; Pereira, C.D.; Cadore, S.; Giorgio, S.; Alves, O.L. Comparative in vitro toxicity
of a graphene oxide-silver nanocomposite and the pristine counterparts toward macrophages. J. Nanobiotechnol. 2016, 14, 12.
[CrossRef]

43. El-Sonbaty, S.M. Fungus-mediated synthesis of silver nanoparticles and evaluation of antitumor activity. Cancer Nanotechnol.
2013, 4, 73–79. [CrossRef] [PubMed]

44. Liao, K.H.; Lin, Y.S.; Macosko, C.W.; Haynes, C.L. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin
fibroblasts. ACS Appl. Mater. Interfaces 2011, 3, 2607–2615. [CrossRef]

45. Yuan, Y.G.; Gurunathan, S. Combination of graphene oxide-silver nanoparticle nanocomposites and cisplatin enhances apoptosis
and autophagy in human cervical cancer cells. Int. J. Nanomed. 2017, 12, 6537–6558. [CrossRef] [PubMed]

46. Zhang, X.F.; Huang, F.H.; Zhang, G.L.; Bai, D.P.; Massimo, D.F.; Huang, Y.F.; Gurunathan, S. Novel biomolecule lycopene-reduced
graphene oxide-silver nanoparticle enhances apoptotic potential of trichostatin A in human ovarian cancer cells (SKOV3). Int. J.
Nanomed. 2017, 12, 7551–7575. [CrossRef] [PubMed]

47. Yuan, Y.G.; Xu, L.; Zhang, S.; Mesalam, A.; Lee, K.L.; Liu, H.; Joo, M.D.; Idrees, M.; Kong, I.K. Polydatin and I-CBP112 protects
early bovine embryo against nicotinamide-induced mitochondrial dysfunction. Theriogenology 2019, 134, 1–10. [CrossRef]

48. Fang, W.; Chi, Z.; Li, W.; Zhang, X.; Zhang, Q. Comparative study on the toxic mechanisms of medical nanosilver and silver
ions on the antioxidant system of erythrocytes: From the aspects of antioxidant enzyme activities and molecular interaction
mechanisms. J. Nanobiotechnol. 2019, 17, 66. [CrossRef] [PubMed]

49. Mesalam, A.; Khan, I.; Lee, K.L.; Song, S.H.; Chowdhury, M.M.R.; Uddin, Z.; Park, K.H.; Kong, I.K. 2-methoxystypandrone
improves in vitro-produced bovine embryo quality through inhibition of IKBKB. Theriogenology 2017, 99, 10–20. [CrossRef]

50. Feder, M.E.; Hofmann, G.E. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological
physiology. Annu. Rev. Physiol. 1999, 6, 243–282. [CrossRef]

51. Zhang, W.; Liu, S.; Han, D.; He, Z. Engineered nanoparticle-induced epigenetic changes: An important consideration in
nanomedicine. Acta Biomater. 2020, 117, 93–107. [CrossRef] [PubMed]

52. Choudhury, S.R.; Ordaz, J.; Lo, C.L.; Damayanti, N.P.; Zhou, F.; Irudayaraj, J. From the Cover: Zinc oxide Nanoparticles-Induced
Reactive Oxygen Species Promotes Multimodal Cyto- and Epigenetic Toxicity. Toxicol. Sci. 2017, 156, 261–274. [PubMed]

53. Zhang, X.F.; Gurunathan, S.; Kim, J.H. Effects of silver nanoparticles on neonatal testis development in mice. Int. J. Nanomed.
2015, 10, 6243–6256.

54. Mytych, J.; Zebrowski, J.; Lewinska, A.; Wnuk, M. Prolonged Effects of Silver Nanoparticles on p53/p21 Pathway-Mediated
Proliferation, DNA Damage Response, and Methylation Parameters in HT22 Hippocampal Neuronal Cells. Mol. Neurobiol. 2017,
54, 1285–1300. [CrossRef] [PubMed]

55. Tajima, S.; Suetake, I.; Takeshita, K.; Nakagawa, A.; Kimura, H. Domain Structure of the Dnmt1, Dnmt3a, and Dnmt3b DNA
Methyltransferases. Adv. Exp. Med. Biol. 2016, 945, 63–86. [PubMed]

http://doi.org/10.1016/j.carbpol.2013.11.040
http://doi.org/10.1002/jat.2994
http://doi.org/10.1021/acs.chemrestox.8b00281
http://www.ncbi.nlm.nih.gov/pubmed/30931558
http://doi.org/10.1177/0960327118769718
http://www.ncbi.nlm.nih.gov/pubmed/29658330
http://doi.org/10.2147/IJN.S135482
http://doi.org/10.1016/j.biomaterials.2014.02.021
http://www.ncbi.nlm.nih.gov/pubmed/24630838
http://doi.org/10.1186/s12951-016-0165-1
http://doi.org/10.1007/s12645-013-0038-3
http://www.ncbi.nlm.nih.gov/pubmed/26069502
http://doi.org/10.1021/am200428v
http://doi.org/10.2147/IJN.S125281
http://www.ncbi.nlm.nih.gov/pubmed/28919753
http://doi.org/10.2147/IJN.S144161
http://www.ncbi.nlm.nih.gov/pubmed/29075115
http://doi.org/10.1016/j.theriogenology.2019.05.007
http://doi.org/10.1186/s12951-019-0502-2
http://www.ncbi.nlm.nih.gov/pubmed/31101056
http://doi.org/10.1016/j.theriogenology.2017.05.012
http://doi.org/10.1146/annurev.physiol.61.1.243
http://doi.org/10.1016/j.actbio.2020.09.034
http://www.ncbi.nlm.nih.gov/pubmed/32980543
http://www.ncbi.nlm.nih.gov/pubmed/28115643
http://doi.org/10.1007/s12035-016-9688-6
http://www.ncbi.nlm.nih.gov/pubmed/26843106
http://www.ncbi.nlm.nih.gov/pubmed/27826835

	Introduction 
	Materials and Methods 
	Chemicals 
	Synthesis and Characterization of GO-AgNPs 
	Cell Culture 
	Cell Viability Assay 
	Cell Morphology 
	Annexin V–FITC/PI Staining Assay 
	Measurement of ROS Production 
	Measurement of Total Superoxide Dismutase (SOD) Enzyme Activity 
	Measurement of Malondialdehyde (MDA) Production 
	Measurement of Lactate Dehydrogenase (LDH) Production 
	Measurement of Caspase-3 Activity 
	Determination of Global 5-mC 
	Quantitative Reverse Transcription PCR (RT-qPCR) Analysis 
	Statistical Analysis 

	Results 
	Characterization of GO-AgNPs 
	Effect of GO-AgNPs on Caprine Fetal Fibroblast Cell (CFFC) Viability 
	Effect of GO-AgNPs on Cell Morphology 
	Effect of GO-AgNPs on Reactive Oxygen Species (ROS) Production 
	Effects of GO-AgNPs on Apoptosis 
	Effects of GO-AgNPs on SOD Production 
	Effects of GO-AgNPs on MDA Production 
	Effects of GO-AgNPs on LDH 
	Effects of GO-AgNPs on the Caspase-3 Activity 
	Effects of GO-AgNPs on Gene Expression 
	Effects of GO-AgNPs on Global DNA Methylation 

	Discussion 
	References

