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Abstract: The mechanical environment of cardiac cells changes continuously and undergoes major 
alterations during diseases. Most cardiac diseases, including atrial fibrillation, are accompanied by 
fibrosis which can impair both electrical and mechanical function of the heart. A key characteristic 
of fibrotic tissue is excessive accumulation of extracellular matrix, leading to increased tissue stiff-
ness. Cells are known to respond to changes in their mechanical environment, but the molecular 
mechanisms underlying this ability are incompletely understood. We used cell culture systems and 
hydrogels with tunable stiffness, combined with advanced biophysical and imaging techniques, to 
elucidate the roles of the stretch-activated channel Piezo1 in human atrial fibroblast mechano-sens-
ing. Changing the expression level of Piezo1 revealed that this mechano-sensor contributes to the 
organization of the cytoskeleton, affecting mechanical properties of human embryonic kidney cells 
and human atrial fibroblasts. Our results suggest that this response is independent of Piezo1-medi-
ated ion conduction at the plasma membrane, and mediated in part by components of the integrin 
pathway. Further, we show that Piezo1 is instrumental for fibroblast adaptation to changes in ma-
trix stiffness, and that Piezo1-induced cell stiffening is transmitted in a paracrine manner to other 
cells by a signaling mechanism requiring interleukin-6. Piezo1 may be a new candidate for targeted 
interference with cardiac fibroblast function. 

Keywords: heart; cardiac fibrosis; integrin; actin; cytoskeleton; adhesion; Young’s modulus; calpain; 
ROCK; FAK 
 

1. Introduction 
Fibroblasts sense and adapt to changes in their mechanical environment. The me-

chanical properties of the extracellular matrix (ECM) in particular, act as a driver for a 
number of cell functions including differentiation, motility, myofibroblast phenoconver-
sion, and collagen production [1]. Mechanical properties of the ECM can change drasti-
cally during physiological (e.g., development) and pathophysiological conditions (e.g., 
mechanical overload) in a number of organs [2], including the heart. For example, the 
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early inflammatory phase following myocardial infarction is characterized by a softening 
of the myocardium down to stiffnesses of a few kilopascals [3], due to collagen degrada-
tion and cardiomyocyte death. In contrast, values exceeding 50 kilopascals have been ob-
served in fully mature ventricular scars several months or years after injury [4–7]. The 
current state of knowledge about the sensing of passive mechanics from cell to tissue lev-
els in the heart has been reviewed recently in detail [8]. The molecular mechanisms un-
derlying cell adaptation to matrix stiffness are still ill-understood. 

The main cellular components that mediate the sensing and regulation of ECM me-
chanics are transmembrane receptors of the integrin family, proteins associated with focal 
adhesions, and the actomyosin cytoskeleton [9]. Integrins are major adhesion receptors of 
the cell [10]. By physically linking the ECM to the cytoskeleton, they transmit forces and 
deformation between the inside of the cell and the ECM [11]. 

Integrin signaling involves a large number of proteins, including talin and various 
kinases. Talin is instrumental for cell adhesion by linking integrins to the cytoskeleton. 
Integration of internal and external stimuli allows talin to activate integrins (i.e., convert 
them to high-affinity states so they can bind their substrate) “on demand” [12]. Kinases 
play a central role in the transmission of signals from focal adhesions to the inside of a 
cell. In particular the focal adhesion kinase (FAK) is recruited to focal adhesions and then 
activated in response to integrin-β1 activation. This is important for adhesion turnover, 
Rho family guanosine triphosphatase (GTPase) activation, cell migration, and crosstalk 
with signals from other receptors (e.g., growth factors, [13]). The Rho family of small 
GTPases and their downstream effectors such as Rho-associated protein kinase (ROCK) 
and myosin light chain kinases are major players in the assembly of the focal adhesion 
complex linking ECM to the cytoskeleton. For more detail on integrin signaling please see 
previous communications [14–16]. 

Integrin signaling interacts with numerous additional pathways. Recently, crosstalk 
between mechano-sensitive ion channels and integrin signaling has been proposed. The 
canonical transient receptor potential channel 6 (TRPC6) binds to and activates calpain, 
independently of its activity as an ion channel, and regulates podocyte cytoskeleton or-
ganization, cell adhesion, and motility of podocytes [17]. Piezo1, another cation non-se-
lective stretch-activated channel (SAC) involved in mechano-transduction [18,19], contrib-
utes to a number of physiological and pathophysiological processes, as reviewed else-
where [20–23]. Piezo1 is present in cardiac fibroblasts [24] but its contribution to the func-
tions of this cell type remains to be explored. 

Piezo1 is a large homotrimer with more than 2500 amino acids, including 38 trans-
membrane helices per monomer [25]. It is widely distributed throughout different species 
and cell types, and it has been reported in focal adhesions (for example in Chinese hamster 
ovary cells, Drosophila glioblastoma stem cells [26], and human neural stem cells [27]). 
Similar to integrins, activation of Piezo1 can be altered by stimuli from the inside or the 
outside of a cell. In human neuronal stem cells, the actomyosin cytoskeleton generates 
sufficient forces via myosin II phosphorylation to open Piezo1 and generate Ca2+ flickers 
at focal adhesions [28]. Piezo1 activity at focal adhesions has been shown to activate in-
tegrin–FAK signaling in glioblastoma and neural stem cells via Ca2+-mediated signaling 
[26,28,29]. A potential mechanism for Piezo1-mediated integrin activation has been ex-
plored in Chinese hamster ovary cells, where recruitment of the small GTPase RRas to the 
endoplasmic reticulum is necessary to activate the Ca2+-activated protease calpain, in-
creasing Ca2+ release from cytoplasmic stores [29]. In addition, it was shown that Piezo1 
is sensitized to pulling forces from the outside by binding to collagen VI in human neuro-
blastoma cells [30]. Further connecting Piezo1 with outside-in signaling, channel expres-
sion has been shown to increase (≈1.4 fold) in stem cells cultured on stiffer polyacrylamide 
gels (5 kPa vs. 0.1 kPa, [26]). Along similar lines, recruitment of  
Piezo1-expressing monocytes (required for vascularization of implanted, hydrogel-based 
cardiac tissue patches) depends on physiological hydrogel stiffness in mice [31]. 
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Piezo1 expression is altered in a number of diseases, for example in amyloid-respon-
sive cells in Alzheimer’s disease [32] or in red blood cells in hereditary xerocytosis [33]. 
Piezo1 upregulation contributes to stiffening of aggressive gliomas in Drosophila [26]. Fur-
thermore, Piezo1 expression in human atrial fibroblasts was reported to contribute to en-
hanced secretion of interleukin-6 (IL-6), a profibrotic cytokine [24]. In mouse cardiac fi-
broblasts, it was shown that the secretome is modulated by pro-fibrotic stimuli, including 
stiff growth matrices and transforming growth factor β [34]. Our own data suggest that 
Piezo1 expression and activity are increased in fibroblasts in the context of atrial fibrilla-
tion (AF, [35]). To explore the role of Piezo1 in the control of cell mechanical properties 
and cell adaptation to changes of matrix stiffness, the present study combines human cell 
culture systems and hydrogels of different stiffness with nanoindentation and imaging. 
Our results demonstrate that Piezo1 expression contributes to: (i) cytoskeleton organiza-
tion, (ii) cell mechanical properties, and (iii) cellular adaptation to changes in matrix stiff-
ness. These effects can be transmitted to other cells via secreted IL-6. 

2. Materials and Methods 
2.1. Cell Culture 
2.1.1. Cell Types and Maintenance 

Human embryonic kidney cells (HEK 293T/17, ATCC-LGC Standards, Manassas, 
Virginia, USA) were cultured in Dulbecco’s Modified Eagle Medium (DMEM) with low 
glucose (D6046, Sigma-Aldrich, Hamburg, Germany) supplemented with 10% fetal calf 
serum (F9665, Sigma-Aldrich) and 1% penicillin/streptomycin (P4333, Sigma-Aldrich). 
HEK cells offer the advantage of being easy to transfect even with large constructs and 
thus represent a widely used cell culture model for overexpression experiments. We use 
HEK cells to overexpress the 2521 amino acid protein Piezo1 (Uniprot entry Q92508, Sec-
tion 2.1.2) and to test the effects of various compounds on Piezo1-induced cell stiffening 
(Section 2.1.3). 

A human atrial fibroblast line (HAF, [36]) was cultured in DMEM supplemented with 
2 mM L-alanyl-L-glutamine (GlutaMAX, 31966021, LifeTechnologies, Darmstadt, Ger-
many), 10% fetal calf serum and 1% penicillin/streptomycin. At ≈90% confluence, cells 
were detached using Trypsin-ethylene-diamine-tetraacetic acid (59418C, Sigma-Aldrich) 
and seeded in fresh polystyrene flasks (Z707538, TPP, Trasadingen, Switzerland) for 
maintenance, or on various substrates for experiments (see below). 

2.1.2. Transfection 
For transient overexpression of enhanced green fluorescent protein (EGFP), of EGFP 

and Piezo1, or of EGFP and TRPC6, cells were transfected with the respective plasmids 
(vector backbone: pIRES2_EGFP, 6029-1, Addgene, Watertown, MA, USA) 24 h after seed-
ing, using JetPEI transfection reagent (101-10N, Polyplus transfections, Illkirch, France) 
according to manufacturer’s instructions and as described previously [37]. For each 35 
mm diameter well, 1 µL JetPEI transfection reagent and 0.5 µg of plasmid DNA were 
mixed in 100 µL NaCl solution (150 mM) and incubated for 20 min at room temperature 
(≈21 °C) before being added to the wells. Successfully transfected cells were identified by 
cytosolic EGFP fluorescence. Cells transfected with Piezo1 and EGFP will further be re-
ferred to as “Piezo1”, cells with TRPC6 and EGFP as “TRPC6”, and EGFP-expressing con-
trol cells with neither Piezo1 nor TRPC6 as “EGFP”. 

Knock-down of target genes was performed using previously validated SMARTpool 
siRNA (L-020870-03 against Piezo1 (siPiezo1), D-001810-10-05 as a non-targeting control 
(siNT), Horizon Discovery, Cambridge, United Kingdom [24]). The day after cell seeding, 
HAF were transfected with the respective siRNA using HiPerFect (301704, Qiagen, Hil-
den, Germany). For each 35 mm diameter well, 12 µL of transfection reagent and 8 nM of 
siRNA were diluted in 187.2 µL of DMEM + GlutaMAX in 15 mL tubes. After 15 min of 
incubation at room temperature, the transfection mix was filled up to 2 mL with complete 
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culture medium (DMEM + GlutaMAX + 10% fetal calf serum + 1% penicillin/streptomycin) 
and carefully mixed. The old culture medium was removed from the cells and replaced 
by the transfection mix. 

2.1.3. Compounds and Treatments 
The compounds listed in Table 1 (or the respective solvents for controls) were added 

to the culture medium 24 h after transfection. Functional experiments were performed 
2 days after exposure to compounds (i.e., 3 days post-transfection). 

Unless explicitly stated otherwise, cells were cultured in the presence of antibiotics 
(172 µM streptomycin and 200 µM penicillin). Streptomycin is a hydrophilic, and thus 
non-cell-permeable [38,39], blocker of cation non-selective SAC, including Piezo1. For ex-
periments without streptomycin, the culture medium was replaced by medium without 
antibiotics (DMEM, low glucose with 10% fetal calf serum) 24 h after transfection. Piezo1 
has also been detected in the endoplasmic reticulum membrane [29], which is not accessi-
ble to hydrophilic streptomycin. As the endoplasmic reticulum constitutes a major reser-
voir for Ca2+, we further assessed the role of the Ca2+-activated protease calpain by directly 
blocking it, using the inhibitory peptide N-acetyl-leucin-leucin-norleucinal (ALLN, [40]). 
Cell morphology and detachment in response to ALLN treatment were assessed by light 
microscopy (10× magnification, Nikon Eclipse TS100 inverted microscope equipped with 
Leica EC3 camera). Cell detachment was quantified as percentage of rounded-up cells 
present on the bottom of the dish in a field of view. 

Table 1. Targets, compounds, and concentrations used in this study. 

Purpose Agent Class Catalogue 
No. 

Supplier 
Final Con-

centra-
tion/Dilution 

Solvent (Fi-
nal Concen- 

tration) 

Calpain in-
hibition 

ALLN Peptide 208719 
Merck Mil-

lipore 
5 or 10 µM 

DMSO 
(0.05 or 0.1%) 

Integrin-β1 
activation 

P5D2 
Mono- 

clonal an-
tibody 

ab24693 Abcam 2.5 µg/mL 
Na-azide 
(0.04%) 

Integrin-β1 
inhibition 

HMβ1.1 
Mono- 

clonal an-
tibody 

ab36219 Abcam 1.25 µg/mL 
Na-azide 
(0.09%) 

FAK  
inhibition 

PF-
00562271 

Small 
molecule 

S2672 
Selleck 

Chemicals 
1 µM 

DMSO 
(0.1%) 

ROCK  
inhibition 

Y-27632 
Small 

molecule 
S1049 

Selleck 
Chemicals 

1 µM 
DMSO 
(0.1%) 

IL-6 neutra- 
lization 

MAB2061 
Mono- 

clonal an-
tibody 

MAB2061 
R&D Sys-

tems 
0.6 µg/mL 

PBS 
(0.1%) 

ALLN = N-acetyl-leucin-leucin-norleucinal. FAK = focal adhesion kinase. ROCK = Rho-associated 
kinase. DMSO = dimethyl sulfoxide. IL-6 = interleukin-6. PBS = phosphate buffered saline. 

To interfere directly with integrin-β1 signaling, conformation-specific antibodies, sta-
bilizing either the active (P5D2) or inactive (HMβ1.1) conformation of integrin-β1 were 
used [41]. Further, integrin-β1 downstream effectors FAK and ROCK were inhibited using 
the small molecules PF-00562271 and Y-27632, respectively. A monoclonal antibody was 
used to neutralize secreted IL-6 in the culture medium. 
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2.2. Cell Culture Matrices with Different Stiffness 
Hydrogels with light-tunable mechanical properties (CyPhyGels) were prepared as 

described previously [42,43]. In short, the cyanobacterial photoreceptor-1 was recombi-
nantly expressed, purified and covalently coupled to 8-arm polyethylene glycol. For cast-
ing, 30 µL of CyPhyGel solution was spread on square (22 by 22 mm) coverslips, resulting 
in CyPhyGels with ≈100 µm thickness, tunable by illumination with light of different 
wavelengths to a stiffness between 2.7 and 4.6 kPa [42,44]. 

For cell experiments, coverslips with CyPhyGels were placed into plastic culture 
dishes with 35 mm diameter, HAF were seeded on top at a density of 2750 cells/cm² and 
transfected 24 h after seeding (for detail see description of individual experiments). All 
experiments using CyPhyGels were performed under green light illumination to prevent 
unintended changes in mechanical properties of the culture substrate. 

2.3. Nanoindentation 
For nanoindentation experiments, HEK cells were seeded at a density of 5500 

cells/cm² and HAF at 2750 cells/cm² on CyPhyGels (as described above) or in plastic tissue 
culture dishes with 35 mm diameter (93040, TPP; 2 mL of culture medium/dish) and trans-
fected and/or treated as indicated for individual experiments. Nanoindentation was per-
formed 3 days post-transfection. Before nanoindentation experiments, the culture me-
dium was replaced by phosphate buffered saline (containing (in mM): NaCl 137, KCl 2.7, 
Na2HPO4 10, and KH2PO4 1.8; pH 7.4, 300 mOsm/L) at room temperature and experiments 
were performed within 1 h of taking cells out of the incubator. 

Nanoindentation experiments were performed using the Chiaro system (Optics11, 
Amsterdam, Netherlands). Optical and geometrical calibrations were performed accord-
ing to the manufacturer’s instructions. Spherical glass tips with 3.0–3.4 µm radius, at-
tached to cantilevers with a spring constant between 0.012 N/m and 0.030 N/m were used 
to indent cells (Figure 1A). The cell surface was identified manually by approaching it in 
1 µm steps. After touching the cell, the tip was lifted by 5 µm and a displacement of 10 
µm was initiated with a speed of 5 µm/s [36]. The probe was then held at maximal motor 
displacement for 2 s before being retracted at the same speed (Figure 1B). Each cell was 
indented once at 3 different positions (excluding the region containing the nucleus). The 
effective Young’s modulus (Eeff) was derived from force vs. indentation curves, using a 
Hertzian model for contact mechanics (Figure 1C, [45]) under the assumption of a Poisson 
ratio of 0.5 which is customarily used for mechanical testing of cells [46]. The height of 
HEK cells was 20.0 ± 0.9 µm (n = 16), that of HAF was 9.2 ± 0.4 µm (n = 14). As the Hertzian 
model is only valid for deformations up to 10% of sample thickness [47], no more than the 
first 2 µm of indentation were considered for HEK cells and no more than 0.9 µm for HAF. 
For such small deformations, the body of mildly-structured cells (such as cultured HEK 
or HAF) is usually considered homogeneous [48–50]. 
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Figure 1. Measuring cell stiffness by nanoindentation: Principle, protocol, and recording. (A) nanoindenter used to meas-
ure resistance to deformation (stiffness). A spherical glass tip attached to a cantilever of known stiffness is used to indent 
a sample, e.g., a cell. Cantilever deformation is measured interferometrically and used to calculate the force applied to the 
sample. Green cell: Transfected cell expressing enhanced green fluorescent protein (EGFP) alone, or EGFP and the gene 
of interest. (B) downward movement of the indenter (motor displacement) beyond the cell surface leads to indentation of 
the cell and to cantilever bending. (C) force vs. indentation curves can be fitted using a Hertzian model for contact me-
chanics enabling to derive the effective Young’s modulus Eeff, which is 0.15 kPa in this example. 

2.4. Cytoskeleton: Staining, Image Acquisition, and Data Analysis 
For imaging of the actin cytoskeleton, HAF were seeded onto borosilicate glass co-

verslips (#1.5, 631-0151, VWR, Ismaning, Germany) inside 24-well plates (662160, Greiner 
Bio-One, Frickenhausen, Germany) at a density of 1500 cells/cm² (0.5 mL of culture me-
dium/well), followed by transfection 24 h later. Then, 3 days post-transfection, cells were 
chemically fixed using a 4% para-formaldehyde solution. F-actin was stained using Phal-
loidin-iFluor-647 (ab176759, Abcam, Berlin, Germany), nuclear counterstain was per-
formed using 4′,6-diamidin-2-phenylindol (DAPI, D1306, ThermoFisher, Dreieich, Ger-
many), and coverslips were mounted using PermaFluor mounting medium (60085968, 
ThermoFisher). 

Imaging was performed on a Leica TCS SP8 X laser scanning confocal microscope 
using a 63× glycerol immersion objective with a numerical aperture of 1.3. Z-stacks with 
a step size of 1 µm covering the whole height of a single cell were acquired with an optical 
thickness of 0.33 µm/plane. For analysis, all planes were background subtracted using the 
corresponding function in Fiji [51], and maximal intensities were projected onto a single 
plane. Average fluorescence intensity and area occupied by each cell were calculated after 
manually outlining cell borders based on the F-actin image. Spatial organization and ap-
parent thickness of actin bundles were analyzed spectrally using Cytospectre [52]. In flu-
orescent microscopy, fine structures appear broadened due to diffraction. The size of the 
point spread function is in the order of half the wavelength. Assessing differences in spa-
tial extent below this range can be problematic but larger changes can be easily detected. 
The apparent bundle thickness is a reliable parameter for characterizing cytoskeletal re-
organization in the microscale. However, due to the limited resolution it is not possible to 
obtain detailed information on nano-structural rearrangements. Actin bundle orientation 
parameters used in this study are angular standard deviation (SD), which describes the 
variation of actin bundle orientations, and circular kurtosis, a measure for the peakedness 
of the distribution of orientations. 

2.5. Gene Expression Analysis 
Three days post-transfection, isolation of mRNA from cultured HAF was performed 

using a commercial RNA isolation kit (RNeasy Micro Kit, Cat. no.: 74004). In brief, HAF 
were washed once with phosphate buffered saline and subsequently overlaid with “RLT” 
lysis buffer (40 µL/cm²) supplemented with 2-mercaptoethanol (1:100). After incubation 
for 10 min at room temperature, cell lysates were scraped off the plates and transferred to 
1.5 mL reaction tubes. For CyPhyGels, cell lysate and CyPhyGel were scraped off and 
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transferred to 1.5 mL reaction tubes together. The lysate was then cleared from CyPhyGel 
by centrifugation (5 min at 5000× g). RNA isolation was performed according to manufac-
turer’s instructions. RNA concentration was determined spectrometrically. Per sample, 
100 ng of RNA were utilized to generate complementary DNA (cDNA) using TaqMan 
Reverse Transcription Reagents (N8080234, ThermoFisher). 

Relative mRNA expression levels were determined by qPCR. cDNA was amplified 
in TaqMan Fast Advanced Master Mix (4444556, ThermoFisher) for a total of 40 cycles, 
using the assays listed in Table 2. Levels of mRNA expression of Piezo1 and Piezo2 were 
normalized to the expression level of glyceraldehyde-3-phosphate dehydrogenase as in-
ternal reference. 

Table 2. TaqMan assays used for qPCR (all from ThermoFisher). 

Target Gene TaqMan Assay Number 

PIEZO1 Hs00270203_m1  

PIEZO2 Hs00401026_m1  

GAPDH Hs02786624_g1  

GAPDH = Glyceraldehyde-3-phosphate dehydrogenase. 

2.6. IL-6 Measurements by Enzyme-Linked Immunosorbent Assay 
Cell-free supernatants from HAF, transfected with either the EGFP or Piezo1 expres-

sion plasmid, were collected just before the start of nanoindentation experiments (3 days 
post-transfection) and stored at −20°C. IL-6 was detected (in Nunc MaxiSorp 96-well 
plates (11530627, Invitrogen, Karlsruhe, Germany)) using a colorimetric assay based on 
the IL-6 Human Uncoated ELISA Kit (88-7066-88, Invitrogen) according to manufacturer’s 
instructions. Absorbance was measured with a Microplate Reader (Tecan Infinite 200) and 
analyzed with Magellan data analysis software. 

2.7. Piezo1 Protein Level Detected by Western Blot 
Three days after transfecting HEK cells and HAF with the respective plasmids or 

siRNAs, cells were lysed in radio immunoprecipitation buffer (containing (in mM): Tris-
HCl 50 and NaCl 150; and, (in % w/v) NP-40 1, sodium deoxycholate 1, and sodium do-
decyl sulphate 0.1) supplemented with protease inhibitors (1:200, 539134, Calbiochem, 
Darmstadt, Germany) for 15 min on ice, followed by centrifugation (15 min at 15000× g, 4 
°C). Subsequently, cleared lysates (supernatants) were subjected to sodium dodecyl sul-
phate polyacrylamide gel electrophoresis using 7% polyacrylamide gels and transferred 
to nitrocellulose membranes. These were saturated by incubation in 5% bovine serum al-
bumin in phosphate buffered saline for 1 h at room temperature. Primary antibodies 
against Piezo1 (generated in rabbit, 15939-1-AP, Proteintech, Manchester, United King-
dom) and glyceraldehyde-3-phosphate dehydrogenase (generated in mouse, G8795, 
Sigma-Aldrich) were applied 1:1000 in 5% bovine serum albumin overnight at 4 °C with 
gentle agitation. Horseradish peroxidase-coupled secondary antibodies (anti-rabbit, 
7074S, Cell Signaling Technologies, Danvers, MA, USA, and anti-mouse, HAF007, R&D 
Systems, Minneapolis, MN, USA) were applied 1:5000. Membranes were visualized using 
SuperSignal West Pico PLUS Chemiluminescence Substrate or Femto Maximum Sensitiv-
ity Substrate (34580 or 34096, ThermoFisher) and recorded using a Fusion-Fx gel docu-
mentation system (Vilber, Eberhardzell, Germany). 

2.8. Patch-Clamp Recording of Piezo1 Activity 
The patch-clamp technique was used to evaluate the presence of functional Piezo1 at 

the plasma membrane. Cell-attached patch-clamp recordings were performed using bath 
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and pipette solutions previously described for characterizing Piezo1 channels [37]. The 
pipette medium contained (in mM): NaCl 150, KCl 5, CaCl2 2, and HEPES 10; pH 7.4 with 
NaOH, 310 mOsm/L and the bath medium contained (in mM): KCl 155, EGTA 5, MgCl2 
3, and HEPES 10; pH 7.2 with KOH, 310 mOsm/L. Pressure pulses of increasing amplitude 
(from 0 to −60 mmHg, in −10 mmHg increments) were applied through the recording elec-
trode using a pressure-clamp device (ALA High Speed Pressure Clamp-1 system; ALA 
Scientific, Farmingdale, NY, USA). Experiments were performed at room temperature (20 
°C), using a patch-clamp amplifier (200B, Axon Instruments, San Jose, CA, USA) and a 
Digidata 1440A interface (Axon Instruments). Recorded currents were digitized at 3 kHz, 
low-pass filtered at 1 kHz, and analyzed with pCLAMP10.3 software (Axon Instruments) 
and OriginPro 2019 (OriginLabCorporation, Northampton, MA, USA). 

2.9. Statistical Analyses 
Individual data points deviating by more than 3 standard deviations from the mean 

of the raw data set were defined as outliers and removed from further analysis (in total 
1.69% of cells). Normal distribution of the data was assessed for each group using 
Shapiro–Wilk test and had to be rejected for most groups. Thus, to determine statistical 
significance of differences between experimental groups, non-parametric Kruskal–Wal-
lis–ANOVA has been performed, followed by post-hoc Dunn’s comparison of the means. 
Groups were considered significantly different with a p-value <0.05. Data is presented as 
mean ± standard error to the mean, and as single data points. All statistical analyses were 
performed in OriginPro 2019 (OriginLabCorporation). Graphical summary of the main 
results was created with BioRender.com. 

With exception of Figure 4, all experiments on HAF reported in this study were per-
formed side-by-side with controls (i.e., all conditions in an individual figure panel were 
tested on the same day) to account for variations between experiments. 

3. Results 
3.1. Piezo1 Overexpression in HEK Cells Leads to Increased Cell Stiffness 

To mimic Piezo1 upregulation, as seen in fibroblasts from AF patients, we overex-
pressed Piezo1 in HEK cells. Using nanoindentation, we determined the stiffness of cells 
overexpressing EGFP or Piezo1 (Figure 2A). Average stiffness of Piezo1-overexpressing 
cells was 1.7 times higher than that of EGFP control cells (n = 252 cells with EGFP, n = 247 
with Piezo1, from N = 17 experiments; Figure 2B). Piezo1 overexpression was confirmed 
at functional (patch-clamp) and biochemical (Western blot) levels (supplemental Figure 
S1A–C). Neither the stiffness of EGFP control cells, nor that of Piezo1-overexpressing cells 
was affected by the solvents used in this study (0.1% dimethyl sulfoxide (DMSO), or 0.09% 
Na-azide; Figure S1D). Piezo1-induced cell stiffening will be abbreviated PiCS throughout 
the manuscript. In response to overexpression of TRPC6, another cation non-selective 
SAC [53], cell stiffness was not significantly different from EGFP control cells (Figure 2C). 
This suggests that the observed effect on cell stiffness is not a general response to cation 
non-selective SAC overexpression. 
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Figure 2. Piezo1 overexpression induces stiffening of human embryonic kidney cell (HEK) cells. 
(A) representative force vs. indentation curves from cells overexpressing EGFP or Piezo1 acquired 
by nanoindentation. Average stiffness of cells overexpressing EGFP or Piezo1 (B) or transient re-
ceptor potential channel 6 (TRPC6) (C) 3 days post-transfection. n/N = number of cells/ number of 
experiments. 

3.2. PiCS Does not Require Ion Flux Through the Channel, nor Calpain Activity in HEK Cells 
We assessed cell stiffness in Piezo1-overexpressing HEK cells in the presence and 

absence of antibiotics, including the SAC blocker streptomycin. We found that PiCS oc-
curred in presence and absence of antibiotics (1.7-fold PiCS with antibiotics (n = 42 with 
EGFP, n = 40 with Piezo1, N = 3), vs. 1.6-fold PiCS without antibiotics (n = 44 with EGFP, 
n = 46 with Piezo1, N = 3), Figure 3A). This led to the conclusion that the function of  
Piezo1 as an ion-conducting channel at the plasma membrane is not required for PiCS. 

Inhibition of the Ca2+-activated protease calpain by treating HEK cells with 5 or 
10 µM ALLN for 48 h did not abolish PiCS, observed in solvent-treated control cells (2.1-
fold PiCS with DMSO (n = 17 with EGFP, n = 20 with Piezo1, N = 2), vs. 2.2-fold PiCS with 
5 µM ALLN (n = 30 with EGFP, n = 30 with Piezo1, N = 3), or 2.4-fold PiCS with 10 µM 
ALLN (n = 18 with EGFP, n = 29 with Piezo1, N = 3), Figure 3B). ALLN-treated cells (10 
µM), whether expressing EGFP or Piezo1, had a different morphology and showed sig-
nificantly increased cell detachment (Figure S2). 

3.3. PiCS in HEK Cells Requires Components of the Integrin Signaling Pathway 
To assess whether PiCS involves intracellular signal transduction from integrin-β1, 

we used conformation-specific antibodies to activate or inactivate integrin-β1. We found 
that constitutive activation of integrin-β1 signaling by P5D2 significantly increased stiff-
ness in EGFP-expressing cells, compared to solvent-treated EGFP cells (1.7-fold difference 
(n = 31, N = 3 with Na-azide, n = 46, N = 4 with P5D2)). There was no significant further 
increase in cell stiffness upon Piezo1 overexpression in P5D2 exposed cells (n = 31, N = 3 
with Na-azide, n = 51, N = 4 with P5D2). In contrast, blocking integrin-β1 activation by 
HMβ1.1 had no significant effect on cell stiffness compared to vehicle-treated cells (n = 31, 
N = 3 with Na-azide, n = 55, N = 3 with HMβ1.1), and it did not prevent PiCS (1.9-fold 
PiCS with Na-azide (n = 31 with EGFP, n = 31 with Piezo1, N = 3), 1.6-fold PiCS with 
HMβ1.1 (n = 55 with EGFP, n = 51 with Piezo1, N = 3, Figure 3C). Thus, we assume that 
integrin-β1 is not directly involved in PiCS. 

Next, the contribution of known downstream effectors of integrin-β1 signaling, FAK 
and ROCK, was assessed. Inhibition of FAK using the small molecule inhibitor PF-
00562271 abolished PiCS, without significant effect on EGFP control cells. In contrast, 
when ROCK was inhibited by Y-27632, the stiffness of both EGFP and Piezo1-expressing 
cells was reduced compared to DMSO controls independently from Piezo1 expression 
levels, while PiCS was conserved (1.6-fold PiCS with DMSO vehicle (n = 96 with EGFP, n 
= 94 with Piezo1, N = 6), vs. no PiCS with PF-00562271 (n = 57 with EGFP, n = 58 with  
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Piezo1, N = 3), vs. 1.5-fold PiCS with Y-27632 (n = 57 with EGFP, n = 53 with Piezo1, N = 
3), Figure 3D). 

 
Figure 3. Piezo1-induced stiffening does not require Piezo1 channel activity at the plasma membrane, calpain activity, 
integrin-ß1 and ROCK, but FAK in HEK cells. Average stiffness of cells: 2 days after wash-out of antibiotics (AB, 172 µM 
streptomycin and 200 µM penicillin, (A)); after DMSO treatment (solvent control, 0.1% v/v) or different concentrations of 
the calpain inhibitor ALLN (B); after 2 days of treatment with Na azide (solvent control, 0.09% v/v) or monoclonal anti-
bodies to activate (P5D2, 2.5 µg/mL) or inhibit (HMß1.1, 1.25 µg/mL) integrin-ß1 outside-in signaling (C); after 2 days of 
treatment with DMSO, FAK inhibitor (PF-00562271, 1 µM), or ROCK inhibitor (Y-27632, 1 µM, D). n/N = number of cells/ 
number of experiments. 

3.4. PiCS is Conserved in HAF 
Based on insight into the mechanisms of PiCS in HEK cells, we aimed to translate our 

findings to HAF, since we found Piezo1 expression to be upregulated in primary atrial 
fibroblasts from patients in AF [35]. We assessed cell stiffness in HAF in response to Piezo1 
overexpression or knock-down. We first observed that cells exposed to siNT as controls 
for Piezo1 knock-down experiments were 1.8-fold stiffer than untreated EGFP-expressing 
cells used as controls in Piezo1 overexpression experiments (Figure 4A). The reasons for 
this difference are not clear. Data were thus normalized in subsequent analyses to their 
respective control group (EGFP for Piezo1 overexpression, siNT for Piezo1 knock-down, 
Figure 4B). 
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Overexpression of Piezo1 led to a pronounced (2.7-fold) increase in HAF stiffness 
compared to EGFP control cells (n = 24 with EGFP, n = 24 with Piezo1, N = 2), while siRNA-
mediated Piezo1 knock-down reduced HAF stiffness to 0.6 of siNT control cells (n = 89 
with siNT, n = 83 with siPiezo1, N = 3, Figure 4B), confirming a role for Piezo1 in setting 
cell stiffness in HAF. 

 
Figure 4. Piezo1-induced stiffening in human atrial fibroblast line (HAF). (A) average stiffness of cells 3 days after trans-
fection of expression constructs for overexpression of EGFP or Piezo1, non-targeting siRNA (siNT) or siRNA for knock-
down of Piezo1 (siPiezo1). (B) data from (A) normalized by the mean of the respective control group (EGFP for overex-
pression, siNT for knock-down). n/N = number of cells/ number of experiments. 

3.5. Piezo1 Expression Affects Architecture of the Actin Cytoskeleton in HAF 
Cellular mechanical properties are related to the composition and organization of 

their cytoskeleton. We used fluorescently-labelled phalloidin to stain the F-actin network 
in HAF and assessed effects of overexpression or knock-down of Piezo1 (Figure 5A). We 
noted a significant difference in average fluorescence intensity between the two control 
groups (1.2 times higher in siNT vs. EGFP cells (n = 76 with EGFP, n = 49 with siNT, N = 
3), Figure S3A left), in line with stiffness recordings (above). We, thus, normalized data 
on Piezo1 overexpression or knock-down to their respective controls. Absolute values for 
all parameters can be found in Figure S3. 

Average fluorescence intensity was 1.6 times higher in Piezo1-overexpressing HAF 
compared to EGFP control cells (n = 76 with EGFP, n = 74 with Piezo1, N = 3), while Piezo1 
knock-down resulted in a reduction to 0.7 times the fluorescence intensity of siNT control 
cells (n = 49 for siNT, n = 49 for siPiezo1, N = 3, Figure 5B left). Piezo1 overexpression 
resulted in a small but significant increase in the area of a cell that was covered by actin 
bundles compared to EGFP control cells, while Piezo1 knock-down did not significantly 
affect the area covered by actin bundles compared to siNT control cells (Figure 5B middle). 
No changes in total cell area were identified (Figure 5B right). To gain further insight into 
the microscale architecture of the actin cytoskeleton, we analyzed average apparent thick-
ness of actin bundles and their orientation. In HAF overexpressing Piezo1, we found actin 
bundles to be significantly thicker than those in EGFP cells, while Piezo1 knock-down did 
not significantly affect apparent actin bundle thickness compared to siNT controls (1.2 
times thicker bundles with Piezo1 overexpression vs. no discernible difference with Pi-
ezo1 knock-down, Figure 5C left). 
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Figure 5. Piezo1-dependent alterations of HAF stiffness are a result of differential organization of the actin cytoskeleton. 
(A) representative images of the actin cytoskeleton of HAF 3 days post-transfection, stained by phalloidin. Scale bars = 
20 µm. (B) average phalloidin intensity, phalloidin-positive area per cell area, and cell area. (C) apparent thickness, angu-
lar standard deviation (SD), and circular kurtosis of actin bundles. All data normalized to the mean of the respective 
control. See Figure S3 for raw data. n/N = number of cells/number of experiments. 

In response to Piezo1 overexpression, angular SD of actin bundle orientation did not 
differ significantly from control cells, while Piezo1 knock-down resulted in a significantly 
higher angular SD, indicative of a less-ordered actin network (Figure 5C middle). Circular 
kurtosis was significantly higher in response to Piezo1 overexpression, but not affected 
by Piezo1 knock-down (Figure 5C right). Normalized data suggest that Piezo1 increases 
the thickness of actin bundles and favors their more ordered arrangement. 
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3.6. Piezo1 is Required for Cell Stiffness Adaptation to Matrix Stiffness in HAF 
After culturing HAF on stiff or soft CyPhyGels for 4 days, we found that cell stiffness 

adapts to CyPhyGel stiffness (1.6-fold higher HAF stiffness on stiff compared to soft Cy-
PhyGel, n = 30 on stiff, n = 35 on soft, N = 3; Figure 6A), results in line with previous 
observations [54]. This adaptation was abolished by Piezo1 knock-down (n = 32 on stiff 
and n = 31 on soft, N = 3, Figure 6A). While Piezo1 knock-down upon siRNA exposure 
was confirmed, Piezo1 mRNA level did not differ significantly between HAF on stiff and 
soft CyPhyGels within control or knock-down groups (n = 6 dishes per condition, N = 3, 
Figure 6B). As compensatory mechanisms between Piezo1 and Piezo2 have been de-
scribed [55] and because of the role of Piezo2 in matrix stiffness sensing [56], we addition-
ally analyzed its mRNA level. The expression level of Piezo2 was not significantly affected 
by CyPhyGel stiffness or Piezo1 knock-down (Figure 6C). 

 
Figure 6. Piezo1 is involved in the adaptation of cell stiffness to matrix stiffness in HAF. (A) average stiffness of cells after 
4 days of culture on stiff (~6 kPa) or soft (~3 kPa) CyPhyGels. n/N = number of cells/number of experiments. mRNA levels 
of Piezo1 (B) and Piezo2 (C) in cells cultured on stiff or soft CyPhyGels 3 days after control intervention or  
siRNA-mediated Piezo1 knock-down, assessed by qPCR, relative to the expression of glyceraldehyde-3-phosphate dehy-
drogenase. n/N = number of CyPhyGels/number of experiments. 

3.7. PiCS is Transmitted to Neighboring HAF by IL-6 
As shown before, the stiffness of Piezo1-overexpressing HAF is higher than that of 

EGFP-expressing control cells (2.1-fold PiCS, n = 59 with EGFP, n = 63 with Piezo1, N = 5). 
Surprisingly though, non-transfected (non-fluorescent) HAF cells in the same dish (i.e., cells 
neighboring to those in whom Piezo1 was overexpressed), was also significantly higher 
than that of non-transfected HAF in EGFP dishes (1.6-fold higher, n = 35 with EGFP, n = 
36 with Piezo1, N = 3). This suggests that Piezo1-overexpressing cells may affect the stiff-
ness of non-transfected HAF in the same dish (Figure 7A). 

To assess whether IL-6 might mediate paracrine effects between transfected and non-
transfected cells in the same dish, we compared IL-6 levels in the culture medium of 
EGFP- and Piezo1-transfected dishes. Enzyme-linked immunosorbent assay confirmed a 
1.4-fold higher IL-6 concentration in the culture medium of Piezo1-transfected cells, com-
pared to EGFP controls (n = 8 dishes with EGFP, n = 9 dishes with Piezo1, N = 3; Figure 
7B). 
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Figure 7. Piezo1-induced stiffening is transmitted to non-transfected cells by a paracrine mechanism dependent on IL-6. 
(A) average stiffness of HAF successfully transfected (fluorescent) or non-transfected (non-fluorescent) in the same dish. 
(B) IL-6 concentration in the culture medium analyzed 3 days after transfection of EGFP or Piezo1. Average stiffness of 
non-transfected (C) and transfected cells (D) after treatment with a non-targeting control IgG or IL-6 neutralizing antibody 
MAB2061 (0.6 µg/mL) for 2 days. n/N = number of cells/ number of experiments (except for B, where n = number of dishes). 

Finally, mechanical properties of non-fluorescent (non-transfected) cells in dishes 
that contained HAF expressing either EGFP or Piezo1 were assessed in the presence or 
absence of an IL-6 neutralizing monoclonal antibody. In the presence of a control IgG that 
does not interfere with IL-6, non-fluorescent cells in Piezo1 dishes showed a 1.4-fold PiCS 
compared to non-fluorescent cells in EGFP control dishes (n = 51 with EGFP, n = 50 with 
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Piezo1, N = 3). Application of the IL-6-neutralizing antibody abolished paracrine induc-
tion of PiCS, without significantly affecting stiffness of EGFP control cells (n = 49 with 
EGFP, n = 51 with Piezo1, N = 3; Figure 7C). Additionally, while application of a control 
IgG had no significant effect on PiCS in fluorescent (transfected) cells (1.9-fold PiCS, n = 28 
with EGFP, n = 28 with Piezo1, N = 3), PiCS was abolished by neutralizing IL-6 even in 
fluorescent cells (n = 56 with EGFP, n = 53 with Piezo1, N = 3; Figure 7D). We conclude 
from this data that PiCS requires an increase of IL-6 secretion, which then mediates both, 
the stiffness increase of transfected cells in an autocrine, and that of non-transfected cells 
in a paracrine manner. 

4. Discussion 
This study provides evidence for a contribution of Piezo1 to the regulation of me-

chanical properties in HEK cells and HAF. Overall, our data suggest that (a) Piezo1 ex-
pression, but not its activity as an ion channel at the plasma membrane, is required for 
PiCS, (b) PiCS involves components of canonical integrin mechano-signaling, (c) PiCS is 
mediated by an autocrine mechanism that requires an increase in IL-6 secretion, which 
can additionally transmit PiCS to neighboring cells in a paracrine manner, and (d) Piezo1 
is an essential component of cell stiffness sensing. Changes of cell mechanical properties 
in response to varying Piezo1 expression levels may be attributed to changes in the organ-
ization of the actin cytoskeleton. Figure 8 summarizes our conclusion from both cell types. 

 
Figure 8. Schematic summarizing the proposed pathway for Piezo1-induced cell stiffening (PiCS). 
Piezo1 and integrin-β1 can independently activate FAK, leading to a reorganization of the actin 
cytoskeleton, and ultimately changing the cell’s mechanical properties. Increased Piezo1 expres-
sion induces enhanced IL-6 secretion which is required for autocrine and paracrine induction of 
cell stiffening. ECM = extracellular matrix. FAK = focal adhesion kinase. 
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4.1. Mechanism Underlying PiCS 
To obtain insight on signaling mechanisms required for PiCS, we used HEK cells, a 

routinely employed cell culture model. Their main advantage for our study is that they 
can be easily transfected with large constructs like Piezo1 (2521 amino acids, Uniprot entry 
Q92508) while endogenous Piezo1 expression level is low. Publications connecting Piezo1 
to mechano-signaling mediated by integrins are based mainly on Piezo1-mediated eleva-
tion of intracellular Ca2+, entering the cytosol either from the extracellular space [57] or 
from the endoplasmic reticulum [29]. As PiCS is not suppressed in our hands by blocking 
Piezo1 ion channel activity using antibiotics, including streptomycin, it is unlikely that 
Ca2+ influx via the plasma membrane is required for PiCS and matrix stiffness sensing. 
This is similar to prior reports on crosstalk between the mechano-sensitive channel TRPC6 
and integrin signaling in podocytes, which also does not rely on ion flux through the chan-
nel. While TRCP6 requires calpain to regulate podocytes adhesion and cytoskeleton [17], 
our data on Piezo1 in HEK cells suggest a mechanism that is independent from calpain. 

While our data suggest that PiCS does not require Piezo1-mediated influx of extra-
cellular Ca2+, further studies, such as using a non-conductive or a truncated mutant of 
Piezo1 (e.g., excluding the pore region as used by McHugh et al. [29]) would be required 
to fully exclude a role for Piezo1 conductance. This would also allow one to address po-
tential roles of Piezo1 ion conductance in endomembranes. 

Piezo1 has been shown to localize to focal adhesions and enhance their maturation 
in a force-dependent manner [57]. It seemed plausible, therefore, that PiCS could be di-
rectly or indirectly connected to integrin signaling. To explore this, we activated or inhib-
ited components of the integrin signaling pathway at various levels. Integrin-β1 activation 
increased the stiffness of control cells, with no further increase by Piezo1 overexpression. 
This suggests that a common pathway may be at play. This was substantiated by showing 
that FAK, one of the major downstream effectors of integrin-β1 signaling in response to 
extracellular stimulation that stabilizes the cytoskeleton [58], is required for PiCS. Since 
PiCS is not prevented by directly blocking integrin-β1, Piezo1 is unlikely to activate integ-
rin-β1 directly. 

ROCK kinases are another group of downstream effectors of integrin-β1, with dis-
tinct effects on the actin cytoskeleton: ROCK1 is required for the formation of thick actin 
fibers, while ROCK2 mediates myosin light chain phosphorylation [59]. In our experi-
ments, inhibition of both ROCK isoforms reduced cell stiffness irrespective of Piezo1 ex-
pression, but did not abolish PiCS. Thus, our results suggest that in PiCS, FAK does not 
activate ROCK, but affects actin assembly more directly, for example by interacting with 
actin polymerizing proteins [60]. 

4.2. PiCS in HAF and Beyond 
HAF share phenotypical similarities with primary cultures of human atrial fibro-

blasts in terms of collagen deposition, mechanical properties and response to mechanical 
stimulation [54]. We first confirmed PiCS in HAF and showed that diminished Piezo1 ex-
pression leads to decreased cell stiffness, confirming a link between Piezo1 expression 
level and cell mechanical properties in these cells. Imaging of the actin cytoskeleton indi-
cates that the changes in cell stiffness, induced by alterations of Piezo1 expression, are 
likely to be related to rearrangements of the actin cytoskeleton. Higher Piezo1 expression 
levels correlate with higher overall phalloidin intensity, thicker actin bundles, and a 
higher degree of isotropy. Cell area was not changed in any condition, supporting the 
notion that Piezo1 does not directly activate/block integrin-β1 [61]. This is a difference 
compared to observations in epithelial cells where Piezo1 knock-down reduced integrin-
β1activation [29]. 

We had previously shown that mechanical properties of HAF are changed during 
transforming growth factor-β-induced myofibroblast phenoconversion [36]. Such changes 
are commonly attributed to enhanced presence of α-smooth muscle actin-positive stress 
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fibers. Here, we show that differential organization of the actin cytoskeleton may be in-
volved as well. Although bundle thickness and isotropy correlate with Piezo1 expression 
levels, changes seemed rather small to explain the pronounced effects on cell stiffness. It 
is likely, therefore, that changes in cell mechanical properties during myofibroblast phe-
noconversion are the result of multiple cytoskeletal remodeling processes, including α-
smooth muscle actin, actin, myosin, intermediate filaments, and crosslinkers like filamin 
A. Further work will be required to disentangle the roles of the various components, both 
in myofibroblast phenoconversion and in PiCS. Experiments in HAF, including the inhib-
itors used in our HEK cell experiments, will be valuable to gain more insight in future 
studies. 

4.3. Relevance of PiCS in the Context of Altered Environmental Stiffness 
HAF respond to higher stiffness of their growth matrix by becoming stiffer them-

selves, which is in line with the response of primary human atrial fibroblasts [44] and 
corresponds to one of the canonical cell adaptations to matrix stiffness [62]. We show that 
Piezo1 contributes critically to this ability, as HAF stiffness adaptation to differences in 
matrix mechanical properties was abolished with Piezo1 knock-down. Of note, HAF 
grown on CyPhyGels were stiffer than HAF on plastic, which may be explained by a bi-
phasic relationship between matrix stiffness and cell stiffness, or by differences in surface 
chemistry (nature and density of ligands for cell attachment) between CyPhyGels and tis-
sue culture plastic. Both states of the matrix used in this study are at the lower end of 
myocardial tissue (ranging from ~5 to more than 50 kilopascals depending on age and 
disease state [3–7]), and more work will be required to assess whether Piezo1 knock-down 
can also impair fibroblast adaptation to stiffnesses that are in the mid or high range of 
myocardial tissue properties. In addition, it needs to be considered that in vivo cells face a 
3D environment, in which mechano-sensing and -adaptation will differ from our 2D 
model. High-resolution imaging of the actin cytoskeleton of fibroblasts in a 3D environ-
ment may help understanding if comparable mechanisms are at play in tissue. 

It is unlikely that Piezo1 could overwrite integrin-mediated stiffness sensing, but in 
the conditions used here, Piezo1 is essential. Our current data does not allow one to dis-
criminate between impaired sensing of, and impaired adaptation to, differences in matrix 
stiffness. As adaptation is a consequence of sensing, both may have overlapping out-
comes. When tissue becomes stiffer for example due to ECM deposition in fibrosis, 
changes in Piezo1 expression (such as in the context of permanent AF) might impair the 
way in which fibroblasts sense ECM stiffness, thus preventing adaptation. This might alter 
their transition to myofibroblasts. Indeed, it has been shown before that stiff growth ma-
trices can trigger myofibroblast phenoconversion [1]. In this context, Piezo1 could be an 
attractive target to slow or limit the vicious circle in which fibrosis begets fibrosis in car-
diac disease. 

This positive feedback loop might in parts be explained by the upregulation of IL-6 
secretion in response to Piezo1 activation [24]. In our experiments, Piezo1 overexpression 
resulted in increased IL-6 secretion from HAF. Taking into account that the transfection 
efficiency for HAF is usually below 5%, the increase in IL-6 we found in the culture me-
dium is remarkable. Elevated IL-6 levels in the culture medium are required for increased 
cell stiffness in Piezo1-transfected HAF, and for induction of PiCS in neighboring, non-
Piezo1-transfected cells, i.e., IL-6 acts in an autocrine and in a paracrine manner. There is 
some evidence in the literature pointing to a connection between IL-6 and integrin signal-
ing in cardiac fibroblasts, for example in response to differences in matrix stiffness [63]. It 
remains to be evaluated whether IL-6 signaling itself is sufficient, and integrin signaling 
is required for paracrine induction of PiCS. Future work will identify the mechanisms that 
link enhanced IL-6 secretion in HAF to alterations of mechanical properties in remote 
cells. 
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5. Conclusions 
Matrix stiffness sensing allows fibroblasts to adapt to their mechanical environment, 

affecting a number of cell functions, including myofibroblast phenoconversion and colla-
gen production. Our results identify Piezo1 in HEK cells and HAF as a key component of 
the cellular matrix stiffness sensing and adjustment responses. We show that PiCS in-
volves integrin signaling and identify an inverse relation between Piezo1 expression lev-
els and F-actin anisotropy. We further establish that PiCS requires autocrine signaling via 
a process involving increased levels of IL-6 in the culture medium and can additionally 
be communicated in a paracrine manner to neighboring (non-transfected) cells. The role 
of Piezo1 as a combined mechano-sensor and -effector requires further investigation, in 
particular with the view of identifying potential targets for intervention to slow down, 
stop or prevent fibrosis development. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-
4409/10/3/663/s1: Figure S1: Overexpression of Piezo1 results in higher stretch-induced current, pro-
tein level and cell stiffness. Figure S2: Calpain-inhibition leads to changes in cell morphology and 
detachment in HEK cells. Figure S3: Piezo1-dependent alterations of the stiffness of HAF are the 
result of differential organization of the actin cytoskeleton. 
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