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Abstract: Bilirubin, an endogenous antioxidant, may play a protective role in cancer development.
We applied two-sample Mendelian randomization to investigate whether genetically raised bilirubin
levels are causally associated with the risk of ten cancers (pancreas, kidney, endometrium, ovary,
breast, prostate, lung, Hodgkin’s lymphoma, melanoma, and neuroblastoma). The number of
cases and their matched controls of European descent ranged from 122,977 and 105,974 for breast
cancer to 1200 and 6417 for Hodgkin’s lymphoma, respectively. A total of 115 single-nucleotide
polymorphisms (SNPs) associated (p < 5 x 10~8) with circulating total bilirubin, extracted from a
genome-wide association study in the UK Biobank, were used as instrumental variables. One SNP
(rs6431625) in the promoter region of the uridine-diphosphoglucuronate glucuronosyltransferaselAl
(UGT1A1) gene explained 16.9% and the remaining 114 SNPs (non-UGT1A1 SNPs) explained 3.1% of
phenotypic variance in circulating bilirubin levels. A one-standarddeviation increment in circulating
bilirubin (= 4.4 umol/L), predicted by non-UGT1A1 SNPs, was inversely associated with risk of
squamous cell lung cancer and Hodgkin’s lymphoma (odds ratio (OR) 0.85, 95% confidence interval
(CI) 0. 73-0.99, p 0.04 and OR 0.64, 95% CI 0.42-0.99, p 0.04, respectively), which was confirmed
after removing potential pleiotropic SNPs. In contrast, a positive association was observed with
the risk of breast cancer after removing potential pleiotropic SNPs (OR 1.12, 95% CI 1.04-1.20,
p 0.002). There was little evidence for robust associations with the other seven cancers investigated.
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Genetically raised bilirubin levels were inversely associated with risk of squamous cell lung cancer as
well as Hodgkin’s lymphoma and positively associated with risk of breast cancer. Further studies are
required to investigate the utility of bilirubin as a low-cost clinical marker to improve risk prediction
for certain cancers.

Keywords: Bilirubin; UGT1A1; Mendelian randomization; cancer risk

1. Introduction

Cancer is a major cause of morbidity and mortality globally, and the number of new
cancer cases is expected to increase further over the next decades (CDC, 2020). In 2018,
there were over 18 million new cancer cases and nine million cancer-related deaths [1].

Cancer-promoting inflammation is an enabling characteristic of cancer development,
and inflammatory cells can also release reactive oxygen species [2]. A major cause of cancer
is damage to DNA as a result of oxidative stress, mainly due to excess reactive oxygen
species, antioxidants depletion, or both [3].

Bilirubin, a metabolic by-product of hemoglobin breakdown, is one of the most potent
endogenous antioxidants of the human body and also has substantial anti-inflammatory
properties [4-7]. Therefore, bilirubin may play a preventive role in cancer develop-
ment. Blood levels of bilirubin are under genetic control via expression of uridine-
diphosphoglucuronate glucuronosyltransferaselAl (UGT1Al) in the liver, which con-
verts insoluble bilirubin into a more water-soluble form for renal and biliary excretion [8].
Individuals homozygous for seven thymine—adenine (TA)-repeats (7/7) at the UGT1A1*28
locus have decreased enzyme activity, which leads to a less effective glucuronidation and
moderately higher than normal blood levels of bilirubin (known as Gilbert’s syndrome,
GS) [9,10].

The seven TA-repeats allele of UGT1A1*28 polymorphism underlying GS was investi-
gated in relation to cancers of the endometrium [11], ovary [12], lung [13,14], breast [15],
and prostate [16]. However, results of these studies were inconclusive, did not specifically
investigate bilirubin as a putative cancer risk factor, and had limited sample size (range
of number of cases 129 to 310), with the exception of Horsfall et al., where an inverse
association was observed between genetically raised bilirubin levels and lung cancer risk
among current smokers [14].

In this study, we investigated whether genetically raised circulating bilirubin levels
are causally associated with risk of ten cancers using a Mendelian randomization (MR)
approach. This technique uses genetic variation as instrumental variables [17], and in the
absence of pleiotropy, an association between the genetic instruments and the outcome
implies that the risk factor of interest may have a causal role in disease etiology (here:
cancer risk) [18]. MR addresses unmeasured confounding (e.g., by smoking), which is a
major limitation of observational studies [17]. The ten cancer types were investigated in
large international consortia and selected based on previous evidence (cancers of the lung,
ovary, endometrium, breast, and prostate) [11-16] or biological plausibility (pancreatic
cancer, renal cell cancer, Hodgkin’s lymphoma, melanoma, and neuroblastoma).

2. Materials and Methods

In a two-sample MR approach, we first identified 115 single-nucleotide polymor-
phisms (SNPs) that were genome-wide associated (p <5 x 10~8) with circulating total
bilirubin levels in a genome-wide association study (GWAS) that included 317,639 indi-
viduals of European ancestry (white British) from the UK Biobank (UKB) (non-British
white, South Asian, African, and East Asian GWASs were excluded based on a combi-
nation of self-identification and refinement using population-specific genotype principal
components) [19]. The UKB project, a long-term prospective cohort study, recruited about
500,000 people aged between 40 and 69 years in 20062010 from across the UK [20]. The raw
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total bilirubin levels were adjusted for age, sex, the top 40 principal components for popu-
lation stratification, recruitment center, indicators of socioeconomic status, and potential
technical confounders (blood and urine sampling time, fasting time, and sample dilution
factor) [19]. SNPs were independently associated with total bilirubin levels, which were
reflected by measures of linkage disequilibrium (LD R? < 0.001). The SNPs with ambiguous
strand codification (T-A or guanine-cytosine, G-C) were replaced by SNPs in LD R? > 0.8
in European populations using the proxysnps R package. The summary statistics for the
associations of SNP allele dosage with standardized bilirubin levels are shown in Table S1.

One SNP (rs6431625) in the promoter region of the UGT1A1 gene in chromosome
2 explained 16.9% of phenotypic variance in circulating total bilirubin levels, which was es-
timated as a function of the effect size for the risk factor in standard deviation units and the
minor allele frequency [21]. This SNP was in strong linkage disequilibrium (LD R? = 0.74)
with the UGT1A1*28 promoter TA-repeats polymorphism (rs3064744) [22]. The remaining
114 SNPs (non-UGT1A1 SNPs) explained 3.1% of the total bilirubin variance [22] and
provided an F-statistic for the strength of the relationship between the genetic instrument
and the bilirubin levels of 89.1. The F-statistic is an estimation of the magnitude of the
instrument bias (e.g., F-statistic < 10 for the weak instruments) [23].

Second, ten cancer types were analyzed using genetic data that together summed
up to a total of 336,110 cancer cases and 589,467 controls of European ancestry (Table 1).
Cases and controls were individually matched in the original GWAS for each cancer,
including pancreatic cancer (overall and sex subgroups) [24-26], renal cell cancer (overall
and sex subgroups) [27], lung cancer (overall, ever and never smokers subgroups, and his-
tological subtypes of adenocarcinoma, squamous cell, and small cell) [28], ovarian cancer
(overall and serous subgroup) [29], endometrial cancer [30], breast cancer (overall and
estrogen receptor (ER) subgroups) [31], prostate cancer [32], Hodgkin’s lymphoma [33],
melanoma, [34] and neuroblastoma [35]. To prevent weak instrument bias, these genetic
data did not include samples from the UKB. Each contributing study was approved by
the appropriate institutional review board/ethics committee. All participants provided
informed consent.

SNPs summary estimates (B cancer) Were retrieved from these recently published GWAS
results, which were obtained from: their cancer genetic consortia [27-32,36], the Geno-
types and Phenotypes database (dbGaP) [37], public web repositories, and the MR-Base
platform [38].

Table 1. Summary information of cancer GWAS samples and power assessment.

Cancer Type Subtype N Cases N Controls SNP Set Minimum Detectable OR

overall 7110 7264 UGT1A1 SNP 1.12/0.89

Non-UGT1A1 SNPs (n = 113) 1.30/0.77

. men 3861 4056 UGT1A1 SNP 1.17/0.86
Pancreatic cancer

Non-UGT1A1 SNPs (n = 113) 1.43/0.70

women 3252 3268 UGT1A1 SNP 1.18/0.84

Non-UGT1A1 SNPs (n = 113) 1.48/0.67

overall 10,784 20,406 UGT1A1 SNP 1.08/0.92

Non-UGT1A1 SNPs (n = 111) 1.21/0.83

men 3227 4916 UGT1A1 SNP 1.17/0.86
Renal cell cancer

Non-UGT1A1 SNPs (n = 109) 1.43/0.70

women 1992 3095 UGT1A1 SNP 1.22/0.82

Non-UGT1A1 SNPs (n = 109) 1.58/0.63
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Table 1. Cont.

Cancer Type Subtype N Cases N Controls SNP Set Minimum Detectable OR
overall 29,266 56,450 UGT1A1 SNP 1.05/0.95
Non-UGT1A1 SNPs (n = 109) 1.12/0.89
ever smokers 23,223 16,964 UGT1A1 SNP 1.07/0.93
Non-UGT1A1 SNPs (n = 109) 1.17/0.85
never smokers 2355 7504 UGT1A1 SNP 1.17/0.85
Non-UGT1A1 SNPs (n = 109) 1.46/0.69
Lung cancer
adenocarcinoma 11,273 55,483 UGT1A1 SNP 1.07/0.93
Non-UGT1A1 SNPs (n = 109) 1.18/0.85
squamous cell 7426 55,627 UGT1A1 SNP 1.09/0.92
Non-UGT1A1 SNPs (n = 109) 1.22/0.82
small cell 2664 21,444 UGT1A1 SNP 1.15/0.87
Non-UGT1A1 SNPs (n = 109) 1.39/0.72
overall 25,509 40,941 UGT1A1 SNP 1.06/0.95
) Non-UGT1A1 SNPs (n = 111) 1.14/0.88
Ovarian cancer
serous 16,003 40,941 UGT1A1 SNP 1.07/0.94
Non-UGT1A1 SNPs (n = 111) 1.16/0.86
overall 122,977 105,974 UGT1A1 SNP 1.03/0.97
Breast cancer
Non-UGT1A1 SNPs (n = 112) 1.07/0.94
Endometrial overall 12,906 108,979 UGT1A1 SNP 1.07/0.94
cancer Non-UGT1A1 SNPs (n = 110) 1.16/0.86
overall 79,194 61,112 UGT1A1 SNP 1.04/0.96
Prostate cancer
Non-UGT1A1 SNPs (n = 107) 1.09/0.92
Hodgkin’s overall 1200 6417 UGT1A1 SNP 1.24/0.81
lymphoma Non-UGT1A1 SNPs (n = 91) 1.65/0.61
overall 1804 1026 UGT1A1 SNP 1.31/0.77
Melanoma
Non-UGT1A1 SNPs (n = 75) 1.86/0.54
overall 1627 3254 UGT1A1 SNP 1.23/0.81
Neuroblastoma
Non-UGT1A1 SNPs (n = 57) 1.62/0.62

Abbreviations: N Number, OR odds ratio, SNP single nucleotide polymorphism

Imputed SNPs were restricted based on imputed accuracy, and only SNPs with high
imputation quality (R? > 0.8) were selected for our analyses. SNPs summary statistics for
genetic associations with risk of the ten cancers are shown in Table S1.

Statistical Analyses

A priori power calculations were performed for MR associations of nominal statistical
significance (« < 0.05) between both the UGT1A1 SNP and non-UGT1A1 SNPs, respectively,
and cancer risk; given the explained variance and the sample sizes for the different cancers,

using the method proposed by Burgess et al. [39].

Estimated risk effects were obtained for each genetic variant, named Wald estimate
(genetic effect on cancer risk [Bcancer]/ genetic effect on total bilirubin levels [Bpilirupinl)-

As the main MR approach used in the analyses of the large SNPs set, excluding the
UGT1A1 SNP, the Wald estimates were combined in a single estimate through a likelihood-
based MR approach. This approach is considered to be the most robust under the general
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assumption for all MR methods regarding linear relationship between the exposure and the
outcome [40], which we assumed in the range of bilirubin variation reflected by these SNPs.

The initial step in the sensitivity analyses was to apply the inverse-variance weighted
(IVW) MR approach [41] and to assess the presence of outlier observations among the
SNP Wald estimates using the MR pleiotropy residual sum and outlier (MR-PRESSO)
test [42]. The MR-PRESSO approach identifies heterogeneity between SNP effects (pGiobal)
as an evidence of directional horizontal pleiotropy, identifies outlier SNPs, and tests if the
presence of outliers is biasing the estimation of risk (pPpistortion)-

To evaluate the extent to which directional pleiotropy may affect the risk estimates,
we used the intercept test within a MR-Egger weighted linear regression approach [43].
Moreover, the weighted median [21] and the modal-based estimate MR approaches [44]
were applied to estimate the weighted median and the mode of the density distribution
of the SNP estimates. Both methods are less sensitive to the presence of potentially in-
valid SNPs. Finally, we assessed whether pleiotropic SNPs, thus potentially violating
the exclusion restriction (horizontal pleiotropy) and the independence assumptions (no
confounders), were driving the association estimates. We looked up the genetic association
results of bilirubin SNPs with other phenotypes in the GWAS Catalog database [45] and
obtained MR estimates and performed sensitivity analyses excluding the SNPs reaching a
genome-wide threshold of association with other phenotypes.

Analyses were performed stratified by sex for pancreatic and renal cell cancers, also by
subtypes for lung, ovarian, and breast cancer. We did not account for multiple testing,
since we had a strong prior hypothesis based on biological plausibility and applying a
strict multiple testing correction would likely have been overly conservative given the
non-independence of risk for many of the cancers tested [46].

Scatter plots were used to depict the genetic association on total bilirubin levels and
cancer risk. All statistical analyses and plots were performed using Stata SE14 (Stata
Corporation, College Station, TX, USA) and R (MR-PRESSO, Two-Sample MR, gwasrapidd,
and ggplot2; The R project). All statistical tests were two-tailed.

3. Results

The minimum odds ratios (OR) that our analyses were able to detect for the UGT1A1
SNP and non-UGT1A1 SNPs, respectively, and each cancer are shown in Table 1.

Each standard deviation (SD ~ 4.4 umol/L) increment in bilirubin levels predicted
by rs6431625 in the UGT1A1 gene was not associated with risk of pancreatic cancer (OR
per one-standard deviation, 1-SD 1.02; 95% of confidence interval (CI) 0.95-1.11), whereas
higher bilirubin levels predicted by non-UGT1A1 SNPs showed an inverse association with
pancreatic cancer overall (OR 0.74; 95% CI 0.61-0.89), with similar risk estimates among
men and women (OR 0.75; 95% CI 0.58-0.96, and OR 0.73; 95% CI 0.55-0.97, per 1-SD
increment, respectively) (Figure 1A). However, after removing SNPs (n = 22) with potential
pleiotropy, these associations were attenuated toward the null (Table S2). The scatter plot
depicting the genetic associations of these instruments with bilirubin levels and with the
risk of pancreatic cancer overall, and among men and women, including the likelihood-
based MR estimate and its 95% CI, are shown in Figure S1A-C.
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Cancer type OR 95% Cl P Cancer type OR 95% Cl P
Pancreatic cancer ) Ovarian cancer
Overall UGTIAISNP N 102 085 -111 056 Overall UGTI1A1 SNP —_— 096 092 -1.00 005
Non-UGTIAISNPS ~ — =% 074 061 -0.89  1x107 Non-UGTIAI SNPs —_— 110 100 -121 004
Men UGTIAI SNP = 106 095-118 027 Serous UGTIAISNP 5 084 090-098 6x10%
Non-UGT1A1 SNPs —————+————— 075 038-096 002 Non-UGTIAI SNPs —+——— 112 101-124 004
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Non-UGTIA1 SNPs — =t 095 0.82-1.09 045 Non-UGTIAI SNPs e 105 089-111 014
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Women UGTIA1 SNP —_— 110 095-128 020
Non-UGTIA1 SNPs — 105 074-148 080 .
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075 100 150 Non-UGTIAL SNP 137 099-189 0.6
B Prostate cancer UGTIA1 SNP — 100 097-103 100
Cancer type OR 95%Cl P Non-UGTIAI SNPs  ———+— 097 081-103 032
0 El’l 1'00 1 15‘
Lung cancer .
Overall UGT1A1 SNP 1 098 094 -102 031
Non-UGTIA1 SNPs ——] 091 083 -100 006 D
Cancer type OR 95% C1 P
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Non-UGT1A1 SNPs —— 086 076-086 001
I Hodgkin's lymphoma UGTIAI SNP —g= 100 085 -118 097
Never smoker UGT1A1 SNP — 099 088-112 091 Non-UGT1A1 SNPs 064 042 -089 0.04
Non-UGT1A1 SNPs *‘-7 101 076-134 095
Non-small cell UGT1A1 SNP —Si— 088 094-105 081
(adenocarcinoma) ~ Non-UGT1A1 SNPs — 0.96 084-109 054 Melanoma UGTIAIL SNP —t— 108 090-131 041
Non-UGTIAI SNPs - 4 100 060-165 100
Non-small cell UGT1A1 SNP —r 097 091-103 035
(squamous cell)  Non-UGT1A1 SNPs —_—— 085 073-099 004
small cell UGT1A1 SNP —1— 095 086-105 032 Neuroblastoma UGTIAI SNP —_— 105 091-121 051
Non-UGTIA1 SNPs —————+————— 077 051-087 003 Nen-UGTIALSNPs  ———————+————— 081 047-140 045
[ I 1
0.7?5I 1.00 1.51} 050 100 2.00

Figure 1. Forest plot of associations between genetically-predicted bilirubin levels and risk of ten cancers (per one-standard
deviation (1-SD) increment in circulating total bilirubin levels equivalent to ~4.4 umol/L). (A): The association between
1-SD increment in bilirubin levels predicted by UGT1A1 SNP and the non-UGT1A1 SNPs with risks of pancreatic cancer
and renal cell carcinoma (overall, men, and women). (B): The association between 1-SD increment in bilirubin levels
predicted by UGT1A1 SNP and the non-UGT1A1 SNPs with risk of lung cancer (overall, ever smoker, never smoker,
adenocarcinoma, squamous cell, and small cell lung cancers. (C): The association between 1-SD increment in bilirubin
levels predicted by UGT1A1 SNP and the non-UGT1A1 SNPs with risks of ovarian cancer (overall and serous), breast
cancer (overall, ER positive, and ER negative), endometrial cancer, and prostate cancer. (D): The association between 1-SD
increment in bilirubin levels predicted by UGT1A1 SNP and the non-UGT1A1 SNPs with risks of Hodgkin’s lymphoma,
melanoma, and neuroblastoma. The results are provided by a likelihood-based MR test, * with the exception of endometrial
cancer, which results are provided by the Egger-MR test. Abbreviations: OR odds ratio, CI confidence interval, p p-value,

ER estrogen receptor.

Neither the UGT1A1 SNP nor the non-UGT1A1 SNPs were associated with risk of
renal cell cancer in men and women combined (Figure 1A and Figure S1D-F); however,
a suggestive inverse association was observed between bilirubin levels predicted by the
non-UGT1A1 SNPs and renal cell cancer in men (OR 0.76; 95% CI 0.57-1.00). After removing
potential pleiotropic SNPs (n = 22), these associations were attenuated toward the null
(Table S2).

Overall, we did not observe an association between bilirubin levels predicted by
either the UGT1A1 SNP or the non-UGT1A1 SNPs and lung cancer risk (OR per 1-SD
0.98; 95% CI 0.94-1.02, by UGT1A1 SNP; and OR 0.91; 95% CI 0.83-1.00, by non-UGT1A1
SNPs) (Figure 1B). In stratified analyses, genetically raised bilirubin levels predicted by
the non-UGT1A1 SNPs, but not the UGT1A1 SNP, were inversely associated with lung
cancer risk among individuals who ever smoked, squamous cell, and small cell lung cancer
subtypes with ORs equal to 0.86; 95% CI 0.76-0.96, 0.85; 95% CI 0.73-0.99, and 0.77; 95% CI
0.61-0.97, per 1-SD increment, respectively (Figure 1B). The scatter plots for bilirubin levels
and lung cancer risk are shown in Figure S2. Among squamous cell carcinoma, the inverse
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associations were robust in terms of effect size to sensitivity analyses and after removing
SNPs (n = 22) with potential pleiotropy (Table S2).

Higher bilirubin levels predicted by the UGT1A1 SNP were weakly inversely asso-
ciated with risk of ovarian cancer overall and serous ovarian cancer with ORs per 1-SD
increment equal to 0.96 (95% CI 0.92-1.00) and 0.94 (95% CI 0.90-0.98), respectively. In con-
trast, we observed a positive association between bilirubin levels predicted by non-UGT1A1
SNPs and risk of ovarian cancer overall and serous ovarian cancer with ORs per 1-SD incre-
ment equal to 1.10 (95% CI 1.00-1.21) and 1.12 (95% CI 1.00-1.24), respectively (Figure 1C,
Figure S3A-B). However, these associations were attenuated toward the null after removing
SNPs (n = 22) with potential pleiotropy. Furthermore, the MR-Egger Simex approach did
not confirm the positive association suggested by the non-UGT1A1 SNPs (Table 52).

Suggestive positive associations were observed between bilirubin levels, genetically
predicted by non-UGT1A1 SNPs, and risk of breast cancer (Figure 1C).

There was little evidence for associations between genetically raised bilirubin levels
by either instrument and cancers of the endometrium (Figure 1C and Figure S3C-F) or
prostate (Figure 1C and Figure S4).

Finally, higher bilirubin levels predicted by the non-UGT1AI SNPs were inversely
associated with risk of Hodgkin’s lymphoma (OR 0.64, 95% CI 0.42-0.99) (Figure 1D
and Figure S5A), while null results were observed for melanoma or neuroblastoma risk
(Figure 1D and Figure S5B,C).

Sensitivity Analyses

The IVW risk estimates performed almost identical to the main likelihood-based
risk estimates, as both methods rely on the same assumptions and suffer similarly from
pleiotropy. Outlier SNPs were detected by the MR-PRESSO test in some analyses; however,
their presence was not biasing the initially estimated risk effects (ppistortion > 0.25) (Table S2).
Additionally, the MR-Egger intercept test detected overall directional pleiotropy only in
the case of endometrial cancer (pintercept = 4 X 10%) and returned a potential positive
association between bilirubin levels, predicted by non-UGT1A1 SNPs, and endometrial
cancer (OR 1.37; 95% CI 0.99-1.89) (Figure 1C and Table S2). The weighted median and
modal-based approaches provided similar risk estimates as the MR-Egger test in the case
of endometrial cancer and as the likelihood-based MR method for the other tested cancer
types (Table S2). Finally, we identified a group of bilirubin SNPs that were genome-
wide associated with other phenotypes, such as educational attainment, body mass index,
and mean corpuscular volume of red blood cells. The MR analyses after removing these
SNPs with potential pleiotropy (n = 20 to 22 depending on GWAS data for specific cancer
types) attenuated associations of most of the ten cancers investigated, except for squamous
cell lung cancer (OR 0.80, 95% CI 0.65-0.99), breast cancer (OR 1.12, 95% CI 1.04-1.20),
and Hodgkin’s lymphoma (OR 0.61, 95% CI 0.32-1.14) (Table S2).

4. Discussion

In this hypothesis-driven two-sample MR study, we investigated potential causal
associations between genetically raised circulating bilirubin levels, a purported endogenous
antioxidant, and risk of cancers of the pancreas, renal cell, endometrium, ovary, breast,
prostate, lung, Hodgkin’s lymphoma, melanoma, and neuroblastoma. We found that
genetically raised bilirubin concentrations were inversely associated with risk of squamous
cell lung cancer and Hodgkin’s lymphoma, which is compatible with the antioxidant
hypothesis of bilirubin, but positively associated with risk of breast cancer.

4.1. Lung Cancer

The observed inverse association between genetically raised bilirubin levels and
lung cancer risk among ever smokers, but not among never smokers, in our study are
congruent with a prospective study in the UKB [14]. Similar inverse associations were also
observed between serum bilirubin levels and the risk of lung cancer among male smoker in
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a Korean cohort (N cases = 240) [47] and in a prospective cohort in US (N cases = 386) [48].
Furthermore, in our study, we observed a robust inverse association with risk of squamous
cell lung cancer subtype (OR 0.80, 95% CI 0.65-0.99 after excluding SNPs with potential
pleiotropy), which is known to be strongly related to smoking. Taken together, genetically
raised bilirubin levels may confer an advantage in terms of protecting people exposed to
smoke oxidants against lung cancer [14,49].

4.2. Hodgkin’s Lymphoma

We observed robust inverse associations between genetically raised bilirubin levels
and risk of Hodgkin’s lymphoma.

Our study is the first linking bilirubin metabolism to Hodgkin’s lymphoma. Given that
one of the hypothesized root causes of Hodgkin’s lymphoma is infection by Epstein-Barr
virus [50], bilirubin might play a role in inhibiting replication of the virus as suggested for
hepatitis C virus [51] and/or by balancing oxidative stress induced by Epstein—Barr virus
infection [52].

4.3. Breast Cancer and Other Hormone-Related Cancers

There was a suggestive positive association between bilirubin levels, genetically pre-
dicted by non-UGT1A1 SNPs, and risk of breast cancer, in particular of the ER positive
subtype (OR 1.12, 95% CI 1.03-1.22 after removing potential pleiotropic SNPs). These asso-
ciations were relatively robust to a range of sensitivity analyses (Table S2). A meta-analysis
of retrospective case-control studies (N cases = 5746, N controls = 8365) suggested that
the UGT1A1*28 allele 7/7 genotype is a potential risk factor for breast cancer in Cau-
casians [53]. Given that higher circulating levels of bilirubin can inhibit glucuronidation of
estrogens (estradiol) into water-soluble molecules for excretion [54] suggests that higher
bilirubin may affect these hormone-related cancers indirectly by interacting with the estro-
gen metabolism pathway.

In contrast to breast cancer, bilirubin levels predicted by the UGT1A1 SNP were
inversely associated with risk of ovarian cancer overall and serous ovarian cancer. If the
inverse associations were genuine, then these findings are potentially consistent with a
second-line antioxidant defense of raised bilirubin levels in the epithelial lining of the
ovaries. Similar to lung cancer, oxidative stress is a critical factor in the initiation and
development of ovarian cancer [55]. We are not aware of other studies investigating either
circulating bilirubin levels or the UGT1A1 polymorphism in relation to ovarian cancer risk,
and further studies are warranted.

4.4. Pancreatic Cancer

The findings for pancreatic cancer resemble the results of our previous two-sample
MR study on the role of genetically raised bilirubin levels in colorectal cancer (CRC) using
the same set of SNPs as instrumental variables [56]. We showed that bilirubin levels
predicted by instrumental variables excluding the UGT1A1 SNP were inversely associated
with risk of CRC, supporting our hypothesis of anti-oxidative and anti-inflammatory
properties of bilirubin. However, among men, bilirubin levels predicted by the UGT1A1
SNP were positively associated with risk of CRC, and we argued that this could indicate
either pleiotropic effects but potentially also pro-oxidative effects of an elevated bilirubin
distribution among individuals with GS.

4.5. Other Cancers (Renal Cell Cancer, Prostate Cancer, Melanoma, and Neuroblastoma)

We found no strong evidence for an association between genetically raised bilirubin
levels and the risk of renal cell cancer, prostate cancer, melanoma, and neuroblastoma.

Our study has several strengths. First, we used thousands of cases and controls from
several large genetic consortia and published GWAS, which signified the largest and most
comprehensive MR study on genetically raised bilirubin levels and cancer risk. Second,
our MR assumptions were met, which were supported by our sensitivity methods and
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pleiotropic SNPs exclusion. Finally, common sources of bias in observational studies,
including residual confounding and reverse causation, were likely reduced. This study
has some limitations, first, a potentially under-powered sample size for the non-UGT1A1
instruments to detect small effects in some cancers. For these cancers, associations can
occur by chance, especially when using weak instruments and small samples, which is
a phenomenon known as weak instruments bias [57]. Second, we cannot completely
rule out chance in explaining the weaker observed associations. However, we had a
strong prior hypothesis based on biological plausibility. Third, we also stress that the
genetic instruments for bilirubin do not necessarily reflect life-long exposure. However,
assuming that the association between the instruments and bilirubin is constant over time,
then the MR estimate could be interpreted as an estimate of the averaged cumulative effect
of bilirubin on cancer within the age range at inclusion. Fourth, although we applied
several strategies to account for horizontal pleiotropy, we cannot test and exclude the
possibility that the main UGT1A1 SNP affects cancer risk through pathways other than
elevated bilirubin levels. There is a large region of linkage disequilibrium across the
UGT1A locus that includes functional polymorphisms in UGT [58,59], which aside from
bilirubin, also metabolize several xenobiotic and endogenous substances including (e.g.,
heterocyclic aromatic amines, in well-done red meat) [56] or sex hormones [58]. Therefore,
the observed differential associations of the UGT1A1 SNP across cancer types may also
reflect the modulated metabolism of such substances with carcinogenic potential. We also
acknowledge that GWAS of associations of genetic variants on chronic diseases can be
prone to selection bias from surviving competing risk. Methods to assess genetic effects on
chronic diseases are needed to account for competing risk before recruitment [60].

Finally, we were not able to analyze non-linear associations, which would necessitate
individual-level data. However, a non-linear relationship between bilirubin levels and
cancer was not previously observed [56].

5. Conclusions

Genetically raised bilirubin levels were inversely associated with risk of squamous
cell lung cancer as well as Hodgkin’s lymphoma, and positively association with risk of
breast cancer. These findings should help in setting priorities in future research on bilirubin
levels and cancer risk. If confirmed in other studies, bilirubin could be a promising marker
to risk stratify individuals for more frequent screening of selected cancers.
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