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Abstract: The majority of the most economically important plant and crop species are enriched with
the availability of high-quality reference genome sequences forming the basis of gene discovery which
control the important biochemical pathways. The transcriptomics and proteomics resources have also
been made available for many of these plant species that intensify the understanding at expression
levels. However, still we lack integrated studies spanning genomics–transcriptomics–proteomics,
connected to metabolomics, the most complicated phase in phenotype expression. Nevertheless,
for the past few decades, emphasis has been more on metabolome which plays a crucial role in
defining the phenotype (trait) during crop improvement. The emergence of modern high throughput
metabolome analyzing platforms have accelerated the discovery of a wide variety of biochemical
types of metabolites and new pathways, also helped in improving the understanding of known
existing pathways. Pinpointing the causal gene(s) and elucidation of metabolic pathways are very
important for development of improved lines with high precision in crop breeding. Along with
other-omics sciences, metabolomics studies have helped in characterization and annotation of a
new gene(s) function. Hereby, we summarize several areas in the field of crop development where
metabolomics studies have made its remarkable impact. We also assess the recent research on
metabolomics, together with other omics, contributing toward genetic engineering to target traits
and key pathway(s).

Keywords: metabolome; omics; engineering traits; mQTLs; mGWAS; metabolic engineering

1. Introduction

Metabolomics in the plant system has extended the opportunities towards the dis-
covery of new pathways and integrating it with other omics-based data generated from
genomics, transcriptomics, and proteomics, which improved existing genome annotations.
The study of metabolomics has gained attention in the last 20 years, as most of the research
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labs were involved in generating the metabolic profile through various platforms such as
nuclear magnetic resonance (NMR), liquid chromatography-mass spectrometry (LC-MS),
and gas chromatography–mass spectrometry (GC-MS), which also lead to enrichment of
several metabolite databases such as KEGG, GOLM, NIEST databases. By 2010, most of the
metabolomics labs were equipped with the latest analytical high-throughput chromatog-
raphy instruments. It is coupled with highly sensitive and precise mass spectrometric
tools developed through revolutionary advances in the field of mass-spectrometry and
data processing softwares including the free web-tool like Metaboanalyst and offline soft-
ware METLIN. The most important plant-based metabolite data-processing tools involves
platforms such as ChromaTOF, Met-Align, MET-COFEA, MET-XAlign, etc. [1]. Further,
availability of statistical tools, such as MetaboAnalyst, Cytoscape, Statistical analysis tool,
etc., have made statistical analysis simple, such as principal component analysis (PCA), par-
tial least squares (PLS), K-means clustering, boxplot, heatmap, and reconstructing metabolic
pathways [1–3]. The availability of the above tools has allowed analysis of a remarkable col-
lection of metabolome data from the samples that were extracted for the analysis of primary
and secondary metabolites, and lipidomics under various growth conditions. Metabolome
data are available for several model and crop species including Arabidopsis thaliana, Arachis
hypogaea, Actinidia Lindl. spp., Citrus spp., Lotus sp., Lupinus albus, Helianthus annuus L.,
Mangifera indica, Medicago trancatula, Malus spp., Fragaria × ananassa, Glycine max, Oryza
sativa, Pyrus communis, Solanum lycopersicum L., Vitis vinifera, Zea mays, etc., [1,4]. The
metabolomics study was done to explore multiple areas such as biotic stress [1,5,6], abiotic
stress [7–9], legumes and cereals quality improvement [10–17], biofuel production and
lipid profiling [18–21], impact of climate change and high CO2 level [22–25], hormone
profiling [26], and improving fruit quality [1,26–29]. These attempts have provided oppor-
tunities to dissect the metabolic pathways for developing stress-tolerant and nutrition-rich
crop plants [1]. Previously, several review articles have focused on providing the detailed
methodology and availability of the advanced instruments which are being used for the
omics study including metabolomics [1,30,31]. In this review, we have covered the impor-
tant area that has flourished in the era of metabolomics and how the knowledge gathered
through metabolomics has helped in dissecting different pathways through metabolic
engineering for crop improvement.

2. Integrating Metabolomics with Genomics Study for Gene Characterization and
Metabolomics-Assisted Breeding

Over the past decade, metabolomics has seen excellent progress in the area of develop-
ment of instrumentation and software advancement; providing the opportunity to analyze
the whole metabolome of plant species using high throughput methods. Metabolomics
applications have supported several research areas, especially biotechnology, genomics,
molecular plant breeding, and functional genomics [32]. In addition, its use makes ad-
vances in the area of translation metabolomics and plant breeding. Recent advancements in
post-genomics technologies have boosted the process of screening and metabolomics inte-
grations with other high throughput methodologies, which will be reducing the time
required to develop crop varieties with enhanced biotic and abiotic stress tolerance.
Metabolomics has a strong ability to holistically explore the evaluation and phenotyp-
ing of various metabolites in crops [33]. Approximately 840 metabolites were identified
in rice cultivars that could be used in breeding programmes [34]. mQTLs (metabolomic
quantitative trait loci) mapping and mGWAS (metabolic genome-wide association stud-
ies) are important approaches for the identification of genetic variants associated with
metabolic-related traits [10].

2.1. Metabolomic Quantitative Trait Loci

To understand the metabolic networks that regulate the complex developmental
process metabolomics-based quantitative trait locus (mQTL) studies are important for
improving the quality and performance of elite cultivars. In addition, results obtained
from mQTL studies contribute to a deeper understanding of quantitative and functional
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genetics [35]. Metabolic profiling decreases the gap between phenotype and genotype
and offers new opportunities for metabolic dissection, starting with the discovery of
molecular markers along with mQTL mapping studies for the identification of candidate
genes and linked genomic region. Metabolic markers have become an important tool to
uncover and investigate the various biological complex pathways responsible for distinct
phenotypes [36]. The mQTL approach connects the metabolome and genome, and provides
important insight into genetic function and investigates phenotypic variation via metabolic
profiling and comprehensive gene expression analysis [37].

Advances in genomic technologies have enabled mQTL detections via high-density
maps for candidate gene discovery [38]. Several candidate genes that regulate metabo-
lites biosynthesis have been detected using multi-omics approaches with reverse and
forward genetics methods [39]. Moreover, population genetics, which integrates quan-
titative genetics with metabolic profiling has begun to explore genetic regulation of the
entire metabolome in plants. A recent study, reported by [10], uses high-density map
with 1619 bins for mQTL mapping, leading to identification of several mQTLs for flag leaf
and germinating seeds across 12 linkage groups in rice. Comparative mQTL studies in
two rice cultivars showed tissue-specific secondary metabolites accumulation under strict
genetic regulation. A total of 19 metabolites have been identified on 23 mQTLs, indicating
a substantial interaction between metabolites and the associated genomic loci [10]. Another
mQTL study conducted in back-crossed inbred lines (BILs) of rice identified 700 different
metabolic characteristics under 802 mQTLs which show an unusual range that could regu-
late various metabolic traits [40]. Further, in maize, 26 distinct metabolites were identified
which shows a strong association with single nucleotide polymorphism (SNPs), and high-
lighted the importance of cinnamoyl-CoA reductase gene located on chromosome 9 for
controlling lignocellulosic biomass [41].

mQTL mapping is an effective method for identifying stress-responsive trait pathways.
In the barley recombinant inbred line (RIL) population, the mQTL study detected 98 differ-
ent stress-responsive metabolites and observed that their abundance modulates through a
coordinated expression of several genes to function under drought conditions [42]. Similarly,
the mQTL study in barley identified 57 metabolites under drought stress conditions [43]. In
rapeseed, metabolic profiling and gene function analysis to identify the basis of glucosinolate
synthesis was performed, which reported around 105 mQTLs in seeds and leaves involved
with glucosinolate production [44]. In a very recent study carried out in the tomato wild
and introgression lines, 679 mQTLs were identified for secondary metabolism-related path-
ways linked to environmental stress tolerance [45]. In later experiments, mQTL analysis was
performed in a similar IL to investigate metabolite concentration [46]. Likewise, metabolic
profiling of wheat (double haploid lines) by LC/MS method revealed about 558 secondary
metabolites, comprising alkaloids, flavonoids, and phenylpropanoids [47]. The GC-TOF/MS-
based metabolic analysis of seed of tomato RIL population was performed to investigate the
seed metabolism [48], which identified several genomic regions controlling a group of metabo-
lites. As sequencing technologies progresses, more plant genomes have been sequenced and
these high-quality genomes may further accelerate the crop plant’s mQTL studies, leading to es-
tablishing a relationship between genome and trait expression. For example, phenylpropanoid
synthesis genes have been identified in corn [49], phenolamide in corn and rice [50,51], and
glucosinolate regulation in cabbage [52] have been reported; these by-products are regarded
as defense responsive metabolites. In the future, these mQTLs will help in targeting several
pathways for designing crops with desired traits.

2.2. Metabolic Genome-Wide Association Studies

The mGWAS was developed as a valuable tool to explain the natural genetic basis of
different metabolic shifts in a plant’s metabolome (Table 1). Recent studies have shown the
broad perspective of plant metabolites related to specific traits [16]. A parallel study of mGWAS
with phenotypic genome-wide association studies (pGWAS) in rice have effectively detected
novel candidate genes that control the genetic variation in relevant agronomic traits [16].
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Metabolic polymorphism studies in rice species reported various forms of flavone glycosylation
and stated a positive association between plant growth conditions and UVB light exposure [53].
A recent mGWAS study in rice reported 323 associations among 89 secondary metabolites for
two genetic architecture types, related to secondary metabolite concentration [54]. Natural
variation studies and the metabolic profiling of phenolamides have been undertaken by Dong
and colleagues using an LC/MS mediated targeted metabolomics method in several rice
accessions. They identified a temporal and spatial accumulation of several phenolamides. In
addition, mGWAS detected two spermidine hydroxyl cinnamoyl transferases, responsible for
natural variations in spermidine levels. This study showed that gene-to-metabolic analysis
through mGWAS offers an opportunity to improve crop genetics [51]. Another mGWAS
study was conducted to analyze rice metabolism biochemical and genetic variants. The study
reported 36 genes linked to specific metabolites that regulate physiological and nutritional-
related traits [34]. Traits associated with primary and secondary metabolites could be utilized
as metabolic markers to promote plant breeding. Similarly, the maize mGWAS study was
conducted to reveal complex metabolic character. Around 26 metabolites associated with
SNPs have been detected which regulate the main target of cinnamoyl-CoA reductase to
increase the lignocellulosic quality of maize [41]. Recently, in winter, wheat metabolic profiling
has been done to make apparent the association of 18,372 SNPs and detected 76 metabolites.
The relation between metabolites has shown a functional relationship with several pathways
of the Krebs cycle. The mGWAS identified a strong correlation between 1 and 17 SNPs
with six metabolic attributes. These findings provide a way to predict the impact of genetic
interventions on related metabolic traits and possibly, on a metabolic phenotype [55]. These
studies will speed up metabolomics-assisted breeding to improve the quality and quantity of
target traits in crops.

Table 1. Metabolomics-assisted breeding studies.

Crop Name Population Target Traits Sample
Tissue Profiling Significant

Outcome Reference

Oryza sativa Zhenshan 97 ×
Minghui 63 (RIL) Metabolome Flag leaf and

seed

Liquid
chromatography
(LC)–electrospray
ionization
(ESI)–MS/MS
system

Identified
twenty-four
candidate genes,
underlying
phenolics, and
related pathways

[10]

Oryza sativa Sasanishiki ×
Habatak (BIL) Metabolome Seed

Liquid
chromatography-
quadrupole-time-of-
flight-mass
spectrometry

Identified genomic
region and genes
potentially involved
in the biogenesis of
apigenin-6,8-di-C-a-
L-arabinoside

[40]

Triticum
aestivum

Excalibur ×
Kukri (DH) Metabolome Flag leaf

Liquid
chromatography
electrospray
ionization tandem
mass spectrometric

Identified five major
phenology-related
loci

[47]

Triticum
aestivum

KN9204 × J41
(RIL) Metabolome Kernel

Liquid
chromatography-
mass
spectrometry

Identified 1005
mQTLs, linked with
24 candidate genes
which modulating
different metabolite
levels, of which two
genes are involved
in flavonoids
synthesis and
modification.

[56]
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Table 1. Cont.

Crop Name Population Target Traits Sample
Tissue Profiling Significant

Outcome Reference

Zea mays
BB RIL lines (197)
and ZY RIL lines
(197)

Metabolome Mature
Kernel

Liquid
chromatography-
mass
spectrometry

Identified candidate
genes for maize
quality
improvement

[37]

Zea mays B73 × By804
(RIL)

Primary
metabolism

Leaf at
seedling
stage, leaf at
reproductive
stage, and
kernel

Gas
chromatography
time-of-flight mass
spectrometry

Identified 297
mQTLs for 79
primary metabolites
across three tissues

[35]

Hordeum
vulgare

Maresi × CamB
(RIL) Metabolome Flag leaf

Liquid
chromatography–
mass
spectrometry

Reported mQTL in a
genomic region of
SNP 3011-111 and
SSR Bmag0692 have
linkages with
metabolites

[42]

Hordeum
vulgare

Landraces and
elite genotypes Metabolome Flag leaf

Ion
chromatography-
mass spectrometry,
High-performance
liquid
chromatography

Identified mQTLs
for metabolites
linked with
antioxidant defense

[43]

Solanum
lycopersicum

Introgression
lines

Secondary
metabolites Fruit

Ultra performance
liquid
chromatography

Identified 679
mQTLs for
secondary
metabolites

[45]

Solanum
lycopersicum

Introgression
lines

Secondary
metabolites Fruit

Ultraperformance
liquid
chromatography-
tandem mass
spectrometry

Identified mQTLs
which decrease the
variability for
primary and
secondary
metabolites called
canalization
metabolite
quantitative trait
loci (cmQTL)

[46]

Solanum
lycopersicum

Introgression
lines Metabolome Fruit

Gas
chromatography–
mass
spectrometry

Identified putative
30 mQTLs for amino
acids and organic
acids

[27]

Solanum
lycopersicum RIL Metabolome Germinating

seed

Gas
chromatography-
time-of-flight/mass
spectrometry

Identified mQTLs
for metabolites
within several QTL
hotspots

[48]

Brassica napus Tapidor ×
Ningyou7 (DH) Glucosinolates Leaf and seed

High-performance
liquid
chromatography

Identified 105
mQTLs that affected
glucosinolate
concentration in
either or both of the
organs

[44]
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Table 1. Cont.

Crop Name Population Target Traits Sample
Tissue Profiling Significant

Outcome Reference

Oryza sativa Landraces and
elite varieties Metabolome Grains

Liquid
chromatography
electrospray
ionization tandem
mass spectrometric

Identified new
candidate genes
which influence
important metabolic
and/or
morphological traits

[16]

Oryza sativa Landraces
accessions

Secondary
metabolites Leaf

Liquid
chromatography
quadrupole
time-of-flight mass
spectrometry

Identified 323
associations among
143 SNPs and 89
metabolites

[54]

Oryza sativa Landraces
accessions Phenolamides Leaf

Liquid
chromatography–
mass
spectrometry

Identified two
spermidine
hydroxyl cinnamoyl
transferases
(Os12g27220 and
Os12g27254) that
could underline the
natural variation
levels of spermidine
conjugates in rice

[51]

Oryza sativa Landraces
accessions Metabolome Leaf

Liquid
chromatography–
mass
spectrometry

Identified
36 candidate genes
controlling
metabolite levels
which are of
potential
physiological and
nutritional
significance

[34]

Zea mays Inbred lines Metabolome Leaf

Gas
chromatography–
mass
spectrometry

Identified 26 distinct
metabolites with
potential
associations with
SNPs, explaining up
to 32.0% of genetic
variance

[41]

Zea mays Inbred lines Oil
components Kernel

Ultra-performance
liquid
chromatography

Reported 74 loci
potentially
associated with
kernel oil
concentration and
fatty acid content

[57]

Zea mays Inbred lines Tocochromanol Grain
High-performance
liquid
chromatography

Identified favorable
ZmVTE4 haplotype
and three novel
gene targets for
increasing the level
of vitamin E and
antioxidant

[58]
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Table 1. Cont.

Crop Name Population Target Traits Sample
Tissue Profiling Significant

Outcome Reference

Zea mays Inbred lines Carotenoid Grain
High-performance
liquid
chromatography

Identified
58 candidate genes
involved in
carotenoids
biogenesis and
retention in maize

[59]

Zea mays Inbred lines Metabolome Kernel

Liquid
chromatography–
mass
spectrometry

Identified significant
causal variants for
five candidate genes
associated with
metabolic traits

[50]

Triticum
aestivum Elite lines Metabolome Flag leaf

Gas
chromatography–
mass
spectrometry

Reported potential
associations for
6 metabolic
characters, namely
oxalic acid,
ornithine,
L-arginine, pentose
alcohol III,
L-tyrosine, and a
sugar oligomer
(oligo II), with
between 1 and 17
associated SNPs

[55]

Solanum
lycopersicum
L.

Landrace
accessions Metabolome Fruit

Gas
chromatography–
mass
spectrometry

Identified 44 loci
linked with 19 traits,
including sucrose,
ascorbate, malate,
and citrate levels

[60]

2.3. Metabolic Analysis for Biotic Stress Tolerance in Crop Plants

Recent evidence showed that invasive microbes systematically suppress plant im-
mune function in susceptible cultivars using protein-effector molecules which can also be
identified by plant R gene products in inconsistent interactions [61]. Besides counteracting
plant defenses, an effective pathogen must also subvert host plant metabolism to facilitate
efficient intake, sequestration, and use of host-derived nutrients [62,63]. Several studies
have utilized transcriptional profile analysis to examine the global changes in expression
of genes which arise during host invasion by biotrophic and hemibiotrophic fungi [64–66],
and have reported co-ordinated expression of several gene products, that often have a
predicted metabolic function. Therefore, a metabolome study related to the stress responses
is important to unravel the molecules/metabolites which coordinate susceptibility and/or
resistance traits in different plant [1,7–9,67–72].

Biotic stress resistance-associated loci have been reported in various crop diseases
such as late blight of potato (Phytophthora infestans) [73], rice blast (Magnaporthe grisea) [74],
and cereal rusts (Puccinia spp.) [75]. Two mQTLs, Qfhs.ndsu-3BS in barley [76] and Fhb1 in
wheat, have been also reported for Fusarium head blight disease resistance [77]. Such loci
generally co-localize multiple genes and cloning of such loci to identify all the co-localizing
genes is a challenging task. A combined transcriptomics and metabolomics analysis of the
rice in response to bacterial blight pathogen Xanthomonas oryzae pv. Oryzae reported that few
mRNA and metabolite differences have been observed, and many differential changes in
the Xa21-mediated response occurred [78]. Important transcriptional induction of various
pathogenesis-related genes in the Xa21 challenged strain, as well as differential expression
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of GAD, PAL, ICL1, and Glutathione-S-transferase transcripts suggested a minimal association
with changes in metabolite under single time point global profiling conditions. In fact,
a metabolome study using LC-MS and GC-MS methods identified several hundreds of
compounds, which were modulated when the susceptible and resistant line was compared.
Most importantly, this study identified ornithine, citrulline, tyrosine, phenylalanine, lysine,
oxoproline, butyrolactam, and N-acetylglutamate as the key compounds involved in
providing tolerance against bacterial blight pathogen in rice. Additionally, the role of
acetophenone and 2-phenylpropanol (acetophenone reduction product) was identified
during host resistance, as earlier these were reported to be involved in the dicot plants [79].
More importantly, recently through metabolomics study, resveratrol was identified to have
inhibitory action on Xoo as it causes oxidative stress as well as disrupts several pathways
related to Xoo growth and metabolism including amino acid, purine, energy, and NAD+

metabolism in Xoo [80]. Further, metabolomics was deployed for the reconstruction of a
genome-wide metabolic model of Xoo and revealed the influence of nitrogen-fertilizers on
Xanthomonas oryzae pv. Oryzae metabolism, a differential flux in nitrogen-metabolism and
ammonia uptake was observed [81]. Like bacterial blight, Asian rice gall midge (Orseolia
oryzae) is a severe rice pest causing major yield losses. Metabolic studies reported a number
of metabolites that can be categorized as resistance, susceptibility, infestation, and host
features, depending on their relative occurrence, and can be considered as biomarkers
for insect–plant interaction in general and rice–gall midge interaction in particular [82].
Therefore, more metabolomics studies including tissue and single cell-specific studies are
required to develop interactome maps by integrating different layers of omics studies.

3. Important Achievements through Metabolic Engineering

In the past two decades, several attempts have been made towards characterization of
genes related to important metabolic pathways which have also led to the improvement of
several crop plants in the area of bio-fortification. We have summarized most of them in
Table 2 and discussed some important ones below.

Table 2. Metabolic engineering towards enhancing performance of plants.

Gene Function of Gene Phenotypes of Transgenics Reference

Phytohormones Engineering to Enhance Abiotic Stress Tolerance

ABA

LOS5 Key regulator of ABA
biosynthesis

Enhanced ABA accumulation and
drought tolerance in maize [83]

AtLOS5 Enhanced salinity tolerance attributed
to enhanced Na+ efflux and H+ influx [84]

MsZEP Vital role in ABA
biosynthesis

Heterologous expression of gene
resulted in better salt and
drought tolerance

[85]

SnRK2.4
Protein kinase involved in
ABA signaling and root
architecture maintenance

Exhibited enhanced tolerance to abiotic
stress and improved photosynthesis in
Arabidopsis

[86]

Auxin
YUCCA6 Auxin/IPA biosynthesis

gene
Overexpression enhanced tolerance to
drought and oxidative stress [87]

OsIAA6 Auxin/IAA gene family
member

Enhanced drought tolerance via auxin
biosynthesis regulation in
transgenic rice

[88]

IPT Controls rate limiting step
of cytokinin biosynthesis

Transgenic tomato showed enhanced
growth and yield under salt stress [89]

Cytokinin
CKX Cytokinin dehydrogenase

Overexpression led to enhanced
drought tolerance in transgenic
Arabidopsis

[90]

AtCKX1
Overexpression led to enhanced
drought tolerance through dehydration
avoidance in transgenic barley

[91]

ERF-1
(JERF1)

Response factors of
ethylene and jasmonates Enhanced drought tolerance in rice [92]
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Table 2. Cont.

Gene Function of Gene Phenotypes of Transgenics Reference

Ethylene
ACC-Synthase Catalyzes rate-limiting step

in ethylene biosynthesis

Transgenic maize showed reduced
ethylene levels with better drought
tolerance (gene silencing)

[93]

ZmARGOS
Negative regulators of
ethylene signal
transduction

Enhanced drought tolerance in
transgenic Arabidopsis and maize [94]

OsGSK1 BR negative regulator
Improved tolerance of knockout
mutants to cold, heat, salt, and
drought stresses

[95]

Brassinosteroids
AtHSD1 Role in BR biosynthesis Overproduction enhanced growth,

yield, and salinity tolerance [96]

BdBRI1 BR-receptor gene
Down-regulation improved drought
tolerance with dwarf phenotypes of
purple false brome

[97]

Metabolic Engineering of Secondary Metabolic Pathways Genes

Flavonoid
Biosynthetic Pathway

MYB12
Transcription factor,
regulate the biosynthesis of
phenylpropanoid

Overexpression in Arabidopsis
enhanced drought and salt tolerance [98]

DFR-OX B Catalyzes the reduction of
dihydroflavonols to
leucoanthocyanidins in
anthocyanin biosynthesis

Overexpression in Brassica napus
enhanced drought and salt tolerance [99]

PFG1/PAP1
Overexpression in Arabidopsis
enhanced oxidative and
drought tolerance

[100]

Carotenoid
Biosynthetic Pathway

β-LCY1 Involved in beta-carotene
biosynthesis pathway

Overexpression in Nicotiana tabacum
enhanced drought and salt tolerance [101]

Inhibition in Arabidopsis and Nicotiana
enhanced salinity tolerance [102]

IPP biosynthetic
pathway GGPS

Involved in the synthesis of
an osmolyte glucosyl
glycerol

Overexpression in Arabidopsis thaliana
enhanced osmotic stress tolerance [103]

Metabolic Engineering for Enhancing Photosynthetic Efficiency

Light Harvesting
Enzyme PsbS

Plays a crucial role in
xanthophyll-dependent
nonphotochemical
quenching

Overexpression increases leaf CO2
uptake and plant dry matter
productivity in tobacco

[104]

Overexpression reduces water loss per
CO2 assimilated in tobacco [105]

Calvin–Benson cycle SBPase Key regulator of
carbon flux

Overexpression enhances
photosynthesis against high
temperature stress in transgenic rice

[106]

Overexpression increases
photosynthetic carbon assimilation,
leaf area, and biomass yield in tobacco

[107]

Overexpression increases
photosynthesis and grain yield
in wheat

[108]

Photorespiration
GCS H-protein Catalyzes the degradation

of glycine
Overexpressing increases biomass
yield in transgenic tobacco plants [109]

GDC-L protein

Catalyzes the
tetrahydrofolate-
dependent catabolism of
glycine

Overexpression increased rates of CO2
assimilation, photorespiration, and dry
weight in Arabidopsis

[110]

GDC-T protein
Tetrahydrofolate
dependent protein,
catalyzes glycine

Overexpression neither altered
photosynthetic CO2 uptake nor plant
growth in Arabidopsis

[111]
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Table 2. Cont.

Gene Function of Gene Phenotypes of Transgenics Reference

Electron Transport Algal Cyt c6
Participates in algal
photosynthetic electron
transport chain

Overexpression increase CO2
assimilation rates and plant growth
in Arabidopsis

[112]

Constitutive expression enhanced
water use efficiency, chlorophyll and
carotenoid content in tobacco

[113]

Rieske FeS Regulates electron transfer
Constitutive expression enhanced
photosynthetic electron transport rates,
chlorophyll and carotenoid content

[114]

Carbon transport
Cyanobacterial
inorganic carbon
transporter B

Regulates CO2
concentration mechanism

Significantly higher photosynthetic
rates and biomass was observed in
overexpressed Arabidopsis lines

[115,116]

Overexpression enhanced CO2
assimilation rates in rice and tobacco [117]

Genome Editing Mediated Metabolic Engineering

CRISPR/Cas9
multiplex gene
editing

IFS (isoflavone
synthase)

Plays significant role in
biosynthesis of
isoflavonoids

Mutation enhanced isoflavone content
and resistance to soya bean mosaic
virus (SMV)

[118]

GmSPL9 genes Regulate plant architecture Targeted mutagenesis altered plant
architecture and yield in soybean [119]

SGR (Stay green)
Regulates plant
chlorophyll degradation
and senescence

Significantly improved lycopene
content in tomato fruit [120]

SAPK2 Primary mediator of ABA
signaling

Enhanced sensitivity to drought stress
and ROS in rice [121]

ARGOS8 Negative regulator of
ethylene responses

Enhanced drought tolerance and yield
in maize [122]

SIMAPK3
Participates in SA or JA
defense-signaling
pathways

Enhanced drought tolerance in tomato [123]

Metabolic Engineering for Biofortification of Vitamin A, Fe and Zn

Vitamin A
Phytoene synthase
(PSY) and phytoene
desaturase(CrtI)
gene

Participate in carotenoid
biosynthetic pathway

Enhanced nutritional value of golden
rice by increasing provitamin A content [124]

Increase
Increase total carotenoid content in
transgenic wheat

[125]

Iron (Fe)
Soyfer H-1 Soybean ferritin gene

involved in storage of iron
Overexpression enhanced iron content
in rice seed [126]

OsNAS2 Participates in
iron-acquisition

Overexpression enhanced Fe and Zn
content in rice endosperm [127]

Zinc (Zn)
HvNAS1
(Nicotianamine
Synthas)

Metal chelator, involved in
accumulation of Fe and Zn

Overexpressing enhanced Fe and Zn
contents in the leaves, flowers, and
seeds in rice

[128]

Metabolic Engineering for Abiotic Stress Tolerance

Transcription Factor

TTG2
WRKY TF regulates
diverse biological
processes

Regulate trichome development and
enhance salinity tolerance in Brassica [129]

ERF-2 (like)
Ethylene response TF,
regulates various stress
responses

Overexpression enhanced
submergence tolerance in Arabidopsis [130]

NAC 19, 82

TF plays important roles in
development, abiotic,
biotic stress responses,
and biosynthesis

Overexpression led to regulate ROS
and cell death in tobacco leaves [131]

HSFA4A Heat shock
transcription factor

Enhanced desiccation tolerance in
seeds and activate antioxidant system
in Arabidopsis

[132]
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Table 2. Cont.

Gene Function of Gene Phenotypes of Transgenics Reference

CDF1 Regulates expression of
floral activator genes

Regulate flowering time and freezing
tolerance in Arabidopsis [133]

Kinases

MAPKKK 4
Regulates growth,
development, and immune
responses

Regulation of ROS induced cell death
in tobacco leaves, lipid peroxidation,
and DNA degradation

[134]

MAPKKK 18, 19 Regulates plant immunity
and hormone responses

Regulates ROS formation and cell
death in tobacco [135]

CPK2
Regulates cellular
responses to various
stimuli

Regulates ROS and cell death control
through interaction with RbohD
in tobacco

[136]

MKK1 Regulates stresses, growth,
and development

Enhanced response of plants to
pathogenic bacteria and drought stress
in tobacco

[137]

Transporters

SWEET
Plays important role in
sucrose translocation and
crop yields

Regulates plant growth and
development and also participates in
biotic and abiotic stress response

[138]

HMA Heavy metal ATPase,
response to Cd stress

Played an important role in Cd
translocation in the leaves of
Brassica napus

[139]

ABC
Regulates uptake and
allocation of metabolites
and xenobiotics

Significantly induced under Cd stress
and regulate ion channels [140]

AQPs
(Aquaporins)

Facilitates molecule
movement across the
membranes

Overexpression enhances salt stress
tolerance in transgenic tobacco [141]

Metabolic Engineering for Terpenoids/Volatile Compounds

Monoterpenoids

Linalool synthase
(LIS)

Catalyzes the formation of
acyclic monoterpene
linalool

Transgenic petunia plants result in the
accumulation of
S-linalyl-beta-D-glucopyranoside

[142]

Engineering of terpenoid pathway led
enhanced aroma and flavor in tomato [143]

Limonene Synthase
Catalyzes the cyclization of
geranyl pyrophosphate to
(4S)-limonene

Modified essential oil content in
transgenic lines in transgenic mint [144]

β-Glucosidase
Catalyzes the hydrolysis of
the glycosidic bonds and
release glucose

Affects the emission of plant volatiles,
plant-environment communication
and aroma

[145]

Sesquiterpenoids
Trichodiene synthase Catalyzes the formation of

trichodiene

Transgenic tobacco enhanced the
expression of active enzyme and
low-level accumulation of its
sesquiterpenoid product

[146]

zingiberene
synthase (ZIS)

Catalyzes the reaction
forming zingiberene and
other mono- and
sesquiterpenes

Overexpression led to enhanced both
mono-and sesquiterpene content in
tomato fruit

[147]

Germacrene A
synthase

Key cytosolic enzyme of
sesquiterpene lactone
biosynthesis pathway

Transgenic lines with strong transgene
expression showed growth retardation
and FaNES1-expressing lines enhanced
the resistance against the aphids

[148]

Diterpenoids Taxadiene synthase
Catalyzes the chemical
reaction geranylgeranyl
diphosphate

Enhanced level of toxoids was found in
genetically engineering plant [149]

Metabolic Engineering for Biotic Stress Tolerance

Pathogen Perception EFR (EF-Tu receptor)
Pattern recognition
receptor (PRR), binds to
prokaryotic protein EF-TU

Expression in susceptible genotypes
reduced bacterial wilt incidence and
enhanced yield

[150]

Bs2 Bs2 gene is a member of the
NBS-LRR class of R genes

Transgenic tomato conferred resistance
to bacterial spot disease [151]
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Table 2. Cont.

Gene Function of Gene Phenotypes of Transgenics Reference

Pathogen Effector
Binding

Os11N3/OsSWEET14 Encode sucrose
transporters

Transgenic wheat provided effective
resistance to Fusarium graminearum [152]

Xa27 Important R-genes, effective
against Xoo

Provided resistance to different strains
of Xoo and bacterial leaf streak [153]

Defence Signaling
Pathways

NPR1 Master immune regulatory
gene

Mediate broad-spectrum disease
resistance without compromising plant
fitness in Arabidopsis thaliana and rice

[154]

IPA1/OsSPL14 Regulate rice plant
architecture

Enhanced yield and disease resistance
in rice [155]

Recessive Resistance
Alleles

Mlo (Mildew Locus
O)

Knockdown resulted in
powdery mildew resistance

Loss of function mutation confer
resistance to powdery mildew fungi [156]

bs5 Recessive genes resistant to
bacterial spot

Confers disease resistance against
Xanthomonas euvesicatoria in pepper
and tomato

[157]

Dominant Resistance
Proteins

PFLP Ferrodoxin like protein,
involved in redox reactions

Overexpression induced hypersensitive
reaction and resistance in tobacco [158]

Lr34 Wheat multipathogen
resistant gene

Confer resistance to anthracnose and
rust in sorghum [159]

Oxalate oxidase Participates in degradation
of oxalic acid

Enhanced resistance to Sclerotinia
sclerotium in oilseed rape [160]

Antimicrobial
Compound
Production

Rs-AFP defensin
(Raphanus sativus
antifungal protein)

Antifungal plant defensins
Transgenic wheat conferred resistance
to Fusarium graminearum and
Rhizoctonia cerealis

[161]

Virus KP4 Fungal killer toxin encoded
by RNA virus

Transgenic wheat showed resistance to
loose smut [162]

MsrA1 Involved in mannan
biosynthesis

Transgenic Brassica Juncea exhibited
resistance to fungal phytopathogens [163]

RNAi Mediated
AC1 from bean
golden mosaic virus

Modulates virus induced
gene silencing

Transgenic common bean (Phaseolus
vulgaris) conferred resistance to ban
golden mosaic virus

[164]

Coat protein gene
from potato virus Y Protects RNA genome Exhibited resistance to mixed virus

infection in potato [165]

3.1. Fortification of Carotenoids and Flavonoids

The carotenoid biosynthesis and metabolism are studied intensively as different
carotenoids have distinct nutraceutical roles such as lycopene as an antioxidant, lutein for
vision, acyclic carotenoids i.e., phytoene and phytofluene in nutricosmetics, and β-carotene
as the primary dietary precursor of vitamin A. The sufficient intake of vitamin A is essential
for human health. In many developing and under developed countries, vitamin A defi-
ciency (VAD) is a prevalent cause of premature death and childhood blindness. In addition,
therapeutic doses of β-carotene have protective effects against cardiovascular disease,
certain cancers, and aging-related diseases [166,167]. Considering the nutritional benefit of
β-carotene, in recent years, considerable efforts have been directed to elevate its content
in food crops. Various metabolic engineering approaches have been used to increase the
β-carotene levels to alleviate the provitamin A deficiency, beginning from “Golden Rice I”.
Since then, biofortification is attempted in several crop plants using transgenic approaches,
conventional breeding, and screening genetic diversity. Conventional breeding and marker-
assisted selection have significantly increased carotenoid content in a few instances, but
there is the need for identification of novel alleles or wild germplasm associated with high
carotene levels [168–170]. On the other hand, transgenic approaches using overexpression
of plant genes or introduction of bacterial genes lead to high provitamin A, but suffer
from GM regulations, safety, and public acceptance [124,171–173]. Screening of natural
accessions, genetic variants, and mutants with altered carotenoid content provides a faster
and safer way for the biofortification of provitamin A in crop plants [174,175]. Carotenoid
sequestration was also achieved via overexpression of Orange (Or) gene or Or mutants
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harboring “Golden SNP”, which encodes the plastid-localized DnaJ cysteine-rich protein,
has been successfully demonstrated in melons, cauliflower, and potato tubers [176,177]. A
list of provitamin A biofortified crops is summarized in Table 3. Not only provitamin-A
carotenoids, but xanthophylls like zeaxanthin and lutein also play an imperative role in pro-
tection against age-related macular degeneration (AMD) which is the predominant cause
of blindness in several countries [178,179]. Recently, a zeaxanthin-rich tomato fruit was
developed using metabolic engineering and genetic breeding which has highest concentra-
tion of zeaxanthin achieved in a primary crop [180]. To date, the exploitation of several
natural and transgenic resources has been utilized for the biofortification of carotenoids in
crop plants and the field is still expanding by identifying new regulatory factors which can
modulate the carotenoid production.

Table 3. List of the pro-vitamin-A biofortified crops.

Crops Genes with Donor Organism Carotenoid Content References

Rice Narcissus pseudonarcissus (crtB) Combination of transgenes enabled biosynthesis of provitamin A in
the rice endosperm (Golden Rice 1) [171]

Erwinia uredovora (crtI)

Zea mays (PSY) Increase in total carotenoids up to 23-fold (Golden Rice II) [124]
Erwinia uredovora (crtI)

Wheat Zea mays (PSY) The total carotenoids content was increased up to 10-fold [125]
Erwinia uredovora (crtI)

Erwinia uredovora (crtB, crtI) Total carotenoid content increased by 8-fold and beta-carotene
content increased by 65-fold [181]

Erwinia uredovora (crtB) Increase in the beta-carotene content by 31-fold [182]
Triticum aestivum (HYD)

Potato Pantoea ananatis (crtB) Total carotenoid increased by 4-fold with major increase in
beta-carotene and lutein content [183]

Pantoea ananatis (crtE) Total carotenoid up by 2.5-fold and beta-carotene content by 14-fold [184]

Pantoea ananatis (crtB, crtI,
crtY)

Total carotenoid increased by 20-fold and that of beta-carotene by
3600-fold [185]

Solanum tuberosum (β-CHX) Beta-carotene content was increased from trace level to
3.31 µg/g FW [186]

Brassica oleracea (Or) Carotenoid content was increased by 10-fold [177]

Corn Zea mays (PSY)

Increased level of beta-carotene content including hydroxy- and
keto-carotenoids

[187]
Gentiana lutea (LCYE, β-CHX)

Paracoccus (crtW)

Pantoea ananatis (crtI)

Pantoea ananatis (crtB, crtI, zds) Total carotenoids up by 34-fold with preferential accumulation of
beta-carotene [188]

Zea mays (PSY) The transgenic kernels contained 169-fold the normal amount of
β-carotene

[189]
Pantoea ananatis (crtI)

Tomato Erwinia uredovora (crtI) The β-carotene content increased about threefold, up to 45% of the
total carotenoid content [190]

Solanum lycopersicum (LCYB) 7-fold increase in fruit beta-carotene content [172]

Arabidopsis thaliana (LCYB) 12-fold increase in beta-carotene content along with
beta-cryptoxanthin and zeaxanthin accumulation [191]

Capsicum annuum (β-CHX)

Erwinia uredovora (crtB) Total fruit carotenoids upby 2–4-fold in fruits [192]
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Table 3. Cont.

Crops Genes with Donor Organism Carotenoid Content References

Solanum lycopersicum (LCYB) Carotenoid content was increased by 2-fold while beta-carotene is
up by 27-fold [173]

Arabidopsis thaliana (HMGR) Total carotenoid content increased by 1.6-fold and beta-carotene by
2.2-fold

[193]
Escherichia coli (dxs)

Capsicum annuum (FIB) Total carotenoid content was up by 2-fold [194]

Narcissus pseudonarcissus (crtY) 4.5-fold increase in beta-carotene and >50% increase in total
carotenoid accumulation [195]

Citrus (LCYB1) Beta-carotene level was increased by 4.1-fold, and the total
carotenoid content increased by 30% in the fruits [196]

Cassava Erwinia uredovora (crtB) Total carotenoidcontent increase by 15-fold and that of
beta-carotene by 37-fold [197]

Arabidopsis thaliana (DXS)

Phytoene synthase Total carotenoid content increased by 33-fold and beta-carotene by
15-fold [198]

Bacterial (crtB) Total carotenoid content increased by 30-fold with beta-carotene
accounting for 80–90% of total carotenoid content [199]

Arabidopsis thaliana (DXS)

Sorghum Zea mays (PSY)

24-fold increase in beta-carotene content [200]
Pantoea ananatis (crtI)

Arabidopsis thaliana (DXS)

Hordeum vulgare (HGGT)

Melon Or Total carotenoid content increased by 11-fold [176]

Cauliflower Or Beta-carotene content increased by 7-fold [201]

Flavonoids, belong to a group of polyphenolic plant secondary metabolites, which
not only have physiological roles in plants but also constitute our daily diet. There are
six major subclasses of flavonoids notably, anthocyanidins, flavan-3-ols, flavonols, fla-
vanones, flavones, and isoflavones, which are widely present in fruits and vegetables.
Flavonoids-rich fruits and vegetables have been largely promoted in the human diet be-
cause of their broad spectrum of health-promoting benefits, which include anti-oxidant and
anti-inflammatory properties. Given its nutritional importance, several efforts have been
made to increase flavonoid levels in various crops using overexpression of key structural
genes and transcription factors. Overexpression of single or multiple structural genes
from different sources resulted in a significant increase in flavonoid production. Schijlen
et al. [202] showed that combining structural flavonoid genes stilbene synthase, chalcone syn-
thase, chalcone reductase, chalcone isomerase, and flavone synthase lead to the accumulation of
stilbenes, deoxy chalcone, flavones, and flavanols in tomato peel. Similarly, overexpression
of petunia chalcone isomerase in tomato fruits resulted in increased flavanols levels [203].
In addition, several transcription factors have been used to regulate phenylpropanoid
metabolism. Bovy et al. [204] utilize maize transcription factor genes LC and C1 for produc-
tion of high flavanols tomato. Likewise, Zhang et al. [205] reported fruit-specific expression
of AtMYB12 in tomato leads to the accumulation of flavanols. Accumulation of antho-
cyanins in tomato fruits was achieved by expressing snapdragon transcription factors
AmDel and AmRos1 [206]. Recently, Jian et al. [207] showed the overexpression of SlMYB75
promotes anthocyanin and flavonoids accumulation. These results suggest that structural
genes and transcription factors together can be used to achieve a higher accumulation of
flavonoids in crop plants.
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3.2. Metabolic Engineering of Phytohormone Signaling and Biosynthetic Pathway to Improve
Crop Performance

Phytohormones auxins, brassinosteroids (BRs), cytokinins (CKs), ethylene, gibberellins
(GAs), and abscisic acid (ABA) are the key regulator of the plant architecture and their
growth [26,208]. In the recent past two decades, several transgenics have been gener-
ated to understand their role and also to improve the crop plants [26]. In fact, one of
the most key events in plant biology and agronomy was that the selection of the semi
draft variety in wheat and rice during the green revolution was driven by a selection
of genes related to GA pathways such as GA-20 oxidase and Della [209,210]. One of the
key transcription factors regulating GA signaling is Squamosa promoter-binding-like protein
8 (SPL8), amputation, or attenuation of it through transgenic approach severe declines
GA accumulation via GA2-OX and GA2-OX6 [211]. Likewise, cytokinin biosynthesis was
targeted to alter plant architecture, growth habit, and life cycle because upregulation of
cytokinin production enhances biomass and delays plant senescence via cell division [212].
A mutation in the cytokinin receptor or overexpression of gene cytokinin oxidase (CKX,
encode for cytokinin catabolizing enzyme) can lead to the smaller shoot apical meristem,
decreased leaf area, and severely retard plant growth [213]. Therefore, to achieve better
crop yield, CKX gene homologs were targeted by developing knockouts. In rice, CKX
knockout results in the improved maintenance of photosynthetic rate, panicle branching,
and reduced yield gap under salinity stress [214]. Several attempts involved upregulation
of cytokinin through overexpression of a cytokinin biosynthetic genes isopentenyl transferase
(ipt) in broad bean [215], creeping bentgrass [216], peanut [217], rice [218], tobacco [219],
and in salinity stress exposed cotton [220]. Additionally, transgenic poplar plants overex-
pressing a YUCCA6, abiotic stress-responsive gene involving in tryptophan-dependent
IAA biogenesis pathway, exhibit remarkable rapid shoot elongation with restricted tap root
but with enhanced root hairs [221].

The complete knowledge of metabolic pathways is very important. Recently, a cluster
of genes related to ABA signaling was targeted through genome editing to improve drought
tolerance, due to which the edited lines showed a remarkable 30 percent yield increase
due to increased number of spikelet numbers per main panicle [222]. The edited genes
involved ABA receptor (RCAR) family of proteins PYL1–PYL6, PYL12, PYL7–PYL11, and
PYL13. ABA plays a key role in abiotic stress tolerance especially during drought stress, as
a result, several ABA signaling and biosynthetic genes including ABA-responsive complex
(ABRC1) and 9-cis-epoxy carotenoid dioxygenase (NCED) have been targeted to improve the
abiotic stress tolerance in crop plants [223,224]. Lee et al. [223] demonstrated the role of
ABRC1 in tomato transgenic in maintaining yield against cold, drought, and salinity stress.
Likewise, the gene NCED1 was overexpressed in tobacco to achieve tolerance to drought
and salt stress due to enhanced accumulation of ABA in leaves [224].

3.3. Engineering of Cell Wall Biosynthesis Pathway: Some Examples

The non-living cell wall present in the plant system makes them unique compared to
animal cells, provides structural and mechanical support to the whole cell, and also acts
as a physical barrier against both abiotic and biotic stresses. The principal compositions
of a cell wall are cellulose, hemicelluloses, and lignins. Often, the plant activates the
cell wall metabolism-related pathways whenever they are challenged with stress, such
as higher production of lignin biosynthesis enzymes during biotic and abiotic stresses.
Therefore, immense progress has been made to target cell wall-related pathways to confer
tolerance against these biotic and abiotic stresses. Modification of the lignin biosynthetic
pathway was done in Pinus radiate, which provided the significance of gene 4-coumarate–Co
A ligase in the accumulation and distribution of lignin in the tracheid element during cell
wall and wood formation; by which it also interferes into plant height [225]; indicating
its economic importance in the field of horticulture for generating a dwarfed plant or
“bonsai tree-like”. The biosynthesis of the cell required UDP-Glc, which is required for
the formation of different sugars required during wall formation [225]. Researchers have
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explored genes UDP-glucose pyrophosphorylase and sucrose synthase for drought tolerance
as their overexpression causes enhanced cellulose accumulation by increased production
of UDP-Glc [226]. Likewise, the role of the cellulose biosynthetic gene cellulose synthase
was observed in Brassinosteroid insensitive2 mutants [227]. Further, the Expansin gene,
which controls cell wall loosening, plays a very important in the root architecture during
drought tolerance [228]. The gene SHINE encodes the AP2/ERF transcription factor family
protein known to control the wax biosynthesis pathway in a plant [229]. In rice, the
gene SHINE was overexpressed, which led to reduced 45% lignin content and increased
cellulose content by 34%, thus improving the fodder quality and digestibility [230]. The
silencing of the NAC2 transcription factor, which binds to the promoter region of Expansin-
A4 (EXP-A4), caused reduced drought tolerance during floral organ development in rose
due to reduced expression of gene EXP-A4 [231]. On the contrary, overexpression of
EXP-A4 in Arabidopsis showed an expected drought tolerance phenotype [231]. In rice,
overexpression of Sucrose synthase (SUS) led to increased cell wall-related polysaccharides
deposition and reduced cellulose-crystallinity as well as xylose/arabinose proportion in
hemicellulose; which is beneficial for the biofuel industry [232]. The genetic engineering
of the cell wall biosynthetic pathway through overexpression of SUS in rice added a new
dimension towards its role in the cell wall metabolism.

3.4. Metabolic Engineering for Bio-Fortification of Phytonutrients

In the past 20 years, several attempts have been made to enrich the nutritional con-
stitution in crop plants; so that they can emerge as a superfood; such as development
of the purple tomato [206], where a gene was overexpressed for a hyperaccumulation of
“anthocyanin” which is an anticancerous compound. One of the most important contribu-
tions in the field of metabolic engineering of crop plants was the development of ‘Gloden
rice’ by overexpressing phytoene synthase (PSY) from maize and the daffodil plant, and
PSY ortholog from (Erwinia uridovora) bacterial using the endosperm specific promoter,
leading to a 27-fold increase in the β-carotene level in the transgenic golden rice [1,124,171].
Every year, folate deficiency causes death, cardiovascular disease, megaloblastic anemia,
and neurological disorder in newborns [1]. Now, due to the characterization of the folate
biosynthesis pathways genes, several genes have been overexpressed in Arabidopsis, let-
tuce, tomato, lettuce, maize, and potato [1]. The gene GTP-cyclohydrolase 1 (GTPCH1) was
overexpressed in Arabidopsis, lettuce, rice, and tomato [233–236].

4. Study of Root Nodule Symbiosis (RNS) in Legumes

The symbiotic nitrogen fixation is mainly restricted to legumes, there are several rhi-
zobia including certain diazotrophs that inhabit the rhizosphere of other crops, which are
involved in plant development. In the late 19th century, legumes (Fabaceae) were found to
be capable of forming a root nodule symbiosis (RNS) with nitrogen-fixing rhizobia which
improves soil fertility [237]. With the emergence of modern tools such as transcriptomics
and proteomics, the molecular mechanism of root nodule symbiosis (RNS), nodule organo-
genesis, and their development have been well studied in model legume species [238,239].
These studies have centered the concepts that mark the path for the engineering of ni-
trogen fixation nodule symbiosis which include; various blueprints for nitrogen-fixing
root nodule symbiosis (RNS), use of non-model crops to recognize important symbiosis
genes, recruitment of the arbuscular mycorrhizal pathway for RNS, and crosstalk between
developmental programs involved in plants and RNS. Not only do these concepts reflect
significant breakthroughs in our knowledge of RNS, but they also provide important in-
sights for engineering strategies possibilities and constraints. Various studies in legumes
reported a number of genes which are associated with RNS (Figure 1) [240–245]. Some
important genes which control the RNS have been reported: NFR, LYK3, LYR3, DMI1-3,
CASTOR, POLLUX, NIP85, NUP133, NENA, and SyMRK Nod factor for perception, and the
downstream signaling pathway includes transcription factors NSP1, NSP2, ERN1, etc. (See
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Figure 1) [238,239]. More such studies are required in order to understand the molecular
biology, biochemistry, and nodulation physiology in nodulating species.
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5. Addressing Symbiotic Nitrogen Fixation in Cereals and Non-Legume Crop Plants

The nitrogen-fixing orders Cucurbitales, Fagales, Fabales, Rosales, and other Poaceae
(Poales) varied widely and their root systems showed various developmental adapta-
tions [246]. The crop plants such as cereals demand a significant amount of nitrogen for
their proper growth and grain production, therefore engineering of these crops would be
ideal to induce nitrogen fixation nodulation-related traits [247]. Selection of a single gene
for metabolic engineering of non-legumes plants (such as cereals) to induce root nodulation
for better nitrogen use efficiency is the biggest challenge. Therefore, by comparing the
various RNS and the associated genes, we can distinguish common features and the core
genes that must be recruited in the early development of the trait. However, knowledge
and understanding of these genes can also be important, as they can be related to processes
like root hair invasion, nodule organogenesis, and symbiosome development, thereby
enabling an engineering approach that integrates features from multiple symbioses. In
order to assess a core community of symbiosis genes important to RNS and to classify
lineage-specific adaptations, it is necessary to choose representative species in different
clades for comparative study. Particularly the latter is a pro, as CRISPR-Cas9-based reverse
genetics will allow the study of the function of genes.
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Introducing a cluster of genes responsible for the root nodulation through genetic
engineering will be an important achievement; in fact, such novel attempts are required
in cereals and other non-legume crops [248–251]. If all genes in model species are defined
for nitrogen-fixing symbiosis, it will provide a framework for engineering in far-related
species. Since the nitrogen-fixing trait is believed to have a single evolutionary origin,
several species in nitrogen-fixing clade may lose nodulation in the future [252,253]. A
current approach is to bring back mutated genes of symbiotic association (nitrogen-fixing
clade) in non-nodulating species. Likewise, the species representing a sister lineage of a
clade could be approached [252,254]. In non-nodulating species, introduction of nodu-
lation will rely on the endogenous genes, but several transgenes are required to trans-
fer. At first, NFP/NFR5/NFP2, NIN, and RPG genes can be used. The question still
stands whether these genes are the only genes that are responsible for nodulation [255].
Other genes such as leghemoglobin encoding have most likely undergone minor but
important adaptations [256].

Expecting functional RNS in a single attempt in non-nodulating species is not possible
as it is coordinated through multiple genes. Instead, engineering might be an iterative
approach. Evolutionary genomics studies indicate that relatively few genetic elements
are required to provide nitrogen-fixing ability from legume to non-legume species [257].
The transfer of nitrogenase encoding genes to plants needs a bacterial concatemerization
genetic unit (a minimum set of three genes) [258]. Engineering nitrogenase encoding
bacterial nif genes into non-legumes species is quite difficult because of the complex nature
of nitrogenase biogenesis and nitrogenase sensitivity in the presence of oxygen. Advanced
genetic and biochemical studies have defined the common core group of genes that are
needed for the functional biogenesis of nitrogenase [259]. Moreover, potential low-oxygen
subcellular conditions provided by mitochondria and plastids to express active nitrogenase
activity in plants enable this engineering approach [260]. Recent studies have shown that
the legume symbiotic signaling pathway (SYM) plays a key role in arbuscular mycorrhizal
symbiotic associations (AMSA). Various plants including cereals could form AMSA, but
they do not have the ability to form nitrogen-fixing nodules. The SYM pathway for the
arbuscular mycorrhizal associations in cereals can be engineered to perceive rhizobial signal
molecules, which can trigger this pathway and activation into an oxygen-limited nodule-
like-root organ for fixation of nitrogen [261]. Prior phylogenomic studies have shown that
a set of genes can convert a species in AMSA into a nitrogen fixation symbiosis [252,256].
In cereals, chloroplasts and mitochondria are known to be ideal locations for generating a
high-energy nitrogenase enzyme [262]; however, oxygen evolved from chloroplasts during
photosynthesis could disrupt the nitrogenase enzyme complex formation. A potential
solution is spatio-temporal separation of photosynthesis and nitrogen fixation, which
means that nif genes could express only in dark periods or in non-photosynthetic parts
(root system) [263]. Besides, a carbon-secretion approach that promotes increased carbon
competition among the nitrogen-fixing population can be used to develop adequate signals
between cereals and nitrogen-fixing rhizobia for effective colonization [261].

Phylogenomics studies assisted de novo genome sequencing of non-model legume
species led to a better understanding of the origin of nodulation trait. These studies
have paved the path for trait engineering. These comparative phylogenomic studies were
comprehensive, as result more target genes were being found, that encouraged researchers
to put efforts towards the genetic engineering for nitrogen fixation symbiosis-related
traits. Metabolic engineering of nitrogen fixation pathway such as genes associated with N
transport, assimilation, and primary N metabolism for the improvement of nitrogen use
efficiency (NUE) in crop plants is important and appeared to be most promising [264–267].
In addition, there are several genes, which are involved in C metabolism, and appeared to
have a close connection between C and N metabolism, it is hoped that modification of these
genes could improve N uptake [265]. There is an amino acid biogenesis gene, AlaAT, which
when overexpressed in canola and rice, exhibits an NUE phenotype in the greenhouse
and field condition [268,269]. This gene encodes for alanine aminotransferase (AlaAT,
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EC.2.6.1.2), an enzyme that catalyzes the reversible synthesis of alanine and 2-oxoglutarate
from pyruvate and glutamate, resulting in N metabolism downstream of GS and GOGAT
pathway. Intriguingly, transcriptomics analysis of alanine aminotransferase (AlaAT-ox) over-
expressing rice lines with wild type (WT), under low, medium, or high N conditions,
did not detect any of the known N transport and N-assimilation genes as differentially
regulated, instead, the highly differentiated genes were regulatory transcription factor
associated with secondary metabolism, and few genes with unknown function [270,271].
Due to the change in the expression of the TCA and secondary metabolite-associated genes,
researcher focused on the assessment of N-containing metabolites and the N-flux balance in
transgenic plants [272]. In our view, research efforts in this direction is important, because
crops engineered for RNS may have a promising future in the incoming era.

6. Public Perception for the Metabolic Engineered Plants

In the present world, every year, the food demand is increasing; on the other side,
the agriculture system is degrading and arable land is shrinking due to severe thinning of
biodiversity and increased incidence of climate change-driven uncertainty in rain. There-
fore, in the present scenario, a traditional breeding-based outcome may take reasonable
time to fulfill the demand; the breeders must adopt molecular biology as a tool to develop
climate smart crops. One of the important achievement in the field of plant biotechnology
is development of transgenic tomato “flavor saver” (Flavr Savr or CGN-89564-2), devel-
oped by Monsanto [273]. Similar to Flavr Savr, many important crops were developed by
targeting metabolic pathways for enhancing the postharvest shelf-life or biotic and abiotic
stress tolerance [274]. In plant breeding, genetic engineering has played a very important
role, as a result around 525 transgenic events, of which maximum 238 events is registered
for maize, 61 for cotton, 49 for potato, 42 for canola, 41 for soybean, etc., and worldwide
nearly 32 crops have received approval for cultivation [275]. However, from the past two
decades, frequently outrage from the public and NGOs was observed against transgenic
and/or genetically modified crops (GMOs) including Flavr Savr which was approved for
sale by the Food and Drug Administration (FDA), USA [273]. Now, in the present era,
genome/gene(s) editing has made a significant impact; earlier, ZFNs and TALEN played
very important roles and the products are already available in the market [274–276]; several
countries like US, Canada, China, etc. have shown positive response to their product and
treated them just as mutants; unlike EU’s regulations which are stringent and treated these
genomes edited crops as the transgenic. In July 2018, ECJ (European Court of Justice) stated
that “All genome-edited plants should be treated legally as genetically-modified organisms
(GMOs), using definitions dating from 2001”. Now, with the advent of the CRISPR/Cas, a
revolutionary genome/gene editing tool, the regulatory barrier is expected to get weaken
in coming years [274–276] as the regulatory agencies of several countries such as USA,
Canada, China, etc., have considered them as mutants [276]. In addition, the technique
CRISPR/Cas can more favorably modified and used as several variants of Cas enzymes
are now available [277]. In the present scenario, CRIPSR/Cas is considered as one of the
best tools for editing the traits in crop(s) species. Additionally, technique such as speed
breeding can be integrated to achieve more from CRISPR/Cas.

7. Future Perspective

In future, the de novo domestication would become one of the most important areas.
To achieve de novo domestication, metabolomics assisted breeding and the knowledge of
metabolic pathways will play very important role. Earlier, during ‘Green Revolution’, the
selection of genes related to GAs pathways have played a crucial role in the development
of semi dwarf high yielding variety, which helped in fulfilling the food demand of billions
of people. Today, a better understanding of a metabolic pathway through an integrated
approach can redesign the ancestral species, which are resistant to several biotic and abiotic
stresses. In addition, the advent of modern sequencing technology has been playing a
pivotal role in fine-tuning the genome annotation by utilizing available transcriptome,
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proteome, and metabolome atlas data. Therefore, utilization of metabolomics data would
help in the rapid generation of climate-smart and bio-fortified nutrient-rich varieties to
achieve targeted sustainable food production and security.
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