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Abstract: Nogo-A (Rtn 4A), a member of the reticulon 4 (Rtn4) protein family, is a neurite outgrowth
inhibitor protein that is primarily expressed in the central nervous system (CNS). However, previous
studies revealed that Nogo-A was upregulated in skeletal muscles of Amyotrophic lateral sclerosis
(ALS) patients. Additionally, experiments showed that endoplasmic reticulum (ER) stress marker,
C/EBP homologous protein (CHOP), was upregulated in gastrocnemius muscle of a murine model
of ALS. We therefore hypothesized that Nogo-A might relate to skeletal muscle diseases. According
to our knocking down and overexpression results in muscle cell line (C2C12), we have found
that upregulation of Nogo-A resulted in upregulation of CHOP, pro-inflammatory cytokines such
as interleukin (IL)-6 and tumor necrosis factor (TNF)-«, while downregulation of Nogo-A led to
downregulation of CHOP, IL-6 and TNF-o«. Immunofluorescence results showed that Nogo-A and
CHOP were expressed by myofibers as well as tissue macrophages. Since resident macrophages share
similar functions as bone marrow-derived macrophages (BMDM), we therefore, isolated macrophages
from bone marrow to study the role of Nogo-A in activation of these cells. Lipopolysaccharide
(LPS)-stimulated BMDM in Nogo-KO mice showed low mRNA expression of CHOP, IL-6 and
TNF-a compared to BMDM in wild type (WT) mice. Interestingly, Nogo knockout (KO) BMDM
exhibited lower migratory activity and phagocytic ability compared with WT BMDM after LPS
treatment. In addition, mice experiments data revealed that upregulation of Nogo-A in notexin-
and tunicamycin-treated muscles was associated with upregulation of CHOP, IL-6 and TNF-« in
WT group, while in Nogo-KO group resulted in low expression level of CHOP, IL-6 and TNF-a.
Furthermore, upregulation of Nogo-A in dystrophin-deficient (mdx) murine model, myopathy and
Duchenne muscle dystrophy (DMD) clinical biopsies was associated with upregulation of CHOP,
IL-6 and TNF-«. To the best of our knowledge, this is the first study to demonstrate Nogo-A as a
regulator of inflammation in diseased muscle and bone marrow macrophages and that deletion of
Nogo-A alleviates muscle inflammation and it can be utilized as a therapeutic target for improving
muscle diseases.
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1. Introduction

Inflammation is the host’s fundamental protective biological response to harmful
stimuli, which include infections and tissue damage [1-3]. Dysregulated inflammatory
responses contribute to the pathophysiology of many chronic diseases [1], and excessive
inflammatory responses can damage muscle fibers, which can lead to muscle fibrosis,
delays in tissue regeneration, and chronic muscle injury [4,5]. Pro-inflammatory factors are
crucial factors in muscle disorders, such as Duchenne muscular dystrophy (DMD), which
is a progressive form of muscular dystrophy [6]. Tissue-resident macrophages play an
essential role in tissue homeostasis and in the resolution of inflammation [7].

Macrophages are innate immune cells that can differentiate into different pheno-
types in response to environmental cues. The two canonical types of macrophages are
pro-inflammatory (M1 macrophages) and anti-inflammatory (M2 macrophages) [8,9]. M1
macrophages secrete pro-inflammatory cytokines, chemokines, and enzymes, such as in-
terleukin (IL)-6, IL-13, tumor necrosis factor (TNF)-«, nuclear factor (NF)-kB, chemokine
(C-X-C motif) ligand 1 (CXCL1), chemokine (C-X-C motif) ligand 2 (CXCL2), and in-
ducible nitric oxide synthase (iNOS), which are important for multiple inflammatory
processes [1,8,10]. In contrast, M2 macrophages produce anti-inflammatory factors, such as
IL-10, cluster of differentiation (CD)-206, and arginase (ARG)-1, which are involved in the
resolution of inflammatory processes and the mediation of wound healing [1,8]. Due to
the diverse functions of macrophages in controlling immune responses and metabolism,
dysregulation of macrophage polarization is associated with disease [11]. Notexin is a
myotoxic agent, and lipopolysaccharide (LPS), which is a component of bacterial endotoxin,
is involved in severe inflammation by stimulating various pro-inflammatory factors [12-14].
However, the molecular mechanisms through which Nogo-A induces inflammation remain
unknown.

As a major site of protein folding, the endoplasmic reticulum (ER) is an important
cellular organelle [15-17]. ER stress occurs when unfolded or misfolded proteins accumu-
late in the ER [16,18]. Three protein sensors are located at the ER membrane, where they
activate transcription factor (ATF)-6, inositol requiring enzyme (IRE)-1c;, and PKR-like ER
kinase (PERK), which function in the identification of increased ER stress and subsequently
activate the unfolded protein response (UPR) [14,19,20]. Activation of the UPR results in
activation and upregulation of C/EBP homologous protein (CHOP) [21,22], which is a tran-
scription factor that indicates ER stress [23]. ER stress is an essential cellular response that
triggers inflammation [14,16,18]. Several studies have revealed that ER stress is involved
in various pathophysiological conditions including autoimmune diseases, inflammatory
diseases, neurodegenerative diseases, cancer, and metabolic diseases [14,23,24].

Nogo-A is known as a neurite outgrowth inhibitor. It is a member of the reticulon
4 (Rtn4) family of proteins, is localized within the ER membrane, and is essential for the
regulation of the tubular structure of the ER [25-27]. Nogo has three splicing isoforms
Nogo-A (Rtn 4A), Nogo-B (Rtn 4B), and Nogo-C (Rtn 4C), and these isoforms contain
the same carboxy terminal but different amino terminals [27-29]. Nogo-A (200 kDa) is
a high-molecular-weight membrane protein that is primarily expressed in the central
nervous system (CNS). Nogo-A acts as a growth inhibitory factor [30-32] that influences
the migration of cells in the neural tube and is a key negative regulator of angiogenesis
in the CNS [30]. In the adult CNS, Nogo-A has also been shown to be a vital inhibitory
factor of axonal regeneration and plasticity [30-33]. Nogo-B (55 kDa) is a shorter isoform
than Nogo-A and has been shown to be expressed in cardiac myocytes and vascular cells
in multiple cell types both in vitro and in vivo [34]. Expression of Nogo-B is reduced after
injury in the femoral arteries of mice [25,34]. In addition, Nogo-B regulates the migration of
endothelial cells in peripheral blood vessels, which results in vascular remodeling [35,36].
Nogo-C (25 kDa) is the smallest protein in the Nogo family [27,37] and is expressed in a
variety of tissues and cells including neurons, liver cells, muscle cells, and cardiac cells [37].
Previous studies have shown that Nogo-C regulates apoptosis in cardiomyocytes during
mouse myocardial infarction (MI) and that Nogo-C deficiency improves cardiac activity
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after MI [27]. In addition, Nogo-C expression is negatively correlated with tumor size
and prognosis in hepatic carcinoma [37,38]. However, the endogenous role of Nogo-A in
non-neural cells and the function of Nogo-A in inflammation are unknown.

It has been demonstrated that patients with Amyotrophic lateral sclerosis (ALS) and
an experimental model of ALS showed up-regulation of Nogo-A in skeletal muscle [39].
Furthermore, the expression level of muscle Nogo-A in ALS patients is higher in type I
fibers and is associated with the severity of nerve damage [40]. Based on these findings we
hypothesized that Nogo-A might be involved in muscle injury, muscle degeneration and
or in inflammatory cascade by mediating ER stress proteins.

In this study, we selected transcription factor CHOP as ER stress marker because it is
the final downstream protein in ER stress signaling pathway. Furthermore, we investigated
pro-inflammatory mediators and cytokines that are responsible for inflammatory disorders.
We discussed the possible mechanism by which Nogo-A affects ER stress protein such as
CHOP and inflammation in skeletal muscle and macrophages for the first time. To elucidate
the role of Nogo-A in inflammatory mechanism, we utilized different in-vitro and in-vivo
models including C2C12 cells, bone marrow-derived macrophages (BMDM) primary cells,
Nogo-deficient mice, mdx mice and biopsies from myopathy and DMD patients. Thus, this
study reveals the potential role of Nogo-A in the regulation of inflammatory mechanisms.

2. Materials and Methods
2.1. C2C12 Cell Culture

The murine myoblast cell line (C2C12) was cultured in Dulbecco’s Modified Eagle’s
Medium (DMEM,; Gibco-BRL, Grand Island, NY, USA) supplemented with 10% fetal bovine
serum (FBS; Hyclone, Logan, UT, USA) and 1% penicillin/streptomycin (P/S). Cells were
cultured in a humidified incubator containing 5% CO; at 37 °C. C2C12 cells were grown
until they were 60-70% confluent. Cells were then sub-cultured and grown for another
48 h. Finally, the cells were differentiated in 2% horse serum for 3 days, as previously
described [41,42].

2.2. Recombinant Adenovirus and Si-RNA Transfection of C2C12 Cells

Adenovirus (Ad)-Nogo-A and Ad-CHOP were purchased from Vector Biolabs (Malvern,
PA, USA). The small interfering (si) RNAs against Nogo-A and CHOP (si-cram, si-Nogo-A,
and si-CHOP) were purchased from Bioneer Research (Seoul, Republic of Korea) and were
transfected into cells using Lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s instructions. The sequence of Nogo-A (si-RNA) was A
CAA AGA GGA UUU AGU UUG UAG (forward) and UGC ACU ACA AAC UAA AUC
CUC UUU G (reverse). For transfections, the cells were plated in 60 mm dishes at a density
of 1 x 10° cells in DMEM without antibiotics and allowed to grow for 24 h. When the
cells became 40-50% confluent, the cells were transfected according to the manufacturer’s
instructions.

2.3. Isolation, Culture, and Activation of Bone Marrow-Derived Macrophages

Macrophages were obtained from bone marrow with several modifications, as pre-
viously described [7,43]. Briefly, bone marrow cells were obtained by flushing the femur
and tibia of 8-week-old C57BL/6 (wild type (WT)) and Nogo-knockout (KO) mice (1 = 6).
The femur and tibia were washed with 70% ethanol and then with PBS. Sterile scissors
were used to cut both the knee and hip joints. The ends of the femur and tibia bones were
also cut to obtain macrophages from the bone marrow. The bone marrow was flushed out
in a 50 mL Falcon tube using a 26-gauge syringe and sterile PBS. The sample was then
centrifuged at 3000 g for 5 min at 4 °C after which the cells were suspended in RPMI
1640 medium containing 15% conditioned medium from the 1.929 cell line as a source of
macrophage colony stimulating factor (M-CSF). Cells were incubated for seven days and
treated with lipopolysaccharide (LPS), an M1 inducer (100 ng/mL), or IL-4, an M2 inducer
(20 ng/mL) for 24 h.
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2.4. Animal Models Used in This Study

The experimental mice were housed in a pathogen-free facility at 21 4+ 2°C with a
humidity of 60 &+ 10% under a 12 h light/dark cycle and feed and water were supplied ad
libitum. For notexin experiment model, male 8-10-week-old WT (C57BL/6]) and global
Nogo-KO (Nogo’/ ~) mice were used. The C57BL/6] mice were purchased from SLC
incorporation (Hamamatsu, Japan) and Nogo isoforms-deficient (Nogo~/~) mice were
kindly provided by Binhai Zheng (University of California, San Diego, CA, USA). For ER
stress model, 10-week-old, male WT and Nogo-KO mice were used. Twelve-week-old male
mdx mice (C57BL/10ScSn-Dmdmdx/J) were used for the DMD animal model. The mdx
mice were generously gifted by Jacques P. Tremblay (CHUQ research center, Quebec City,
Canada). All animal experiments and protocols were conducted with Institutional Animal
Care and Use Committee (IACUC) guidelines and were approved by the Animal Care
Committee of the Kyungpook National University, Daegu City 41566, Republic of Korea.

2.5. Muscle Injury

Muscle injury was induced by a single intramuscular (IM) injection of 20 uL of the
myotoxic agent notexin (12.5 ng/mL, Latoxan, Valence, France), diluted in PBS, (or with
20 puL PBS as a control) into the gastrocnemius muscle of experimental mice. Briefly, WT
and Nogo-KO mice (3 mice per group) were anesthetized after which both hind limbs
were shaved. Notexin was injected into the right leg muscle, while the muscle of the left
leg served as a control and was injected with PBS. Three days after notexin injection, the
mice were euthanized and the gastrocnemius muscle was surgically isolated, as previously
described [12,44]. The gastrocnemius muscle was cut in half as a cross-section, fixed in 4%
paraformaldehyde (PFA) overnight, and subsequently transferred to 30% sucrose in PBS
for 24 h. Using optimum cutting temperature (OCT) medium, the samples were embedded
in a cryo block for histological analysis. The remaining half of the muscle sample was
immediately frozen in liquid nitrogen for molecular analysis. The sample was subsequently
stored at —80 °C until further analysis.

2.6. Induction of Endoplasmic Reticulum (ER) Stress Using Tunicamycin

WT and Nogo-KO mice were divided into the following 4 groups: WT mice without
tunicamycin treatment (n = 3), WT mice treated with tunicamycin (n = 4), Nogo-KO mice
without tunicamycin treatment (1 = 4), and Nogo-KO mice treated with tunicamycin (n
=5). Tunicamycin was administered at a single dose of 1 ug/kg via intraperitoneal (IP)
injection. Muscles were harvested 24 h after injection. Tunicamycin was prepared in DMSO
and diluted in PBS to reduce the toxicity of DMSO in mice.

2.7. Human Myopathy

Muscle samples were harvested after diagnosis, and informed consent was obtained
from all patients for the scientific use of their muscle biopsy specimens. The samples from
patients with myopathy (male, n = 4 and female, n = 3) and those with DMD (male, n = 3)
were collected according to the patient’s age (1.83 years, 2 years, 5 years, 5.1 years, 5.6 years,
15 years, 20 years, 46 years, 57 years, and 81 years). Five muscle biopsies were obtained for
each group from age-matched healthy control subjects (n = 5), (1.5 years, 18 years, 26 years,
41 years, and 42 years). qRT-PCR and immunoblot analyses were performed on all muscle
biopsy samples.

2.8. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) Analysis

RNA was extracted from the gastrocnemius muscles (WT mice, Nogo-KO mice, mdx
mice and DMD patients) and WT and Nogo-KO BMDM using TRIzol (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s instructions. Gene expression was measured
by quantitative real-time polymerase chain reaction (QRT-PCR) using SYBR Green with
low ROX (Enzynomics, catalog no. RT5005). Relative quantification of the target gene was
determined by normalizing expression to that of the housekeeping gene GAPDH, which
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served as a control. The primer sequences used in this study are listed in Table 1. qRT-PCR
data were analyzed using a CFX Connect Real-Time System (Bio-Rad).

Table 1. Primer sequences used in qRT-PCR.

Gene Name

Forward Primer

Reverse Primer

Nogo-A CTC AGT GGA TGA GAC CCT TTT TGC CAG TGT TAC CTG GCT GCT CCT
Nogo-B TC AGT GGT TGT TGA CCT CC GC CGT TAC ACT GAC AAT GC
Nogo-C GAT CGT GGC AAG AAATGG ACG AGC AGG AAT AAG CTG GCA CC
IL-6 GGA GACTTC ACA GAG GAT AC ATC TCT CTG AAG GAC TCT GG
TNF-a TTC TCA TTC CTG CTIT GTG GC TTG AGA TCC ATG CCG TTG
IL-1B GC ACT ACA GGC TCC GAG ATG AAC TT GTC GTT GCT TGG TTC TCC TTIG T
iNOS TT CAC CCA GTT GTG CAT CGT CCT A TC CAT GGT CAC CTC CAA CAC AAG A
NF-«B GCC TAC CCG AAA CTC AACTTC CTC TTT GGA ACA GGT GCA GAC
Cxcll CC GAA GTC ATA GCCACACTCA GT GCC ATC AGA GCA GTC TGT
Cxcl2 GAA GTC ATA GCC ACT CTC AAG G CCT CCT TTC CAG GTC AGTTAG C
CHOP CCT GAC GAC AGA GTG TTC CAG CTC CTG CAG ATC CTC ATA CCA
CD206 CA GGT GTG GGC TCA GGT AGT TG TGG TGA GCT GAA AGG TGA
Arginase-1 CT CCA AGC CAA AGT CCT TAG AG AG GAG CTG TCA TTA GGG ACA TC
IL-10 GCCTTG CAG AAA AGA GAGCT AAA GAA AGT CTT CACCTG GC
Gapdh TCA ATG AAG GGG TCG TTG AT CGT CCC GTA GAC AAA ATG GT

2.9. Western Blot Analysis

Proteins were isolated and analyzed by immunoblotting. Briefly, the protein concen-
tration in the samples was measured, samples were prepared in SDS and sample loading
buffer, and heated for 10 min at 95 °C. Proteins were separated using 10% SDS-PAGE and
immunoblotted onto membranes. The membranes were blocked with 1% bovine serum
albumin (BSA) for 1 h and incubated with primary antibodies, including those against
Nogo-A (Abcam, catalog no. ab62024), CHOP (Santa Cruz, catalog no. sc-71136), 3-actin
(Cell Signaling Technology, catalog no. 8457s), and GAPDH (Cell Signaling Technology,
catalog no. 2118), overnight at 4°C. After a 1 h incubation with HRP-labeled secondary
antibodies (Anti-rabbit-HRP, Cell Signaling Technology, catalog no. 7074s and Anti-mouse-
HRP, Cell signaling Technology, catalog no. 7076s), the proteins were detected using
enhanced chemiluminescence (ECL, Super Signal West Dura Extended Duration Substrate,
catalog no. 34076) in an Amersham Imager 680 (GE Healthcare, Life Sciences). Blots were
quantified using Image] software.

2.10. Immunofluorescence (IF) Assay

The immunofluorescence assay was performed with modifications, as previously
described [45]. Briefly, cryosections and BMDM were washed with tris-buffered saline
(TBS) and fixed in 4% paraformaldehyde (PFA) for 10 min. After washing, the samples
were permeabilized with TBST (0.2% Triton X-100 in TBS) for 10 min and washed three
times with TBS for 5 min. Samples were blocked using 2% BSA and incubated at 4°C
overnight with primary antibodies, including rabbit anti-Nogo-A (Abcam, catalog no.
ab62024), mouse anti-CD68 (Santa Cruz Biotechnology, catalog no. ab955), mouse anti-
iNOS (Santa Cruz Biotechnology, ab49999), mouse anti-CD206 (Santa Cruz Biotechnology,
catalog no. sc-58986), mouse anti-CHOP (Santa Cruz Biotechnology, sc-71136), and mouse
anti-calnexin (Novus Biologicals, catalog no. NB300518). After three washes with TBS
for 5 min, samples were incubated with secondary antibodies (donkey anti-mouse im-
munoglobulins (Alexa Fluor 488, Abcam, catalog no. ab150105) and donkey anti-rabbit
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immunoglobulins (Alexa Fluor 555, Abcam, catalog no. ab150066) for 1 h in the dark.
The samples were mounted using ProLong™ Gold Antifade reagent containing DAPI to
visualize the nuclei (Cell Signaling Technology, catalog no. 8961s) and were analyzed by
confocal microscopy (ZEISS).

2.11. Histological Analysis

Gastrocnemius muscles from mice samples were rapidly fixed with 5% sucrose in 4%
paraformaldehyde (PFA) for 24 h and subsequently transferred into 30% sucrose in PBS
for 24 h. Samples were embedded in OCT compound for cryopreservation. Cryosections
of 5 um-thick tissues were cut for histological analysis. Sections of muscle were stained
with hematoxylin and eosin (H&E). Stained tissue sections were visualized using a light
microscope.

2.12. Measurement of Cytokine Levels

Control and notexin-treated WT and Nogo-KO gastrocnemius muscles were isolated,
homogenized and supernatants were collected after centrifugation. IL-6 and TNF-« con-
centrations were measured using Mouse IL-6 and TNF-« ELISA kit (Life Technologies
Corporation, Frederick, MD USA) according to the manufacturer’s protocol.

2.13. Flow Cytometry Analysis

BMDM were incubated for seven days and stimulated with lipopolysaccharide (LPS)
(100 ng/mL) or IL-4 (20 ng/mL) for 24 h. BMDM were collected and washed twice in
PBS and centrifuged at 1500 g for 3 min. Cells were incubated at 37 °C with primary
antibodies against iNOS (Abcam, catalog no. ab49999) and CD206 (santa cruz, catalog no.
s¢c-58986) for 1 h and were then washed with PBS. Finally, the cells were incubated with
fluorochrome-labeled secondary antibodies in PBS for 30 min. After three washes in PBS,
the cells were analyzed by flow cytometry.

2.14. Migration Assay

A migration assay was performed with modifications, as previously described [46].
Transwell chambers (6.5 mm diameter and 8 um pore size) were obtained from Corning
(catalog no. 3422). BMDM were harvested and suspended in RPMI supplemented with
10% FBS at a concentration of 2 x 10* cells/well. Cells were seeded in serum-free medium
into the upper chamber of a 24-well plate. The lower chambers were filled with RPMI
medium containing 10% FBS. Cells were incubated overnight. Cells that had migrated to
the reverse side of the Transwell membrane were fixed in 4% PFA and permeabilized with
absolute methanol. Cells were stained with H&E, and non-migrated cells were removed
using cotton swabs at which point the cells that had migrated were counted using a light
microscope.

2.15. Phagocytosis Assay

BMDM were stimulated with Alexa Fluor 488-labeled zymosan fluorescent bioparticles
(catalog no. z-23373). For flow cytometry, the BMDM were washed twice in PBS. Adherent
cells were detached as a result of incubation with trypsin-EDTA for 5 min in the incubator
and were subsequently centrifuged at 1500 x g for 3 min. Cells were placed in the incubator
and given 30 min to internalize the zymosan particles. Noninternalized particles were
removed by three washes in cold PBS. The harvested cells were then washed and fixed
in 4% paraformaldehyde. Cells were washed twice with PBS, placed in a FACS tube, and
were immediately examined by flow cytometry.

2.16. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 6.01 (GraphPad Software)
program. Statistical significance was determined using Student’s t-test. Data are expressed
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as means and standard error of the mean (SEM). The statistical significance of data is de-
noted on the graphs by asterisks (*), with p values of * p < 0.05, ** p < 0.01, and *** p < 0.001.

3. Results
3.1. Nogo-A Regulates CHOP-Mediated Pro-Inflammatory Factor Expression in C2C12 Cells

First, we investigated whether Nogo-A affects the expression of pro-inflammatory
factors in vitro. We evaluated the effects of Nogo-A using oligonucleotide small interfering
RNA (si-Nogo-A) in C2C12 myoblast cells. We assessed differentiation-induced pro-
inflammatory gene expression and found that Nogo-A knockdown led to significantly
reduced levels of CHOP, IL-6, and TNF-« (Figure 1A), as ]JB Mdzomba et al. showed that
Nogo-A antibodies inhibit inflammation [47].

A B [ Nogo-A 2 80, P
=
- DM g & HE Si-scram
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i -]
" 15, @@ Si-Nogo-A - ? ; o
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Figure 1. Nogo-A enhances CHOP expression and production of pro-inflammatory factors in C2C12 cells. (A) C2C12
cells were transfected with small interfering (si)-Nogo-A or si-scramble, after which the cells were differentiated (DM) for
3 days and then harvested for qPCR analysis of Nogo-A, CHOP, IL-6, and TNF-« expression levels. (B) Nogo-A and CHOP
antibodies were used to stain transfected C2C12 cells for immunofluorescence (IF) analysis. (C) Cell extracts were analyzed
by immunoblot (IB) analysis for Nogo-A, CHOP, and (-actin expression. (D) C2C12 cells were infected with adenovirus
plasmid encoding green fluorescent protein (Ad-GFP) and Ad-Nogo-A (60 multiplicity of infection (MOI)) for 24 h. Nogo-A,
CHOP, IL-6, and TNF-a mRNA levels were analyzed by qPCR. (E) Ad-GFP and Ad-CHOP (60 MOI) were used to infect
C2C12 cells for 24 h. qPCR analysis of CHOP, IL-6, and TNF-a expression. (F) C2C12 cells were transfected with si-CHOP
or si-control. After transfection for 36 h, the cells were differentiated for 3 days and then qPCR was performed to determine
CHOP, IL-6, and TNF-a expression. In all, 40 pg of protein was used for IB. Data are shown as the mean =+ standard error of
the mean. Statistical significance was determined using Student’s {-test. The 3-actin level was used for normalization of the
expression levels. Data are denoted by asterisks where * p < 0.05, ** p < 0.01, *** p < 0.001. Alexa Fluor (AF)-488 and AF-555
were used as secondary antibodies. Scale bar, 10 pum, x400 magnification.
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Immunofluorescence (IF) data also showed that Nogo-A silencing remarkably de-
creased Nogo-A and CHOP expression (Figure 1B). These results indicate that Nogo-A
could regulate CHOP, IL-6, and TNF-« expression in C2C12 cells.

To further assess the potential role of Nogo-A, we used an adenoviral delivery system
to upregulate Nogo-A (Ad-Nogo), after which we assessed the expression levels of Nogo-A,
CHOP, IL-6, and TNF-«. The protein levels of Nogo-A and CHOP were increased in the
Ad-Nogo-infected group relative to the control group (Figure 1C). The mRNA levels of
Nogo-A, CHOP, IL-6, and TNF-x were also significantly increased after infection with
Ad-Nogo relative to the control (Ad-GFP) (Figure 1D). These data suggest that Nogo-A
enhances activation of the CHOP signaling pathway, which could induce pro-inflammatory
gene transcription.

To examine the role of CHOP in the regulation of pro-inflammatory factor expression,
we assessed CHOP overexpression using an adenoviral delivery system (Ad-CHOP) and
CHOP knockdown using small interfering RNA (si-CHOP) in C2C12 cells. We demon-
strated that high CHOP expression by Ad-CHOP significantly promoted IL-6 and TNF-«x
mRNA expression compared with the Ad-GFP (control) (Figure 1E).

In contrast, the expression of pro-inflammatory factors was dramatically reduced by
CHOP silencing (si-CHOP) (Figure 1F), as previously described [23,48]. Moreover, LX Jia
et al. reported that the mRNA levels of IL-6, IL-13, and CCL2 were significantly decreased
in CHOP knockout mice [49]. Our results suggest that Nogo-A regulates CHOP-mediated
expression of inflammatory factors.

3.2. Nogo Deficiency Suppresses Expression of Pro-Inflammatory Factors in BMDM

We investigated the critical role of Nogo-A in inflammation in bone marrow-derived
macrophages (BMDM). We isolated BMDM from WT and Nogo-KO mice and cultured them
for seven days (Figure S1A). IF staining for the macrophage marker CD68 indicated that
the isolated cells are macrophages (Figure S1B). Using qPCR, we found that Nogo-A and
Nogo-C, but not Nogo-B, were significantly activated in BMDM that were treated with LPS
(Figure 2A). Using Western blot, we observed that Nogo-A levels were significantly elevated
in LPS-stimulated BMDM compared with control (unstimulated) BMDM (Figure 2B).

We next determined whether Nogo-A regulates the expression of pro-inflammatory
factors in BMDM from WT and Nogo-KO mice. We found that LPS-treated Nogo-KO
BMDM expressed significantly decreased mRNA levels of IL-6, TNF-«, IL-13, NF-«B,
CXCL1, and CXCL2 compared with WT BMDM, whereas iNOS was not significantly
downregulated in LPS-treated Nogo-KO BMDM compared with WT BMDM (Figure
2C-I), as previously described [50]. These results suggest that Nogo-A may be involved
in the activation of pro-inflammatory factors in LPS-treated WT BMDM. In contrast, the
expression levels of anti-inflammatory (M2) factors, including arginase-1, CD206, and IL-10,
were not significantly elevated after LPS treatment (Figure S2A-C).

We next determined the role of Nogo-A in BMDM activation using the strong M2
inducer IL-4. IF staining showed that Nogo-A was expressed in control WT BMDM but
that CD206 was not expressed in control BMDM derived from WT and Nogo-KO mice
(Figure S2D). In the IL-4-treated group, CD206 expression was slightly upregulated in
Nogo-KO BMDM compared with WT BMDM (Figure S2E). In addition, flow cytometry
showed that, after IL-4 treatment, CD206 expression was similarly elevated in Nogo-KO
BMDM compared with WT BMDM, but this difference was not significant (Figure S2F).
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Figure 2. Nogo deficiency inhibits pro-inflammatory gene expression in BMDM after lipopolysaccharide (LPS) treatment.
(A) Nogo-A and C, but not Nogo-B, are upregulated in LPS-treated bone marrow-derived macrophages (BMDM) compared
with the levels in control BMDM (n = 3). (B) IB data of control and LPS-treated BMDM. Nogo-A was increased in response to
LPS treatment in WT BMDM compared with the levels in Nogo-KO BMDM (n = 3). (C-I) mRNA levels of pro-inflammatory
factors including IL-6, TNF-«, IL-13, nuclear factor kappa B (NF-kB), iNOS, CXCL1, and CXCL2 in control and LPS-treated
WT and Nogo-KO BMDM (n = 4). In all, 30 pg of protein was used in IB. GAPDH was used for normalization. Data are
shown as the mean =+ standard error of the mean. Statistical significance was determined using Student’s t-test. Data are
denoted by asterisks, where * p < 0.05, ** p < 0.01, and *** p < 0.001.

3.3. Nogo Deficiency Suppresses CHOP Signaling and Migration of BMDM

To develop a better understanding of the molecular relationship between Nogo-A
and CHOP, we performed IF staining and found that Nogo-A was expressed in control
WT BMDM and that CHOP was not expressed in either control WT or Nogo-KO BMDM
(Figure 3A). However, when Nogo-KO BMDM were treated with LPS, CHOP expression
was downregulated relative to that in WT BMDM (Figure 3B).

In addition, we used qPCR to measure the levels of CHOP in control BMDM and in
LPS-treated BMDM. In LPS-treated Nogo-KO BMDM, CHOP expression was significantly
reduced (Figure 3C). Moreover, IF results demonstrated that Nogo-A co-localized with
calnexin, an ER marker (Figure S3A,B). These results suggest that CHOP expression is
reduced in Nogo-KO BMDM.

We next assessed whether Nogo-A affects the inflammatory response through the
inflammation inducer LPS, as determined by the migration activity of macrophages. In-
terestingly, the migration assay indicated that the migration activity of BMDM was signif-
icantly decreased in LPS-treated Nogo-KO BMDM relative to WT BMDM (Figure 3D,E).
In contrast, BMDM migration did not significantly differ between the control WT and the
Nogo-KO BMDM.
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Figure 3. Nogo deficiency inhibits CHOP signaling and migration of BMDM after LPS treatment. (A) IF results of Nogo-A
and CHOP in control WT BMDM and Nogo-KO BMDM (n = 3). Nogo-A is expressed in control WT BMDM, while
CHOP expression is absent in control WT and Nogo-KO BMDM. (B) IF results show that Nogo-A (red) and CHOP (green)
are increased in LPS-treated WT BMDM compared with the levels in Nogo-KO BMDM. (C) Level of CHOP mRNA is
upregulated in LPS-treated WT BMDM compared with LPS-treated Nogo-KO BMDM (1 = 4). (D) Migration assay using
WT and Nogo-KO BMDM (1 = 3). Nogo-KO BMDM exhibit a lower migration ability compared with WT BMDM after LPS
treatment (100 ng/mL) for 24 h. (E) Quantification of BMDM migration reveals a significantly lower migration ability in
LPS-treated Nogo-KO MMDM compared with WT BMDM (n = 3). No significant difference was observed in migration
activity between control WT and Nogo-KO BMDM. (F) Phagocytosis by macrophages from WT and Nogo-KO BMDM
after treatment with fluorescent bioparticles of the pro-inflammatory cytokine inducer zymosan (1 = 3). The numbers
of phagocytes were analyzed by flow cytometry. Data are shown as the mean =+ standard error of the mean. Statistical
significance was determined using Student’s t-test. Data are denoted by asterisks, where * p < 0.05 and *** p < 0.001. Alexa
Fluor (AF)-555 and AF-488 were used as secondary antibodies. Scale bar, 10 pm, 400 x magnification.
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Phagocytic activity is a fundamental biological mechanism of macrophages. Phagocy-
tosis with zymosan is a popular technique used by macrophages [51]. To assess the involve-
ment of the phagocytic activity of macrophages, we used an inducer of pro-inflammatory
factors (zymosan) along with Alexa Fluor 488-labeled fluorescent bioparticles. Using FACS,
we found that phagocytic activity was higher in WT BMDM compared with Nogo-KO
BMDMV, although the difference was not statistically significant (Figure 3F). These data sug-
gest that Nogo deficiency prevents the migration of BMDM derived from LPS-stimulated
Nogo-KO mice.

3.4. Nogo-A, CHOP, and Pro-Inflammatory Factors Are Upregulated in Injured Muscle

Next, we aimed to determine the role of Nogo-A in muscle inflammation. To achieve
this, we used notexin, which is a myotoxic agent used to induce muscle injury [52,53]. We
tested whether Nogo-A was activated three days after notexin-induced injury in muscle.
We found that Nogo-A levels were significantly increased in notexin-injured muscle, while
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Nogo-B was not significantly altered in either the control or the notexin-treated muscle;
however, Nogo-C was reduced in notexin-treated muscle compared with the control
(Figure 4A). Recent research has noted that retinal excitotoxicity results in the upregulation
of Nogo-A expression [47]. Our results suggest that only Nogo-A, but not Nogo-B or
Nogo-C, is activated in injured muscle.
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Figure 4. Expression of Nogo-A, CHOP, and pro-inflammatory factors is increased in muscle from notexin-treated mice.

(A) Nogo-A is upregulated in injured muscle, while levels of Nogo-B and C are not significantly altered. Notexin-injured

muscle expresses higher levels of Nogo-A compared with those in the WT control (n = 3). (B) Expression of Nogo-A, CHOP,

IL-6, and TNF-« is upregulated in notexin-injured muscle (1 = 3). (C) Notexin-injured muscle was immunostained using

antibodies against Nogo-A and CD68 (n = 3). Nogo-A is localized to muscle fibers (asterisk) and colocalizes with CD68

(arrow). (D) Notexin-injured muscle was immunopositive for Nogo-A and iNOS (n = 3). Nogo-A is localized to muscle

fibers (asterisk) and colocalizes with iNOS (arrow) 3 days after a single intramuscular injection of notexin (12.5 ug/mlL,

20 uL). Data were normalized to RNA expression of GAPDH. Data are shown as the mean =+ standard error of the mean.

The statistical significance was determined using Student’s t-test. Data are denoted by asterisks, where * p < 0.05, ** p < 0.01,
and *** p < 0.001. Secondary antibodies used were Alexa Fluor (AF)-555 and AF-488. Scale bar, 10 pum, x400 magnification.

We also found that levels of CHOP and pro-inflammatory cytokines, such as IL-6 and
TNF-«, were also elevated in the notexin-treated mice (Figure 4B). These results support
the mRNA expression of IL-6 and TNF-«. A previous study showed that CHOP contributes
to cytokine-induced pro-inflammatory responses [54].

Using immunofluorescence (IF) analysis, we found that levels of Nogo-A, cluster of dif-
ferentiation (CD)-68 (a marker of macrophages), and inducible nitric oxide synthase (iNOS)
(a pro-inflammatory marker), were increased in notexin-injured muscle (Figure 4C,D). In
addition, the mRNA levels of pro-inflammatory mediators and cytokines including iNOS,
IL-1B, and NF-«B and chemokines including CXCL1 and CXCL2 were also upregulated in
notexin-treated mice compared with untreated mice (Figure S4). Together, these results
suggest that the levels of Nogo-A, CHOP, pro-inflammatory cytokines, and chemokines
are increased in notexin-induced muscle injury.

3.5. Pro-Inflammatory Factor Expression Mediated by CHOP Signaling IS Nogo-A-Dependent

We next aimed to determine the role of Nogo-A in the regulation of the inflammatory
process. To this end, we used wild type (WT) and Nogo-knockout (KO) mice and measured
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the levels of Nogo-A and CHOP in the muscle of mice treated with notexin. An immunoblot
(IB) analysis revealed significant upregulation of Nogo-A and CHOP in WT notexin-treated
muscle relative to Nogo-KO mice (Figure 5A).
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Figure 5. Pro-inflammatory factors mediated by CHOP signaling. (A) Nogo-A, CHOP, and (3-actin protein expression levels

in muscle from notexin-treated WT mice compared with muscle from notexin-treated Nogo-KO mice (1 = 3). (B) Expression

of CHOP in injured muscle from WT mice compared with its expression in injured muscle from Nogo-KO mice (1 = 3)

by immunofluorescence (IF). (C-F) Nogo-A, CHOP, IL-6, and TNF-ac mRNA expression levels in gastrocnemius muscle

isolated from WT (1 = 3) and Nogo-KO mice (n = 3) 3 days after a single intramuscular injection of notexin (12.5 ug/mL).

Data were normalized to RNA expression of GAPDH. In all, 40 ug of protein was used for immunoblot (IB) experiments.

Data are shown as the mean + standard error of the mean. Statistical significance was determined using Student’s ¢-test.
Secondary antibodies used were Alexa Fluor (AF)-555 and AF-488. Significant data are denoted by asterisks where * p < 0.05,
**p <0.01, and *** p < 0.001. Scale bar, 10 um, x400 magnification.

Using IF, we observed higher levels of CHOP expression in WT muscle compared
with Nogo-KO muscle after notexin treatment (Figure 5B). We also found significantly
higher levels of Nogo-A mRNA in notexin-treated WT muscle compared with untreated
control WT muscle (Figure 5C). CHOP, IL-6, and TNF-a mRNA levels were significantly
elevated in notexin-treated WT muscle compared with notexin-treated Nogo-KO muscle,
while IL-6 levels were increased in WT control mice compared with Nogo-KO control mice
(Figure 5D-F). A previous study showed that Nogo-A antibody treatment decreased the
expression of inflammation-related genes [47]. These results suggest that absence of Nogo-
A reduces CHODP, IL-6, and TNF-o expression. We have done ELISA to confirm the IL-6
and TNF-« released (Figure S5). H&E staining showed that inflammatory cells infiltrated
in notexin-treated WT and Nogo-KO mice compared with control groups (Figure S6).

To further examine the role of Nogo-A in ER stress, we administered a single dose
(1 pg/kg) of tunicamycin, a pharmacological ER stress inducer, via intraperitoneal (IP)
injection into WT and Nogo-KO mice. Using qPCR, we found that the levels of Nogo-
A, CHOP, IL-6, and TNF-« were significantly low in Nogo-KO mice compared to WT
(Figure 6A-D).
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Figure 6. Tunicamycin-induced endoplasmic reticulum (ER) stress was mediated by the Nogo-
A-CHOP pathway. (A) The Nogo-A expression level is upregulated in the skeletal muscle of
tunicamycin-treated WT mice compared with Nogo-KO mice. (B) CHOP is highly expressed in
tunicamycin-treated skeletal muscle of WT mice compared with Nogo-KO mice. (C,D) IL-6 and TNF-
« are highly expressed in skeletal muscle of tunicamycin-treated WT mice compared with skeletal
muscle of Nogo-KO mice. Data are shown as the mean + standard error of the mean. Statistical
significance was determined using Student’s ¢-test. Data are denoted by asterisks where * p < 0.05, **
p <0.01, ** p < 0.001.

3.6. Expression of Nogo-A, CHOP, and Pro-Inflammatory Factors Is Increased in Mdx Mice and
Human DMD Patients

We assessed the activation of Nogo-A and CHOP in a DMD mouse model (mdx
mice). Western blot showed that Nogo-A and CHOP protein levels were dramatically
upregulated in mdx mice (Figure 7A). In mdx mice, we found that the mRNA levels of
Nogo-A, CHOP, IL-6, and TNF-« were also significantly increased compared with those in
WT mice (Figure 7B), as previously reported [55,56]. Inflammatory mediators have also
been shown to participate in fibrosis in mdx mice [57]. These data suggest that Nogo-A,
CHOP, IL-6, and TNF-o expression is increased in mdx mice compared with WT mice.

To verify the clinical relevance of higher expression of Nogo-A, CHOP, and pro-
inflammatory genes in DMD patients, we performed an immunoblot analysis and qPCR.
Using Western blot, we observed significantly increased levels of Nogo-A and CHOP in
DMD patient samples compared with healthy donors (Figure 7C). Finally, we found that
myopathy and DMD patients group (n=10) had significantly elevated levels of Nogo-A,
CHOP, IL-6, and TNF-a mRNA compared with healthy subjects group (n=5) (Figure 7D).
Taken together, these data suggest that Nogo-A promotes inflammation in both mdx mice,
myopathy and DMD patients.
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Figure 7. Nogo-A, CHOP, and pro-inflammatory factors are upregulated in mdx mice and Duchenne muscle dystrophy
(DMD) patient samples. (A) IB analysis of Nogo-A, CHOP, and f3-actin in the skeletal muscle of WT and mdx mice. (B)
gqPCR analysis of mRNA from the skeletal muscle of 12-week-old WT and mdx mice (n = 4). (C) Tissue extracts from DMD
and myopathy patients and normal subjects were used in the IB analysis with Nogo-A, CHOP, and f3-actin antibodies. (D)
The gPCR analyses were performed on biopsy samples of DMD and myopathy patients and normal subjects. (E) Proposed
model of the role of Nogo-A in the regulation of inflammation. Nogo-A is activated in muscle from notexin-treated mice,
mdx mice, DMD patients and in LPS-treated BMDM. Subsequently, Nogo-A expression may be accompanied by CHOP
activation and can also activate pro-inflammatory cytokines and chemokines in injured or degenerated muscle and in
LPS-stimulated BMDM. We conclude that Nogo-A exerts inflammatory effects. In all, 40 ug of protein was used for the IB
experiments. The statistical significance was determined using Student’s {-test. Error bars represent the standard error of
the mean. Data are denoted by asterisks where * p < 0.05, ** p < 0.01, and *** p < 0.001.

4. Discussion

Here, we discussed our understanding of the inflammatory mechanisms of Nogo-A
in different models. Based on our results, we summarized the regulation of Nogo-A in
inflammation in Figure 7E. An earlier study has shown that Nogo-A was upregulated in
skeletal muscles of patients with Amyotrophic lateral sclerosis (ALS) and experimental
models of ALS [39]. Moreover, it has also been stated that Nogo-A was remarkably
elevated in muscles of ALS patients in type I fibers which are associated with the severity
of nerve damage [40]. In addition, previous results showed that the ER stress proteins
including CHOP were upregulated in gastrocnemius muscle of SOD1 murine model of
ALS [58]. CHOP is ER stress marker protein that acts as a transcription factor resulting in
regulation of pro-inflammatory cytokines [14,23]. Relying on these findings, we designed
our experiments to examine the expression level of Nogo-A, CHOP and inflammatory
cytokines in in vitro and in vivo models.

To examine the possible role of Nogo-A in ER stress and inflammation in murine
myocytes (C2C12), we knocked down Nogo-A using si-RNA specific for Nogo-A. In
addition, we overexpressed Nogo-A in C2C12 using adenovirus. Results showed that
Nogo-A is highly expressed during 3 days of differentiation. Interestingly, knocking
down of Nogo-A during 3 days of differentiation resulted in remarkable reduction in
mRNA expression level of CHOP and pro-inflammatory cytokines such as IL-6, and TNF-«
(Figure 1A). A previous study also stated that Nogo-A silencing led to the downregulation
of IL-6 and TNF-« in LPS-stimulated PC12 cells [50] which is consistent with our result,
however cell line is different. Moreover, immunofluorescence (IF) staining of Nogo-A
knocked down in C2C12 showed a significant decrease in CHOP expression compared to si-
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scram (Figure 1B). On the contrary, adenovirus-based overexpression of Nogo-A (Ad-Nogo)
in C2C12 cells led to the increased mRNA expression of CHOP, IL-6, and TNF-« and protein
levels of Nogo-A and CHOP were elevated in the Ad-Nogo-infected group (Figure 1C,D).
According to the aforementioned data, silencing of Nogo-A results in decreased expression
of CHOP, IL-6 and TNF-«, while overexpression of Nogo-A results in increased expression
of CHOP, IL-6 and TNF-«. These findings show the strong relationship among Nogo-A,
CHOP and pro-inflammatory cytokines.

In order to verify that CHOP regulates downstream expression of inflammatory cy-
tokines in C2C12, overexpression and silencing of CHOP was performed (Figure 1E,F).
Overexpression was done using Ad-CHOP which led to an increase in mRNA expres-
sion levels of IL-6 and TNF-«, as previously reported [59]. In contrast, CHOP silenc-
ing using si-CHOP dramatically reduced the expression of IL-6 and TNF-«. Previous
studies have shown that the inflammatory response was significantly reduced in CHOP
knockout mice [23,48,49]. These results indicate that CHOP regulates the expression of
pro-inflammatory cytokines in C2C12 cells.

Pro-inflammatory macrophages release greater levels of chemical substances including
pro-inflammatory cytokines, enzymes, and chemokines such as IL-6, IL-13, TNF-«, iNOS,
CXCL1, and CXCL2 [8,60]. TNF-« is mainly induced by activation of M1 macrophages
and can lead to the expression of other cytokines by M1 macrophages, including IL-6,
and can regulate the inflammatory process [61,62]. Real time PCR and Western blot
are good techniques for measuring the expression levels of Nogo-A, CHOP and pro-
inflammatory cytokines in the whole injured skeletal muscle. However, these techniques
cannot differentiate if the expression of Nogo-A, CHOP and pro-inflammatory cytokines
are by muscle cells or inflammatory cells. Our IF staining showed that increased expression
of Nogo-A and CHOP not only by myofibers but also by activated muscle macrophages
(Figure 4C,D).

Muscle-resident macrophages can generate from multiple origins such as embry-
onic or adult hematopoiesis and they play vital roles in regulating biological processes
including tissue remodeling, tissue homeostasis, tissue repair and immune responses [63].
Although the origins of bone marrow-derived macrophages (BMDM) and tissue-resident
macrophages are not exactly the same, functions are similar in both types of macrophages.
When BMDM are activated and stimulated by LPS they generate the pro-inflammatory
cytokines that are also produced by tissue-resident macrophages. We therefore isolated
macrophages from bone marrow of WT and Nogo-deficient mice before differentiating
and stimulating them with lipopolysaccharide (LPS) to confirm that Nogo-A has the same
function of regulating CHOP and pro-inflammatory cytokines expression in macrophages
as in muscle cells.

Expression of Nogo-A, CHOP and pro-inflammatory cytokines were compared be-
tween WT and Nogo-deficient BMDM. Interestingly, WT BMDM responded to LPS stimu-
lation by significantly high expression of Nogo-A, CHOP and pro-inflammatory mediators
and cytokines compared to Nogo-KO BMDM. Moreover, iNOS and NF-«B pathways that
contribute to cytokine induction were found to be upregulated in WT BMDM comparing
to Nogo-KO BMDM (Figure 2). These findings confirmed that Nogo-A is essential for
activation of inflammation in BMDM as well as injured muscle. Additionally, Nogo-C
mRNA expression level was higher than Nogo-A in LPS-stimulated BMDM. This find-
ing might suggest a possible synchronization between Nogo-A and C in stimulation of
BMDM. However, Nogo-C was downregulated in notexin-injured muscles while Nogo-A
was elevated (Figure 4A). Depending on this finding we can understand that Nogo-A
regulates inflammation in injured muscles, particularly myofibers, while stimulation of
inflammation in macrophages is regulated by Nogo-A as well as Nogo-C. Nogo-C elevation
in macrophages could be due to apoptosis, as previously described [37].

In the current study, it is suggested that Nogo regulates chemotaxis in response to
LPS. The mRNA expression for CXCL1 and CXCL2, major chemokines which are involved
in chemotaxis and spreading of cell, are also significantly reduced in Nogo-KO BMDM
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(Figure 2H,I). In addition, previous research has shown that cytokine secretion facilitates
macrophage migration [64]. Our data showed that migration activity of LPS-treated WT
BMDM is significantly higher than Nogo-KO BMDM (Figure 3D,E). Therefore, Nogo-A
may affect the migration of macrophages in LPS-stimulated BMDM. We hypothesized that
an increased number of pro-inflammatory macrophages after stimulation of WT BMDM by
LPS may be linked to increased phagocytosis. Moreover, our phagocytosis assay revealed
a higher trend of phagocytic activity in WT BMDM compared with Nogo-KO BMDM
(Figure 3F). Taken together, our data suggest that Nogo-A may regulate the migration and
phagocytic activity of macrophages in LPS-stimulated BMDM.

In this study, investigation of notexin-injured muscles revealed increased expression
of Nogo-A, CHOP, and pro-inflammatory factors in WT mice three days after notexin
treatment (Figure 4). However, notexin-treated Nogo-KO muscles caused a reduction in
CHOP expression and inflammatory cytokines compared to WT injured-muscle (Figure 5).
Previous study showed that Nogo-A shapes and stabilizes ER tubules [26]. Thus, loss of
Nogo-A might affect production of ER-related proteins including CHOP which results
in reducing inflammation. Previous work has shown that cytokines induce ER stress
in vitro, as observed by increased levels of CHOP [65]. Similarly, our results suggest that
upregulation of IL-6 and TNF-« in injured muscle is associated with CHOP induction and
may partially involve Nogo-A in the inflammatory process.

Mice were injected with tunicamycin which is a chemical that is used to induce
ER stress [66]. Real time PCR showed upregulation of Nogo-A mRNA expression in
tunicamycin-treated WT muscle comparing to non-treated WT muscle (Figure 6A). How-
ever, tunicamycin-treated Nogo-KO muscle showed low expression levels of CHOP, IL-6
and TNF-« comparing to tunicamycin-treated WT muscle (Figure 6B-D). These results
show the significance of Nogo-A in induction of ER stress and that absence of Nogo-A
ameliorates muscle inflammation due to ER stress.

In our recent study, we showed that Nogo-A was significantly elevated in mdx
mice [67]. Investigation of the skeletal muscle in mdx mice showed increased mRNA
of Nogo-A, CHOP, IL-6, and TNF-oc compared with WT mice (Figure 7B). Moreover, West-
ern blot result also showed increased protein expression of Nogo-A and CHOP in mdx
mice compared with WT mice (Figure 7A). Our data suggest the critical role of Nogo-A in
regulation of ER stress and inflammation in a muscular dystrophy model.

Muscle biopsies from myopathy and DMD patients had significant increases in Nogo-
A, CHOP, IL-6, and TNF-o expression at both the mRNA and protein levels (Figure 7C,D).
In mdx mice and DMD patients, elevated levels of pro-inflammatory cytokines were
observed in the blood at pre-symptomatic stages of the disease [12,55,56,68]. Thus, the
release of specific pro-inflammatory cytokines may stimulate the production of reactive
oxygen species (ROS), which would enhance cellular damage in DMD [12]. Our findings
suggest that Nogo-A contributes by regulating the inflammatory process for injured muscle
which might affect muscle regeneration.

5. Conclusions

In summary, our results demonstrated that silencing of Nogo-A resulted in alleviation
of CHOP and pro-inflammatory cytokines in C2C12. Overexpression of Nogo-A in C2C12
led to increased mRNA expression of CHOP, IL-6, and TNF-«. LPS-stimulated Nogo-
deficient macrophages showed lower expression of CHOP and pro-inflammatory cytokines.
Nogo-A was markedly upregulated in notexin-injured WT muscle compared to non-injured
WT muscle. The expression levels of CHOP and pro-inflammatory cytokines were low in
notexin-injured Nogo-KO muscle compared to injured WT muscle. Nogo-A was markedly
upregulated in tunicamycin-injured WT muscle compared to non-injured WT muscle. The
expression levels of CHOP and pro-inflammatory cytokines were low in tunicamycin-
injured Nogo-KO muscle compared to injured WT muscle. Expression of Nogo-A, CHOP
and pro-inflammatory cytokines were significantly high in mdx muscle and DMD patients
muscles. Our findings indicate that Nogo-A might be a potential therapeutic target for the
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treatment of inflammatory diseases, such as myopathies, but more studies are needed to
better understand the mechanisms of Nogo-A in inflammatory diseases.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/2073-440
9/10/2/282/s1, Figure S1: Isolation of bone marrow-derived macrophages (BMDM) from WT and
Nogo-KO mice, Figure S2: Expression of anti-inflammatory factors in BMDM, Figure S3: Nogo-A
co-localized with calnexin, an endoplasmic reticulum (ER) marker in BMDM, Figure S4: Expression
of pro-inflammatory markers in the gastrocnemius muscle from notexin-treated mice, Figure S5:
Nogo regulates pro-inflammatory cytokines in notexin-induced muscle damage in mice, Figure Sé:
Histological features of control and notexin-treated muscle in WT and Nogo-KO mice.
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