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Abstract: In adult stem cells, Glycogen Synthase Kinase 33 (GSK3p) is at the crossroad of signaling
pathways controlling survival, proliferation, adhesion and differentiation. The microenvironment
plays a key role in the regulation of these cell functions and we have demonstrated that the GSK3f3
activity is strongly dependent on the engagement of integrins and protease-activated receptors (PARs).
Downstream of the integrin o531 or PAR; activation, a molecular complex is organized around
the scaffolding proteins RACK1 and (-arrestin-2 respectively, containing the phosphatase PP2A
responsible for GSK3f3 activation. As a consequence, a quiescent stem cell phenotype is established
with high capacities to face apoptotic and metabolic stresses. A protective role of GSK3f has been
found for hematopoietic and intestinal stem cells. Latters survived to de-adhesion through PAR;
activation, whereas formers were protected from cytotoxicity through «53; engagement. However,
a prolonged activation of GSK3f3 promoted a defect in epithelial regeneration and a resistance to
chemotherapy of leukemic cells, paving the way to chronic inflammatory diseases and to cancer

resurgence, respectively. In both cases, a sexual dimorphism was measured in GSK33-dependent
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The Glycogen Synthase Kinase 33 (GSK3f3) is an ancestral protein kinase, ubiquitously
expressed, which controls many cellular functions [1]. Inhibited in basal conditions, GSK3{3
is activated under stress and can drive cells to death or to survival depending on its sub-
cellular localization and specific partners. GSK3f has been found activated in pathologies
such as inflammation and cancer where the deregulation of adult stem cells plays a critical

role [2]. Here, we will summarize some key GSK3[-dependent regulations of adult stem
cells and their consequences on the behavior of hematopoietic and intestinal stem cells, as
examples. We will highlight the importance of adhesion and protease-activated receptors
engagement in the activation of signaling pathways conducting to GSK3f activation. Fi-
nally, we will discuss the positive and negative aspects of GSK3 activation in pathological
conditions and the benefit to consider GSK3f3 as diagnostic marker and therapeutic target
for a precision medicine.
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2. GSK3p as a Sensor of the Adult Stem Cell Niche

Adult stem cells are in charge of tissue regeneration along the life of organisms. This
is the reason why they must be protected from stressors leading to cell death or exhaustion.
The microenvironment of adult stem cells, namely “niche”, supports this protective role
offering in particular an adhesive anchorage and proper metabolic exchanges [3]. However,
aging and exogenous aggressions decrease the niche capacities to control stem cell behavior
and thus favor pathogenesis.
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Attribution (CC BY) license (https://
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Facing stress, adult stem cells could undergo apoptosis, or exhaustion through acceler-
ated differentiation, or senescence, or tumor transformation. As a first step, stem cells must
survive and cope with nutrient or oxidative stress. Through its strategic locations in the
cell (plasma membrane, endoplasmic reticulum, mitochondria, nucleus), and in response
to various signals, GSK3 is able to control death-signaling pathways at the membranes,
energetic metabolism and gene transcription [1]. Thus, a resistant quiescent stem cell
phenotype is established. It is linked to a strong anchorage to extracellular matrix and
supporting cells in the niche, as well as a low energetic metabolism [4,5].

GSK3p acts as a key sensor of cell metabolism and its activation allows energetic
supply and anti-oxidant defenses in a low-glucose microenvironment [6]. Indeed, in basal
conditions, Insulin receptor-signaling complex inhibits GSK3f to release glycogenesis and
Nrf2-dependent anti-oxidant systems. In addition to its role in survival of adult stem cells,
active GSK3p prevents ROS-induced differentiation or senescence [7].

As recapitulated in Figure 1, GSK3f plays a central role in the adaptation of adult
stem cells to their microenvironment allowing their long-term maintenance during the
whole life of the organism.
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Figure 1. Multiple cellular localization of GSK3f activation and consequences on stem cell status.
At the plasma membrane, GSK3p is critical to counteract death-signaling pathways induced by
cytokines and adhesion changes in injured microenvironment. In case of nutrient or oxidative
stresses, GSK3p can adjust metabolic activities in the endoplasmic reticulum and in mitochondria.
Cell survival and metabolism are tightly linked and their cross-regulation is particularly important
in subcellular compartments where GSK3f is found. In the nucleus, GSK3p —modulated gene
transcription contributes to shape the resistant phenotype of stem cells. Localized signaling activities
responsible for GSK3f activation are complex as well as the relationship between them [1]. PM:
Plasma membrane; ER: Endoplasmic reticulum; Mi: Mitochondria; Nu: Nucleus.

3. GSK3p and Key Functions of Adult Stem Cells

The implication of GSK3f activation in adult stem cell regulation has first been
identified for self-renewal function. Indeed, as a serine-threonine kinase, GSK3{ is able to
phosphorylate 3-catenin, targeting it to the proteasome for degradation and blocking its
translocation to the nucleus, normally required for stem cell renewal [8]. In the nucleus,
-catenin is a partner of the transcription factor TCF which promotes self-renewal, a
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proliferative mode maintaining tissue stem cells. Thus the activation of the GSK3{ pool
associated with 3-catenin in the cytoplasm can push stem cells towards a quiescent state.

Another important aspect of GSK33-dependent regulation of stem cells is the control of
cell differentiation. Active GSK3f can influence the balance between energetic/proliferative
and differentiation pathways through the activation of mTOR negative regulators [9] and
the degradation of transcription factors promoting lineage commitment [10]. As a result, un-
differentiated state of tissue progenitors is favored. Here, it is important to note that GSK3{3
inhibition has a different impact in adult stem cells and their progeny [11-13], suggesting
that the regulation of GSK3 is tightly dependent on microenvironment specificities.

Migration of adult stem cells is crucial to tissue repair and tumor transformation.
Active GSK3p participates to the turnover of focal adhesions built by adhesion receptors
(integrins, cadherins), promoting cell migration [14]. This could contribute to cell plasticity
allowing transitions between different lineages and epithelial-mesenchymal transition [15].

Advantages conferred by a GSK3{3-dependent plasticity could also be critical for
stem cell survival. At both plasma membrane and nucleus, active GSK33 promotes a
switch in death receptor and nuclear factor-«B (NF-«kB) activities, respectively. Under the
influence of active GSK33, a signaling complex (DDX3/cIAP-1) is established downstream
of death receptors, promoting cell survival instead of cell death [16]. In addition, GSK3f3
phosphorylates the p65 subunit, inducing an IkB-independent activation of NF-«B [17].
The GSK3p-dependent activation of NF-«B triggers the transcription of a specific set of
genes [18]. Furthermore, NF-«B target genes are under a GSK3[3-dependent epigenetic
control [19].

All these GSK33-dependent functions could be critical in stem cells and depend on
different pools of GSK3p (Figure 2). It should be noted that certain types of stem cells
require a very tight control of GSK3f activity, such as neural stem cells pushed to cell death
by autophagy in case of over-activation of GSK34 [20].
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Figure 2. Key cellular functions potentially regulated by active GSK3p in adult stem cells: Survival
(green) and plasticity (blue) are promoted and metabolism/proliferation/differentiation (red) are
decreased. Depending on the environment, signal transduction at the plasma membrane can trigger
GSK3p activation, by the inhibition of its kinase-dependent phosphorylation or the activation of
its phosphatase-dependent de-phosphorylation, for example [1]. Inside the cell, active GSK3f3
can be found in different molecular complexes and its trafficking between them is poorly known.
These pools of GSK3f can be independently activated or inhibited and little is known on their
coordinated activation.
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4. Integrin-Dependent Activation of GSK3f in Leukemia

A number of works have demonstrated the major role of GSK3f in hematopoietic
stem cells homeostasis [21]. By regulating both (3-catenin and mTOR signaling, GSK3f3
controls hematopoietic stem cell renewal and differentiation, respectively. As a result,
inhibition of GSK3f3 promotes the expansion of hematopoietic stem cells and their better
engraftment [22], whereas activation of GSK3 is associated with differentiation blockade
and egress from the hematopoietic niche [13].

GSK3p has been found activated in many cancers, among them leukemia [23]. In
leukemia stem cells, GSK3[3 controls survival, proliferation and differentiation [21]. How-
ever, GSK3f inhibition impacts leukemic stem cells survival in an opposite way to their
normal counterparts [22]. We have found GSK3{ activation in a subset of leukemic cells
independent from Akt kinase for their survival, after adhesion onto fibronectin [24-26].
Importantly, adhesion of leukemic progenitors to the hematopoietic niche (osteoblasts),
has triggered both GSK3f3 activation and resistance to cytotoxic drugs [24,26]. GSK3[3 was
found associated in a complex with the «s integrin, the scaffolding protein RACK1, and the
phosphatase PP2A responsible for its activation through serine 9-dephosphorylation [25].

Adhesion-dependent activation of GSK3f controls the survival of leukemic progeni-
tors through multiple pathways such as the activation of NF-«B independently from IxB
variations [24], the resistance to tumor necrosis factor-« [25] and the modulation of Wnt
pathway through the up-regulation of secreted Frizzled-related protein-1 [24]. As a result,
a very resistant and quiescent phenotype of cancer stem cell is established.

A major observation is that leukemic stem cells (CD34* CD38" CD123*, acute myeloid
leukemia) surviving through the GSK3f3 pathway are from female patients [26]. Interest-
ingly, GSK3[3-dependent survival has also been measured in leukemic stem cells from male
diabetic patients [unpublished results]. Leukemic stem cells from female patients have
been characterized by an up-regulation of the expression of RACK1 [26]. Strikingly, normal
hematopoietic stem cells from male donors, but not those from females, have been found
dependent on the GSK3f pathway to survive [26]. This is a demonstration of the strong
capacities of cancer stem cells to hijack plasticity to develop tumors in a physiological
niche [27]. However, other acute myeloid leukemia subsets do not depend on GSK3f to
survive and are capable to transform their microenvironment in a leukemic niche with
benefits for their development [28].

The Figure 3 recapitulates data on integrin-dependent GSK3f activation in leukemic
stem cells.
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Figure 3. Integrin-dependent activation of GSK3f and leukemic stem cell resistance. Adhesion of



Cells 2021, 10, 225

50f12

leukemic stem cells to fibronectin or to osteoblasts triggers the formation of a molecular complex
around the adaptor protein RACK1 associated to the cytoplasmic domain of integrin. In this molecu-
lar complex, GSK3p is activated through its de-phosphorylation by the phosphatase PP2A. Thus,
leukemic stem cell resistance to cytotoxic stress is promoted by different mechanisms, among them
NF-kB activation. Of note, the dependence of hematopoietic stem cells to GSK3{ displays a sexual
dimorphism that is switched upon leukemogenesis.

5. GSK3p in the Colon Crypt: Role and Controls by Proteases and Their Receptors

Is the protective role of GSK3p in hematopoietic cells applicable to other adult stem
cells? Pathologies such as inflammatory bowel diseases (IBD) and colorectal cancer (CRC)
are characterized by a high activity of GSK3p in epithelial cells and their microenviron-
ment [29-31], but the etiology of this over-activity is poorly understood.

In IBD and CRC, epithelial stem cells, located in a cryptic niche, play a critical role
since tissue regeneration is impaired either by down-regulation or by deregulation, respec-
tively. Concomitant with their role in epithelial barrier, adhesive molecules are implicated
in regeneration, and the remodeling of the adhesive support is critical for the behavior
of stem cells [32]. The dual role of the GSK3f3-regulated 3-catenin both in support of the
cadherin-adhesive function and in TCF-transcription activity is critical for the colon stem
cell homeostasis [33]. In colorectal cancer cells, active GSK3p associated with mutated
APC is not efficient to promote (3-catenin degradation, resulting in Wnt signaling dereg-
ulation and increased proliferation. In addition, active GSK3[3 promotes survival and
drug resistance [34-36] and the degradation of Hath1, transcription factor essential to the
differentiation of the secretory lineage [10].

Proteases are expressed in large amounts during inflammation and cancer [37-41].
They can either modify the niche of stem cells through the release of growth factors or the
proteolysis of extracellular matrix, or signal through specific receptors, namely protease-
activated receptors (PARs) [41]. Our study by immunofluorescence has demonstrated the
expression of PAR, and PAR;, two members of the PAR family implicated in IBD and CRC,
along the human or murine colon crypt and in colon stem cells (Lgr5*, Sox9") [42]. Other
groups have measured gene expression of PAR; in intestinal and colon stem cells [43,44].
In murine organoid assays, PAR; activation has been found critical to protect colon progen-
itors from anoikis [42]. PAR; activation has induced a decrease in proliferation of epithelial
progenitors, by contrast with PAR; [42]. Downstream of PAR; activation, a signaling
pathway implicating (3 arrestin-2, PP2A and GSK3{ has been triggered and regulated by
the cytoskeleton organizer Rho, pushing colon stem cells towards a quiescent and resistant
phenotype. This quiescence could result from GSK33-dependent 3-catenin degradation
and/or the increased expression of the DUSP6 phosphatase, a negative regulator of ERK
signaling [42]. Interestingly, it has been shown that active GSK3f could positively regulate
the phosphatase PP1 [45] which stabilizes the co-transcription factor YAP downstream of
PAR; to promote epithelial survival and regeneration in response to injury [46].

Importantly, as for hematopoietic stem cells, a sexual dimorphism in PARy-dependent
GSK3p activation in colon stem cells has been observed [47]. The PAR, /GSK3{ pathway
has been triggered in colon progenitors from male mice, whereas females have displayed a
PAR; /AKT pathway. Moreover, PAR; has been shown to control specific gene expression
in males and females, i.e., Itga6 and Timp2, respectively.

Thus, active GSK3 has a protective role for adult stem cells from both mesenchymal
and epithelial origin, acting as a sensor of their niche, and under plastic regulation in
both sexes.

The Figure 4 summarizes data on PAR;-dependent regulation of GSK3f in colon
stem cells.
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Figure 4. PARj-dependent activation of GSK3f in normal colon stem cells. PAR; activation by
protease-dependent cleavage can induce a {3 arrestin-dependent signaling pathway resulting in
GSK3p activation through its de-phosphorylation by the phosphatase PP2A. This signaling pathway
is controlled by the Rho kinase activated by adhesive stress. Gene transcription of integrins, metal-
loproteases (MMP) and their inhibitors (TIMP), is regulated by the PAR; /GSK3f pathway. Active
GSK3p counteracts stress-induced apoptosis by multiple mechanisms (see Section 3, “GSK3{ and
key functions of adult stem cells”). In the physiology of colon stem cells, the pro-survival signaling
of PAR; is sexually dimorphic depending on GSK3f or on Akt.

6. Consequences of Prolonged GSK3f Activation in Inflammation and Cancer

GSK3p activation has a protective role for adult stem cells through its capacity to
switch them towards a quiescent and resistant phenotype. However, in a deregulated
microenvironment, prolonged or iterative activation of GSK3{ can be deleterious. Factors
responsible for deregulated microenvironment include chronic inflammation with high
levels of cytokines and proteases, persistent matrix remodeling and metabolic changes. It is
thus clear that the restoration of a stem cell niche with physiological functions of integrins
and protease-activated receptors is critical to control GSK3f3 activity.

In inflammation, long-term GSK33 activation should be deleterious through a decrease
of regenerative capacities. Indeed, after acute inflammation, stem cells maintain their
quiescent phenotype showing decreased proliferation and migration, as well as poor
differentiation. In addition to immunity control, tissue regeneration is a major aim in IBD
therapy [48].

Prolonged GSK3f activation in inflammatory niche could maintain abnormal stem
cells, avoiding apoptosis (i.e., mitotic catastrophe). As a result, stem cells accumulating
mutations or chromosomal aberrations reside in the tissue until the release of their dormant
state by epigenomic or genomic changes inducing proliferation [4]. These pre-cancerous
stem cells are characterized by genomic instability and re-expression of embryonic genes,
as well as dependence to the normal niche [49]. Such pre-leukemic stem cells with high
GSK3p activity have been described in transition to cancer stem cells with deregulated
B-catenin [50]. Importantly, due to the different pools of GSK3f3, an aggressive cancer
stem cell can cumulate both active GSK3f3-dependent survival and 3-catenin-dependent



Cells 2021, 10, 225

7 of 12

self-renewal deregulation. Indeed, we have measured higher clonogenic capacities of
leukemic progenitors displaying GSK3p-dependent drug resistance [26].

The capacity to activate GSK3f3 in adult stem cells could be the property of specific
receptors after their binding to matrix proteins (a5, ; integrins, [25,51]) or their protease-
dependent cleavage (PARj, [42]). Also, the GSK3f3 activation could result from the dialog
between integrins and PAR; [42,52]. The 5 and «; integrin-binding proteins, fibronectin
and collagen respectively, and PAR; have been implicated in cell plasticity [53-55]. Pro-
longed GSK3p activation could induce a switch in stem cell identity that influences the
responses to the microenvironment, paving the way to tumor transformation [56] (Figure 5).

Nighe

Deficient surviving <
stem cell

REGENERATION TUMOR
BLOCKADE TRANSFORMATION

Figure 5. Potential impact of prolonged GSK3 activation on regenerative functions of adult stem
cells. Upon chronic inflammation, increased activation of GSK3f could result in a deregulation of the
regenerative properties of adult stem cells (defect in tissue repair, tumor transformation). As sensors
of the injured stem cell niche, adhesion and protease-activated receptors (Integrins, PARs) could play
a crucial role in the sustained activation of GSK3f3.

7. GSK3p as a Target for Precision Medicine

GSK3p has an important theranostic potential in pathologies where stem cells are
deregulated, such as inflammation [57] and cancer [58]. It seems that the activated GSK3(3
signature could involve subsets of pathological progenitor/stem cells depending both on
their membrane receptors and the adhesive and protease activities in their niche. For exam-
ple, GSK3p has a key oncogenic role in leukemia with MLL mutations [50] and intestinal
neuroendocrine tumors [59]. Interestingly, the cancer stem cells in those pathologies could
be developed from early progenitors [60] through the dialog with an inflammatory [61,62]
and neurologic-deficient [63,64] microenvironment.

Clinical parameters as gender, age and metabolic status of patients should strongly in-
fluence therapeutic decisions aiming to target GSK3f in inflammatory and cancer diseases.
We have seen above that the sexual dimorphism occurring in GSK3[3-dependent regulation
of adult stem cells could be inversed during the transition from inflammation to cancer.



Cells 2021, 10, 225

8 of 12

Also, aging and obesity could modify cell responses to insulin and to stresses. Therefore,
therapeutic targeting of GSK3f3 must be thought as a personalized medicine.

Measurement of the activity of GSK3 is complex due to its different cellular pools
with independent regulations. However, when human samples are available, 2D or 3D
stem cell cultures with controlled addition of growth factors represent good investigating
tools for pre-clinical assays with adhesive conditions akin to the tissue architecture [26,42].
Also, active GSK3 imaging agents are in development for positron emission tomography
as a diagnostic tool but require yet a sufficient knowledge of pathways governing GSK3f3
regulation [65].

Natural and synthetic GSK3 inhibitors with different modes of action are already com-
mercialized and some of them are in clinical trials for the treatment of neurodegenerative
diseases and cancer [65,66]. We and others have found that natural compounds and their
derivatives are potential drugs to kill cancer stem cells through GSK3f inhibition [67,68].
It is important to note that GSK3 inhibitors represent also interesting therapeutic tools
to restore normal niche functions [69]. Thus, targeting both stem cells and their niche is
crucial to restore physiological tissue regeneration (Figure 6).

Pathological
stem cell

Natural
Synthetic

drugs

GSK3p
inhibited

Cell cycle
restored

Figure 6. Therapeutic targeting of GSK3 in pathologic stem cells and their niche.

8. Conclusions and Future Directions

GSK3p is a master kinase in the regulation of adult stem cells through the control of
common mechanisms in different cells such as hematopoietic and intestinal stem cells. It
is a critical sensor of the microenvironment allowing important phenotypic changes in
stem cells for their adaptation and their maintenance. Our previous work demonstrated
that the GSK3f3 activation is supervised by a balanced control between adhesion and
protease-activated receptors in the regulation of adult stem cell behavior.

However, the protective role of GSK3f3 can be perverted in pathogenesis by the
maintenance of stem cells with functional deficits and genetic aberrations. This is the reason
why the interest for GSK3f as a therapeutic target continues to grow with increased rate of
publications and pre-clinical trials. In inflammation and cancer, targeting of GSK3{ could
restore a normal interaction of stem cells with their microenvironment and consequently
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homeostatic tissue regeneration. An increasing number of studies now strongly suggests
that therapeutic targeting of GSK33 must take into account clinical parameters such as
gender and metabolic status of patients.

Progress is required both in fundamental and clinical research to improve our knowl-
edge of GSK3f3. As an ancestral kinase of the stress response in eukaryotes, attention
should be drawn towards works on its orthologue shaggy in drosophila and other primi-
tive organisms. Indeed, to cope with stress, vertebrate adult stem cells develop mechanisms
based on ancient roots. Also, for a theranostic purpose, diagnostic and therapeutic tools
specific for GSK3f3 versus its isoform GSK3o are necessary. Rapid advances in the research
about neurodegenerative disorders should offer opportunities in this field.
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