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Abstract: Biological systems are dynamic systems featuring two very common characteristics; Initial 

conditions and progression over time. Conceptualizing this on tumour models it can lead to im-

portant conclusions about disease progression, as well as the disease’s “starting point”. In the pre-

sent study we tried to answer two questions: (a) which are the evolving properties of proliferating 

tumour cells that started from different initial conditions and (b) we have attempted to prove that 

cell proliferation follows chaotic orbits and it can be described by the use of Poincaré maps. As a 

model we have used the acute lymphoblastic leukemia cell line CCRF-CEM. Measurements of cell 

population were taken at certain time points every 24 h or 48 h. In addition to the population meas-

urements flow cytometry studies have been conducted in order to examine the apoptotic and ne-

crotic rate of the system and also the DNA content of the cells as they progress through. The cells 

exhibited a proliferation rate of nonlinear nature with aperiodic oscillatory behavior. In addition to 

that, the (positive) Lyapunov indices and the Poincaré representations in phase-space that we per-

formed confirmed the presence of chaotic orbits. Several studies have dealt with the complex dy-

namic behaviour of animal populations, but few with cellular systems. This type of approach could 

prove useful towards the understanding of leukemia dynamics, with particular interest in the un-

derstanding of leukemia onset and progression. 

Keywords: CCRF-CEM; Poincaré; Poincaré maps; chaos; chaotic mechanics; acute lymphoblastic 

leukemia; chaotic orbits 

 

1. Introduction 

The answer to the argumentations between random and deterministic, was given 

shortly before the end of the 19th century by Henri Poincaré. It simply took several decades 

for its results to be properly interpreted. Poincaré proved that even in the simplest prob-

lems of Engineering and Astronomy, there are solutions (or trajectories) so sensitive to 

their initial conditions that makes their evolution over time completely unpredictable. 

Even the simplest deterministic systems, moving in a space of at least three dimensions, 

have areas where their solutions are so unstable that even minimal shifts in their initial 

state lead to huge changes in their evolution. Henri Poincaré worked on the three-body 

problem in 1889, during a contest on celestial mechanics. The three-body problem is re-

lated to the question on the stability of the solar system, in particular the n-body problem. 

In this contest, the winner was Henri Poincaré [1]. 
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1.1. Acute Lymphoblastic Leukemia of Childhood 

1.1.1. Phenotypic and Molecular Characteristics of Leukemia 

Childhood leukemia is the most common type of childhood cancer and represents 

clonal proliferation of transformed hemopoietic cells as a result of genomic and proteomic 

changes [2]. Further on, leukemia is a heterogeneous malignancy able to occur at different 

stages of lymphoblast maturation/differentiation. 

There are two main categories of childhood leukemia: Acute Leukemia and Chronic 

Leukemia. Acute Leukemia can be subdivided further on, to acute myeloblastic (AML) and 

acute lymphoblastic leukemia. Acute Lymphoblastic Leukemia (ALL) is the most common pedi-

atric malignancy. Leukemia stratification is placed on certain morphologic, immunophe-

notypic and cytogenetic criteria. Lymphoblasts share a common characteristic: both (B-

cell ALL and T-cell ALL) rearrange their immunoglobulin heavy chain and T-cell Receptor 

genes respectively. Especially, in almost all cases of early pre-B-ALL (common ALL) the Ig 

heavy chain gene is rearranged. The rearrangement also takes place in other types but in 

a lower extent of about 40%. This property of leukemic cells is exploited in order to detect 

Minimal Residual Disease (MRD) [3] using the Polymerase Chain Reaction method (PCR). In 

addition, there are efforts for using Ig-heavy chain rearrangement as a prognostic and 

treatment directed factor [2]. One of the most important criteria in leukemia classification 

are chromosomal aberrations. Some of the most significant aberrations, known up-to-date, 

are hyperdiploidy (n > 50), the TEL/AML1 t(12;21)(p13:22), the BCR/ABL t(9;22)(q34;q11.2), 

the MLL t(4;11)(q21;23), t(9;11)(p22;q23), t(11;19)(q23;p13) and the E2A-PBX1 

t(1;19)(q23;p13) [2,4], which are also considered to be strong prognostic factors. Treatment 

of childhood leukemia has accomplished tremendous progress. Up-to-date approximately 

80–90% of all cases are cured and manifest complete remission, whereas approximately 

10% do not respond to therapy and relapse [2,3]. 

Although 85–90% of all leukemic patients, reach complete remission, there is a per-

centage that relapses. Thus, the importance of accurate diagnosis, including the type or 

subtype of the disease, as well as the definition of prognosis are crucial to leukemia pro-

gression. 

Among the two types of leukemia (B-ALL and T-ALL) T-cell ALL manifests a diffi-

cult medical problem. Five different molecular pathways have been previously identified, 

leading to T-ALL, involving activation of different T-ALL oncogenes; HOX11, HOX11L2, 

TAL1, LMO1/2, LYL1, LMO2, and MLL-ENL. Gene expression studies identified the acti-

vation of a subset of these genes (HOX11, TAL1, LYL1, LMO1, and LMO2) in a larger 

fraction of T-ALL cases than those harboring chromosomal translocations. In many cases, 

the abnormal expression of one or more of these oncogenes is biallelic, indicating up-

stream regulatory mechanisms. Overexpression of the HOX11 orphan homeobox gene oc-

curs in approximately 5% to 10% of childhood and 30% of adult T-ALL cases. Patients 

with HOX11-positive lymphoblasts have an excellent prognosis when treated with mod-

ern combination chemotherapy, while high risk groups of early failure are included 

largely in the TAL1- and LYL1-positive groups. Expression profiling of genes of T-ALL 

lymphoblasts is especially needed for patients on modern combination chemotherapy tri-

als to clearly distinguish the 10% to 15% of patients who fail induction or relapse in the 

first year of treatment. These high-risk patients would be ideal candidates for more inten-

sive therapies in first remission, such as myeloablative regimens with stem cell rescue. 

Based on the rapid pace of research in T-ALL, made possible in large part through micro-

array technology, deep analysis of molecular pathways should lead to new and much 

more specific targeted therapies [5]. 

1.1.2. Leukemogenesis 

Leukemogenesis is recognized as a multi-step process characterized by genetic insta-

bility and alterations in gene expression. Identification of these molecular changes can 
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provide numerous opportunities for discovery of biomarkers to be used for early detec-

tion of cancers and for identifying novel molecular targets for preventive or therapeutic 

drugs. 

Chromosomal abnormalities detected at diagnosis are associated with a high percent-

age of childhood leukemias. The early detection of such aberrations is of significant im-

portance, not only for the classification of the leukemic subtype, but also for the prognosis 

and therapeutic outcome of the patients. On the other hand, leukemias involving the BCR-

ABL fusion gene, present in about 4% of children with ALL, are characterised by a high 

incidence of relapses, whereas leukemias involving the TEL-AML1 fusion are associated 

with a good prognosis [6,7]. 

Studies on monozygotic twins with concordant leukemia [6–9] and retrospective 

scrutiny of neonatal blood spots (Guthrie cards) of leukemia patients [10–12] have demon-

strated that for a significant number of childhood patients leukemia starts at the embry-

onic stage. Further scrutiny of Guthrie spots showed that over 70% of children with ALL 

up to 13 years of age had clonotypic markers of the disease at birth [10,12–14]; the molec-

ular markers present at birth were exactly the same as the ones detected in the leukemic 

cells a few years later. In another study it was shown that the particular fusion (TEL-

AML1) is also detected in healthy children at birth with a frequency of 1% [15]. This 1% 

represents 100 times the risk of ALL with TEL-AML1 fusion gene, indicating that the fre-

quency of conversion of the pre-leukemic clone to overt disease is low [16,17]. This con-

clusion, in connection with the fact that other subtypes of leukemia (e.g., the ones charac-

terised by the BCR-ABL fusion or MLL translocations) do not show clonotypic markers at 

birth [18–22], has led scientists to believe that a gene fusion alone cannot be the causative 

effect for the development of leukemia. Therefore, post-natal exposure and additional ge-

netic events are required for clinically overt leukemia to take place. 

1.1.3. Non-Linear Dynamics in Leukemia Proliferation 

Acute Lymphoblastic Leukemia (ALL) is the most common malignancy of childhood. 

ALL has been extensively studied in all aspects of its biology, including, but not limited 

to, classification, patient stratification, drug resistance and cell proliferation. However, in 

the context of cell proliferation, to our knowledge, there are no previous studies investi-

gating its dynamics. A very important tool for the investigation of such problems are im-

mortalized cell lines. Some previous works have reported the use of cells lines in order to 

study non-linear dynamics. Previous works by Wolfrom et al. (1994, 2000, 2004) [23–25], 

Guerroui et al. (2005) [26] and Laurent et al. (2010) [27] has investigated the chaotic dy-

namics of hepatocellular carcinoma cells as well as bone marrow progenitor cells [23]. In 

addition, few works have highlighted the oscillatory nature of leukemic cell proliferation 

[28]. Finally, in a previous work we have also reported that we have found evidence of 

deterministic chaos in leukemia cells in vitro [29]. In vitro systems give the possibility of 

performing long-term experiments, isolating the system under study, thus reducing noise, 

both of which are not possible in in vivo systems. 

1.2. The Dynamics of Cell Proliferation in Leukemia. An In Vitro Model 

What are the dynamics of tumor cells before diagnosis? How does tumor progress 

from its ontogenesis to formation of a complete system? These questions cannot be an-

swered due to a practical problem; it is almost impossible to study cell populations in 

living organisms, in a temporal manner. Especially, in the case of cancer this is impossible 

since both practical as well as bioethical restrictions prohibit us from understanding the 

cell proliferation dynamics of a neoplasm. 

It is known that biological systems do not follow “conventional” ways of growth. 

Their behavior is not regulated by simple models but complex (although sometimes very 

simple functions can manifest very complex behavior). However, why is it so important 

to know the way biological cells behave as a system? In order to answer this question we 

have to draw a line between two classes of different in vivo systems. The first, consist of 
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normal (physiological) biological systems i.e., cells that progress through time working as 

a system in order to accomplish a certain purpose (e.g., a physiological process, a homeo-

static process). The second is pathological, in our case a tumorigenic system, which also 

progresses through time also as one sound system in order to accomplish another purpose 

(or maybe not, since it is possible that tumor growth could be completely stochastic). In 

the case of a tumor the only purpose that we can speculate is its survival. In both systems 

their temporal progression is complex. This means that the state of the system cannot be 

predicted by the preceding conditions. 

A major problem, in examining biological samples, especially biopsies or rare sam-

ples, is that the investigation gives a stationary “picture” (spatial, steady-state) of the sys-

tem under investigation. This, compared to dynamic observations as for example in time-

dependent studies, does not provide information for the evolution of the system rather it 

gives a “snapshot” of the moment. For this reason, it is difficult to obtain useful information 

on the examined samples. This is mainly to the fact that the term steady-state does not 

apply to biological systems. Biological systems are in constant “turmoil” changing energy 

and mass with their environment and at the same time they change their time-dependent 

behavior with respect to the environmental stimuli. Further on, an extension of this prob-

lem raises another question; what is the trajectory that tumor cells follow, i.e., proliferate, 

from the point of their first emergence to the point of clinical presentation? Towards that 

question there are not many methods that can facilitate its answer. Towards that end, we 

have attempted to create a model that would allow the investigation of tumor prolifera-

tion dynamics from the point of emergence to the point of clinical presentation. 

1.3. The Mathematical Model and Analysis 

1.3.1. A General Description of the Growth Model 

Let a phenomenon being described by a function of the form: 

( )y f x  (1) 

If time is added to the system, then Equation (1) becomes: 

( ),
dy

f x x
dt

 
 

(2) 

If the system can be described linearly then its initial conditions will determine its 

further progression and it will be simple to calculate present states from previous ones, 

iteratively. Thus, given the present state of a pathogenic condition (tumor in this case) it 

would be required to know, with infinitesimal precision, the initial conditions. However, 

this is not the case in tumorigenic systems. 

A well-studied model of cell progression described by the logistic equation presents 

the relation of cell population and competition for nutrition. The logistic equation is given 

by: 

( ) (1 )f x kx x  , (0,1)x  (3) 

where k is the proliferation constant of cells. The graphical representation of this function 

is nonlinear. Taking the iteration of Equation (3) it becomes: 

1( ) (1 ),n n nf x kx x x n     
 

(4) 

Two fixed points can be found for Equation (4), 0 and 1 [30]. This is true as long as 

the value of k is constant. For k = 2 the function still has a linear form. However for k = 2.90, 

k = 3.22 and k = 3.93 the function manifests a totally different behavior [30]. In addition, 

when iterating Equation (4), for values of k: [1,3,99]k  the system manifests a complex 

dendrogram [30]. Thus, it is obvious that a very simple function can manifest a very com-

plex behavior. The bifurcartions manifested by the function for k: [1,3,99]k , represent 
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the change in cellular status [30]. Each bifurcation declares a decision for life or death, i.e., 

in cellular terms apoptosis or necrosis. 

As x approaches 1 y approaches 0, which is expected since the competition for nutri-

ents reaches its maxima and cells start to die instead of proliferating. In addition, the factor 

of volume (i.e., space for growth) is introduced in our study, which will be shown to play 

an important role in growth dynamics. In in vivo systems this is already known, as for 

example in the case of CNS tumors. Space is a factor which influences tumor growth and 

determines its behavior as far as its survival is concerned. 

In the tumor setting, knowing the bifurcations of the system is of crucial importance 

since if the bifurcation diagram was known then it would be easier to “hit” the disease at 

those points where it turns itself to apoptotic pathways enhancing or even better ampli-

fying the cause of apoptosis. The study of such systems in vivo is impossible since it can-

not be estimated when exactly the first carcinogenic cells appeared in an organism. The 

reason for this in thermodynamic terms is that the information I for the system is de-

scribed as ( , ), lim ( , ) 0
t

I x t x I x t


   . In addition, as time progresses the entropy 

of the system increases as ( )S t  . For that purpose, in vitro systems are the most 

suitable, for they can be maintained for long periods of time and their behavior can be 

studied. 

1.3.2. Dynamic Systems 

A dynamic system is defined as any set of interacting physical, chemical, biological 

variables that evolve over time following specific laws [31,32]. Its only independent vari-

able is time, which can be either continuous or discrete. For a continuous-time dynamic 

system to be studied, usually (ordinary) differential equations are required, while a dis-

crete-time dynamic system is described by difference equations. The fact that the inde-

pendent variable is discrete, means that we do not observe it constantly, but at regular 

intervals. Thus, let an N-dimensional space of dependent variables xk(t), for k = 1,2,..,N, 

which have as their only independent variable time t and are components of the vector: 

1 2( ) ( ( ), ( ),..., ( )), ( , )Nx t x t x t x t t I a b  
 Dynamic continuous-time system 

(5) 

The time evolution of these vectors is given by a system of differential equations as 

follows: 

( , ), 1,2,...,k kx f x t k N 
 

(6) 

Such an example of a continuous-time dynamic system is the Lotka-Volterra equa-

tions. Let x1(t) and x2(t) are the populations of two different species, which grow, interact 

and compete. Their state can be described by a series of equation systems: 

1 1 1 2

2 2 1 2

1 2

.

.

.

N N

x ax x x

x ax x x

x ax x x

  
 

 
 
  
 
 
 
 

     where a, b > 0 

(7) 

The study of these equations can give an estimation of the population growth, as well 

as predict the system’s state. Similarly, for the discrete time system it is: 

1, 2, , ,( ) ( , ,..., ), ( )n n n n N n k n k nx x t x x x x x t  
 

(8) 
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The temporal evolution of the system can be given by a system of equations such as: 

1

, 1

( )

( ), 1,2,...

n n

k n n n

x g x

x g x k N







 
 

(9) 

The independent variable n counts the time intervals, while the function g defines the 

laws of its evolution. 

1.3.3. Lyapunov Exponent 

The Lyapunov exponent got its name from the Russian mathematician, Aleksandr Mi-

khailovich Lyapunov (1857–1918) and it is used for the investigation of a system’s depend-

ence on its initial conditions. In the case of our cellular proliferating system, which follow 

the logistic equation, their progression over time could be described as: 

1 0

n

n n nx x e    
 

(10) 

where, Δ0 is the difference at time 0 (that would be Δ1−Δ0), xn is the population at time t 

and xn+1 is the population at time t + 1. The sensitivity of the system to its initial conditions 

can be quantified by the introduction of the Lyapunov exponent λ. The exponent calculates 

the sensitivity to initial conditions by actually comparing the trajectories of the same sys-

tem for times t and t + 1. Assuming the Napierian logarithm: 

0

ln n n
 

 
   

(11) 

For very small 0 →0 it can be written: 

1

0

1 '
ln

1
lim ln '

n

n
i

dx n

n dx

x
n









  
   

  
 
 
  


 

(12) 

Thus, the exponent λ can estimate the degree of “hyper-stretching” for each iteration 

in a trajectory. If λ > 0, it suggests the expansion of the phase-space of a trajectory, meaning 

that its neighboring points separate rapidly, while a negative exponent (λ < 0) suggests 

“shrinking” (or attracting) of the phase-space of all points in a trajectory [33]. If a system 

is “attracted” to a fixed point, then all Lyapunov exponents are found to be negative, since 

the system evolves to the inside to a final fixed point or equilibrium. An attractor mani-

festing periodic behavior has exactly one exponent equal to zero and all others are nega-

tive. Yet, a strange attractor has at least one exponent positive and this implies a chaotic 

behavior [33]. These statements can be summarized as [33]: 

λi < 0, i = 1,2,…,n: Fixed point. System reaches equilibrium 

λ1 = 0 and λi < 0, i = 2,…,n: Periodic. System oscillates periodically 

λ1 = 0, λ2 = 0 and λi < 0, i = 3,…,n: Torus. 

At least one λi > 0, i = 1,2,…,n: System is chaotic. 

(13) 

Many methods have been proposed for the calculation of Lyapunov exponents and it 

is considered to be a tedious task [34,35]. In our case, given the function, which we have 

based our model on, we used for the approximate estimation of Lyapunov parameters the 

following definition: Let f be a smooth map on . The Lyapunov number L(x1) for the 

orbit {x1,x2,…,xn} is defined as: 
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 n
n

n
xfxfxL

1

11 )('...)('lim)(



 

(14) 

If the limit exists, then the Lyapunov exponent λ is defined as: 

 1 1

1
( ) lim ln '( ) ... ln '( )n

n
x f x f x

n



  

 
(15) 

1.3.4. Poincaré Maps 

Poincaré maps, where named after Henri Poincaré, to whom we referred in the intro-

duction of this work. The basic property of these maps is that it gives a different perspec-

tive on continuous complex functions, whose trajectories, are very complex to investigate. 

Thus, instead of studying the whole trajectory/graph of a phenomenon, it is enough to 

find the points of intersection or passage of the graph from a two-dimensional plane. Let 

a graph Sf of the function f that intersects the plane at two points A and B. If A intersects 

the plane for the kth time, and B intersects the plane for the kth+1 time, then it can be proven 

that there is a graph such as: 

: ( )G G A B  (16) 

In that way a dynamic system of n dimensions is transformed into a system of n − 1 

dimensions. The following representation (Figure 1) manifests some interesting examples, 

as well as the Poincaré cross-section diagrammatically. Poincaré’s overall work on periodic 

solutions of differential equations has been extremely important and consists of the basis 

of many achievements to date. Poincaré’s fundamental idea was that instead of studying 

the whole trajectory (orbit), he would focus on its traces (sections) on a plane perpendic-

ular to the orbit [33]. 

 

Figure 1. Examples of Poincaré maps. A trajectory intersects a plane at points x and P(x), where it is 

x=P(x) (A) (reproduced from https://en.wikipedia.org/wiki/Poincar%C3%A9_map, accessed on 24 
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May 2021). The phase portrait of a Hamiltonian function (B), with the respective Poincaré map (C), as 

well as the Poincaré map of a Duffing system (D) are presented. 

Thus, a Poincaré map is defined as the intersection of a periodic orbit in the phase-

space of a continuous dynamic system, being transversal to the flow of the system. In 

particular, the map of the continuous system intersects the phase-space with a period of 

[33]: 

2
T






 
(17) 

The map transforms a continuous trajectory of points to points, which yet retain the 

momentum of the initial flow. The general equation for a map can be described as: 

( ), N Nx f x U  
 

(18) 

If a function has a flow φt, with a period T, then it can be proven that φ(t + T, x0) = 

φ(t, x0). If a transversal cross-section (Σ) is taken to the function’s flow then a Poincaré map 

P(x), is described as P(x): V Σ→Σ, which correlates the vector x , in space V with a point 

P( x ) for each intersection [33]. Therefore, when the function’s flow crosses the transversal 

plane for the first time, it moves on and crosses the plane in a second point, then on a 

third, a fourth and so on. This process is mapped through the operator P such as: 

1
(1 ) 0 0,t t t t t

R
x kx x x x

R


     

 
(19) 

where (x’,y’) is the recurrence intersection of point (x,y). For every successful recurrence, 

it can be proven that: 

2

2 2 0 0 0 0( , ) ( ( , ) ( , )x y P P x y P x y 
 

(20) 

Thus, it is proven that 0 0( , ) ( , )n

n nx y P x y
. 

When the point where P(x) can mapped to itself, such as P(x0) = x0, this is called an 

equilibrium point [33]. This was the solution invented by Poincaré, to solve the three-body 

problem. Poincaré “invented” a plane, perpendicular to the trajectories of the bodies, 

which would describe the orbits on a two-dimensional plane. The first advantage of his 

conception was that it reduced the dimensions of the problem by 1. Thus, if three bodies 

(or planets) would follow Newtonian dynamics then their mapping would be manifested 

by single points on a plane (which is actually the phase-space of the trajectories). On the 

contrary, trajectories that do not follow predictable dynamics would be represented by 

the mapping of infinitesimally large number of points on a plane. Therefore, complex tra-

jectories would also manifest complex Poincaré maps. From his observations, Poincaré 

found that there are trajectories that change their behavior due to small changes in their 

initial conditions, thus introducing chaos [33]. 

1.4. Aim and Objectives 

In the present work we have attempted to provide further evidence based on an ex-

perimental model, that leukemic cell proliferation follows chaotic dynamics. Further on, 

we have attempted to prove that leukemic cell proliferation can be described by Poincaré 

maps. This study could provide insight on the dynamics, leukemia cells follow from the 

point of initiation (that would be the time, the first leukemic cells appear) to the point of 

clinical presentation. Towards that end, we have used in-house experimental data of in 

vitro cell proliferation of the T-cell leukemic cell line CCRF-CEM. In addition, we have 

used the approach of Poincaré recurrence maps in order to prove our concept. 
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2. Materials and Methods 

2.1. The Cellular System 

The system studied consisted of leukemic cells from an established cell line. The 

CCRF-CEM (T-Acute Lymphoblastic Leukemia (ALL)) cell line was used as the model, 

obtained from the European Collection of Cell Cultures (ECACC, United Kingdom). The 

CCRF-CEM cell line, a CD4+ [36] and CD34+ presenting cell line [37], was initially ob-

tained from the peripheral blood of a 2 year old Caucasian female, with a karyotype of 46 

XX. It was diagnosed as lymphosarcoma which progressed later on to acute lymphoblastic 

leukemia [38]. The child has undergone irradiation therapy and chemotherapy prior to 

obtaining the cell line. Although remission was achieved at various stages, the disease 

progressed rapidly [38]. The cell line has been observed to undergone minor changes after 

long-term culture, except for the presence of dense granules in the nucleoli [39], making 

it an ideal model system for long-term studies. Finally, the CCRF-CEM cell line has been 

reported to manifest autocrine catalase activity which participates to its mechanisms of 

growth and progression [40]. The CCRF-CEM cells give an excellent model of avascular 

growth. In addition, we assume that extracellular signal transduction takes place auto-

crinicaly. 

Cells were grown with RPMI-1640 medium (Invitrogen, Carlsbad, CA, USA), 10% 

FBS (Invitrogen, Carlsbad, CA, USA) and 0.1 × Streptomycin/Penicillin (Invitrogen, Carls-

bad, CA, USA) at 37 °C, 5% CO2 and ~100% humidity. Cells were cultured in 75 cm2 flasks 

in total medium volume of 25 mL. Cells were seeded at an initial concentration of 20 

cells/μL and ~200 cells/μL and were fed at regular intervals thereafter. Medium changes 

took place by centrifugation at 1000 rpm for 10min, the supernatant was discarded and 

the remaining cells were rediluted in 25 mL media and were allowed to grow. 

2.2. Cell Population Measurements 

For the study of the growth dynamics of the cell culture system an experimental 

setup has been developed where cells seeded at the aforementioned concentration were 

measured at least every 48 h and every 3–5 days media was being renewed. For the meas-

urements, 200 μL from each flask was taken and measured with a NIHON KOHDEN 

CellTaq-α hematology analyzer. The applied method is reported to manifest precision at 

the 1.21% coefficient of variance (CV) [41,42]. In addition, from in-house experiments we 

have performed dilution-series experiments, in order to calibrate the Coulter counter and 

confirm that the instrument was able to detect low populations (especially <100 cells/ul). 

Calibration was performed with spheres resembling leukocytes. Spheres of 10um in di-

ameter were obtained from DAKO (DAKO Fluorospheres, DAKO Denmark Inc.), with 

initial concentration of 1.1 × 106 spheres/ul. Initially, 1ml of the sphere solution was ob-

tained and a 1:10 dilution was performed, in order to obtain a concentration of 1100 

spheres/ul. Further on, a series-dilution was performed ranging from 1100 spheres/ul 

down to ~9 spheres/ul. The theoretical (Figure 2A) and experimental (Figure 2B) concen-

trations were measured and recorded. Since the Coulter counter was not able to represent 

a value <100 particles/ul, we have evaluated all dilutions using the histograms provided 

by the manufacturer. In particular, the histograms for all dilutions from 1100 spheres/ul 

to 9 spheres/ul are presented in Figure 2C–J. The reason for this type of evaluation, was to 

examine whether the instrument could detect much diluted sphere solutions and thus di-

luted cell populations. 

All measurements were performed based on the experimental setup depicted in Fig-

ure 3. The experiments were performed in quadruplicates, yet with a particular setup. A 

set of experiments was performed for the total time period of approx. six months, and the 

duplicates were used as technical replicates. At the end of this experimental period, the 

experiment was repeated for another six months, which actually consisted of the biologi-

cal replicate. All results presented, are the mean ± stdev of all replicates, both technical 

and biological. 
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Figure 2. The calibration measurements with the Coulter counter, investigating the sensitivity of the 

instrument. In particular, the theoretical (A) and experimental (B) regressions of the dilution series 

are presented. Further on, the actual coulter-counter measurements are presented for sphere con-

centrations of 1100 spheres/ul (C), 550 spheres/ul (D), 275 spheres/ul (E), 137 spheres/ul (F), 69 

spheres/ul (G), 34 spheres/ul (H), 17 spheres/ul (I) and 9 spheres/ul (J). 
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Figure 3. The experimental setup of the growth model [43]. 

2.3. Cell Viability Assays 

In order to validate the viability of our model, we have performed random samplings 

throughout the experimental course, and samples were further analyzed with flow cy-

tometry (FC500, Beckman Coulter Inc.). Cells were evaluated for their viable, apoptotic 

and necrotic content using the Propidium Iodide (PI)/AnnexinV method (Vybrant apop-

tosis kit, Molecular Probes Inc.). The AnnexinV was stained by Alexa fluorochrome (466 

nm emission). Further on, cell cycle analysis was also performed using the Etha-

nol/RNAse/PI as previously described [44]. 

2.4. Microscopic Evaluation of the Growth Model 

During the course of the experiment, we have evaluated cellular condition with mi-

croscopy. Microscopic images were taken with Nikon TMS inverted microscope, optical 

condenser and lenses ×10, ×20 και ×40. In addition, a CCTV camera installed on the mi-

croscope (JVC Digital Camera TK-421C-EG), was used for image capture connected to a 

computer (Intel Celleron, RAM 256 MB). A representative microscopic image is presented 

in Figure 4 [43]. 

 

Figure 4. CCRF-CEM morphology during the experimental setup. Image acquisition was performed 

with an inverted microscope and a polarized light filter (magnification ×100). The micrometer pre-

sented is a Nikon micrometer, type MBM 11100 (stage micrometer type A), of 1mm total length and 

graduations of 0.01mm (=100 μm). The micrometer is in the same magnification (×100) as the mi-

croscopy image [43]. 

2.5. Data Analysis 

Data have been initially collected with the Microsoft Excel®  for preprocessing. Data 

were treated as time-series and in particular, we have studied the cell populations with 

respect to the cell population per volume unit (ul), to the total cell population, as well as 

with respect to the extrapolation of the population to a single volume. Further on, the 

phase-space of the time-series has been used and the Poincaré mapping was estimated. In 

addition, we have calculated the Lyapunov exponents for the time-series trajectories. 
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3. Results 

3.1. Time-Series 

The first step in describing the cell population data was to present them as time series. 

Cell population with respect to concentration per microliter (ul) appeared to be governed 

by oscillations. In particular, we have measured the cell population with initial conditions 

of n0 ≅ 20 cells/ul (Figure 5A) and n0 ≅ 200 cells/ul (Figure 5B). In addition, we have super-

imposed the two time-series and it appeared that the two curves progressed similarly, but 

with slight divergence (Figure 5C). The two experiments manifested small typical errors, 

indicating that there was a good repeatability in the experimental setups, which we also 

examined by regressing cell proliferation data with known growth models (Figure S1). 

 

Figure 5. The time-series presentation of the cell population CCRF-CEM with respect to cell concen-

tration (cells/ul) and in particular, for initial cell population of ~20 cells/ul (A), ~200 cells/ul (B). 

Further on, the two time-series are presented together in one diagram for comparison (C) (n0: the 

initial population). 

Similarly, the time-series of the total cell population manifested oscillatory dynamics 

for both initial cell populations i.e., 20 cells/ul (Figure 6A) and 200 cells/ul (Figure 6B). 
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Figure 6. The time-series presentation of the cell population CCRF-CEM with respect to total cell 

concentration for initial cell populations of ~20 cells/ul (A) and ~200 cells/ul (B) (n0: the initial pop-

ulation. The arrows indicate the time-points of cell culture media replacement). 

3.2. Cell Viability 

In random time intervals we have evaluated the cell viability, in order to confirm that 

first of all viable cells were present, as well that cells were proliferating. Total cell death 

was described as the sum of both the apoptotic and necrotic cells. Interestingly, both via-

bility (Figure 7A) and total cell death (Figure 7B) manifested oscillatory behaviors. Viable 

cells reached a minimum after 133 days, to rise again until the end of the experiment (Fig-

ure 7A). Similarly, total cell death manifested an increasing tendency from the beginning 

to the end of the experiment (Figure 7B). 

 

Figure 7. The time-series presentation of the cell population’s viability (A) and total cell death (B) 

of the CCRF-CEM cells. 

3.3. Cell Cycle 

Further steps into the analysis of our cell population included the investigation of the 

cell cycle, which would confirm that cells were actually proliferating. We have found that 

all cell cycle phases followed oscillatory dynamics and in particular the G1 phase  

(Figure 8A), the G2 phase (Figure 8B) and the S-phase (Figure 8C). In addition, we have 

performed a scatter plot of the combinations of all cell cycle phases and showed that all 

phases can be distinctively viewed (Figure 8D). Aside the cell proliferation we have in-

vestigated in the present work, cell cycle appears to follow its own dynamics, which will 

be the subject of a future investigation. 
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Figure 8. The cell population’s cell cycle. The cell cycle of our cellular system manifested oscillatory 

patterns for G1 (A), G2 (B) and S-phase (C). In addition, a scatter plot of the three cell cycle phases 

in all combinations showed a discrete separation of the three cell cycle phases (D). 

3.4. The Phase-Space of Cell Proliferation 

An interesting observation concerned the fact that despite the difference in the initial 

population, cell proliferation converged with small differences. We have examined the 

phase-space of the two experimental setups, and we have expected not to find orbital tra-

jectories, but a “waltz” of traversing orbits. This was true for both initial populations i.e., 

x0 = 20 cells/ul (Figure 9A) and x0 = 200 cells/ul (Figure 9B). Thus, this was an indication 

that cell proliferation followed a chaotic orbit. 

3.5. Lyapunov Exponents 

In order to examine the presence of possible chaotic trajectories, we calculated the Lya-

punov exponent. From our calculations it has been showed that the majority of the expo-

nents was greater than zero (Figure 10), which was an indication of chaotic behavior since 

for a chaotic orbit one exponent greater than zero is sufficient to indicate chaos. 

 

Figure 9. The phase-space for x0 = 20 cells/ul (A) and x0 = 200 cells/ul (B). 
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Figure 10. Calculations of the Lyapunov exponent (λ) for initial population 20 cells/ul and 200 

cells/ul. We have calculated the Δ0 as Δ0 = |x0 − x0′|, where x0 = 20/max and x0′ = 200/max. The maxi-

mum population was considered to be the max population reached for each experiment in cells/ul. 

3.6. The Phase-Space of Cell Proliferation II 

The first step in the investigation of applying a Poincaré map to the proliferation 

phase-space we have analyzed the spatial trajectories for one of our experimental setups. 

In particular, we have followed, step-by-step, the trajectory of the proliferation for initial 

population 20 cells/ul (Figure 11) (we have also created a video, in which we showed the 

movement of the trajectory. Please refer to supplementary file Video S1.mp4). This type 

of analysis allowed us to observe that the phase-space trajectory returns around points, 

which could probably be on the diagonal of the phase-space. 

3.7. The Phase-Space of Cell Proliferation III 

Based on the previous observations, we have moved on to examine how exactly a 

Poincaré map could be reconstructed. Additionally, based on our observation that the tra-

jectory follows chaotic dynamics, it should be able to follow the requirements of a Poin-

caré map. Thus, a trajectory should be able to transverse the diagonal in a point S, which 

we will call the “entrance” point, and then it should return to the diagonal through an-

other point S′, which we will call the “exit” point. A Poincaré map, in order to manifest 

non-chaotic orbits, requires that a dynamic system converges to its limit cycle (In a dy-

namic system of the form '( ) ( ( ))x t F x t , with a function F such as: 
2 2:F   and 

the trajectory of the function is also a smooth function ( )x t  with domain 
2

. Then, such 

a trajectory is called closed (or periodic) (meaning it is not constant but returns to its start-

ing point) if there exists a t0 > 0 such as 0( ) ( )x t t x t t   
,   t ). This is an 

equilibrium point where S   S′. On the contrary, in our experimental setup we did not 

observe such an evidence of a global non-chaotic behavior. The system converged in the 

first convolution of the trajectory (Figure 12A,B) as well as after cell culture media sup-

plementation (Figure 12E). In the other cases the trajectory (Figure 12C,D,F–K) diverged 

from equilibrium indicating that a Poincaré cross-section followed chaotic dynamics. 
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Figure 11. The phase-space steps of the experiment for x0 = 20 cells/ul. The red arrows indicate the course of the trajectory 

step-by-step. The x-axis corresponds to the population of cells at time t and the y-axis corresponds to the population of 

cells at time t + 1. Each of the subfigures (A–W) presents the phase-space recurrences from the first (A) to the 23rd (W). 
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Figure 12. The phase-space of the experiment for x0 = 20 cells/ul. The red arrows indicate the course of the trajectory step-

by-step. In addition, in all subfigures the diagonal is drawn, which shows the Poincaré map crossings. The x-axis corre-

sponds to the population of cells at time t and the y-axis corresponds to the population of cells at time t + 1. The system 

converged in the first convolution of the trajectory (A,B) as well as after cell culture media supplementation (E). In the 

other cases (C,D, F–K) diverged from equilibrium. 
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In order to better understand the aforementioned dynamics, we have tried to illus-

trate the cross-sections of the Poincaré map, in a series of graphs. In particular, in  

Figure 13 we have presented all points of the trajectory that cross the diagonal (Figure 

13A), which is also presented as a second phase-space of the S→S′ points (Figure 13B,C). 

In particular, in the 3D representation the transition of the trajectory to its highest point 

became apparent, which corresponded to a point of cell culture media supplementation, 

resembling an in vivo situation of leukemic cells being provided with constant nutrients 

(Figure 13D). 

 

Figure 13. The Poincaré map cross-sections. We have presented all sections of the trajectory on the diagonal (A), along with 

the transmission points of S→S′ (B), as well as the respective points with their mapping from S onto S′ (C). Finally, the 3D 

representation of the cross-sections along with the cell populations is presented (D). The x-axis corresponds to the popu-

lation of cells at time t and the y-axis corresponds to the population of cells at time t + 1. 

4. Discussion 

In the present work, we have attempted to provide a further insight into the dynam-

ics of leukemic cells proliferation dynamics. Previous works, such that of Wolfrom et al. 

(2000), have studied the proliferation dynamics of adherent cells and in agreement to our 

study have also found that cells do follow chaotic orbits. In these previous works, the cell 

population at the end of a time period has been investigated and it was shown that cells 

grow in non-linear patterns [23–25]. All reports, to the best of our knowledge, concern the 

investigation of adherent cells, which correspond to solid tumors in an in vivo situation. 
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Our study is the first that reports on the proliferation and chaos dynamics of leukemic 

cells. 

Do cancer cells progress against the physiological norms? A normal eukaryotic cell 

is created, ages and dies. Cancer follows a different path, that of birth, transformation and 

immortality. If we examine the phenomenon from the systems theory point of view, it 

appears that cancer cells follow a distorted course and therefore “violates” the physiolog-

ical pathways [43]. Yet, how is it to define “normal” and “abnormal” in terms of cellular 

physiology? How certain are we that carcinogenesis is just not another evolutionary cel-

lular path and not an aberration. Assuming that there are some general rules concerning 

living organisms, the later follow some sort of pattern and therefore it can be assumed 

that cancer cells move outside of these patterns/motifs (or maybe not). Yet, a new question 

arises; are cancer cells that, if considered aberrant, live “illegally” within the patterns of 

life? One thing is certain, there are some fundamental laws of nature that apply to all liv-

ing organisms and no kind of life is able to deviate from them [43]. Such examples include 

the law of conservation of energy and the laws of thermodynamics, which are derived 

from the laws of conservation of energy. At this point we could paraphrase the words of 

Planck and Schrödinger by adding, “… it is certain that the leopard will have a fur with 

polka dots, but what will be their pattern this is a probability…” [43]. In order to be able 

to predict a chaotic/non-linear phenomenon, we must know with infinite detail its initial 

conditions. However, this question can be reversed as, can we find the initial conditions 

knowing the final? Previous studies have reported that biological systems have complex 

dynamics [24,45]. To the best of our knowledge, no study has answered that question yet. 

This very complexity makes biological systems interesting and challenging. 

In the present study we addressed the question of whether chaotic dynamics could 

be detected in the proliferation of acute lymphoblastic leukemia cells in in vitro cell 

culture. In vitro systems offer the ability to perform long-term experiments and isolate the 

system under study to reduce the complexity of in vivo systems [46,47]. Such studies are 

impossible to carry out in in vivo systems, both in terms of technical and experimental, as 

well as bioethical restrictions. Therefore, in vitro systems are ideal, and perhaps the only 

ones that allow, for the study of proliferation experiments, where the initial number of 

cells can be controlled. Another aspect that should be taken into account was the total 

experimental progress. In particular, we have referred to the “Materials and Methods” 

section in the process followed, which included the media replacement, centrifugation of 

cells and the re-substitution of cells in fresh media. This process was performed in order 

to simulate the in vivo conditions, where leukemic cells are under a constant supply of 

nutrients. On the other hand, centrifugation could probably affect cell proliferation, yet it 

was impossible to do otherwise since the metabolic waste and starvation stress could 

affect the experimental conditions drastically. Yet, removing cell media and replenishing 

the cells with fresh one, poses two possibilities. First, cells could be stressed in such a way 

that it would disrupt their progression and second, cells could have a sort of “memory” 

mechanism to assist them in continuing their previous proliferation. It is possible that the 

present cellular model is closer to the second hypothesis, as after each media change cells 

continued to proliferate almost with the same rate. For example, media were changed at 

day 21 and at day 22 cells moved from the G1 phase to S-phase, indicating cells continued 

proliferating as they probably manifested a sort of “memory” of their previous state. 

Further on, it is possible that cells do not die silently to other cells, but by releasing 

lysosomes that can harm surrounding cells. Thus it is possible that changing the media 

mostly obviate the expected inflammatory environment which occurs in vivo. In addition, 

it is possible that circulating leukemic cells derive from the bone marrow which 

approximates a solid milieu. his should be stated. As aforementioned, our cellular model 

it is known to manifest autocrine catalytic signalling, indicating that extracellular 

releasing of lysosomes is possible. In our cellular model we had to change the media, in 

order to renew nutrient, as well as remove toxic metabolic waste. This was the closest way 

we could think of for approaching in vivo conditions as much as possible. On the other 
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hand, although the in vivo conditions can produce inflammatory conditions they have at 

the same time “salvation” mechanisms, which can alleviate the inflammatory effects. 

Cancer is known to start and progress slowly, at least before the clinical diagnosis. 

Knowledge on the mechanisms of progression before the onset of clinical symptoms can 

contribute to the timely treatment of serious diseases, such as tumors. As aforementioned, 

the main question is whether we can predict the course of a tumor from the time of its 

appearance to the point of clinical presentation [29,30,43,44,48,49]. The only way to diag-

nose cancer, up to date, is by its symptoms. Preventive examination is available, but for a 

small number of malignancies. In addition, our knowledge is very restricted with respect 

to the time between the onset of the first cancer cells and the point of diagnosis 

[29,30,43,44,48,49]. 

Cell cultures are thought to follow a linear growth pattern. Since the sigmoid func-

tion-equation takes into account the limitation in resources i.e., food and space, it predicts 

that a population of cells will reach a steady state within a certain period of time and cells 

eventually die or cease to proliferate. In our model, we have introduced a new constant, 

making food readily available but keeping the space constant, relative to the total volume 

within which cells were allowed to grow. Under these conditions, we derived the time 

series of cell proliferation, which showed aperiodic oscillations. The transformation of the 

(aperiodic) time series to a phase space, the (positive) Lyapunov indices, as well as the 

Poincaré representations we performed, confirmed the chaotic behavior of this dynamic 

system. Our work provided evidence for deterministic chaos in the proliferative behavior 

of leukemia cells in vitro. Given that this is a very complex phenomenon, much more ef-

fort and studies are required in order to understand the underlying mechanisms. The im-

plications from understanding such dynamic systems are immense. Such experimental 

approaches could provide us with insight on disease progression, such as cancer, and as 

a consequence would allow us to model the disease in real-life situations. 

Although, we have suggested that in vitro systems, are ideal for the questions posed 

in the present study, they also pose some limitations. First of all, in vitro systems cannot 

simulate the in vivo environment and in particular, the tumor microenvironment, which 

is known to play a significant role in tumor progression. Simulating the tumor microen-

vironment is a very tedious task. There are numerous factors that play a role, including 

growth and inflammatory factors, which are difficult to study in an in vitro system. An-

other significant limitation is the measurement of very small cell populations. For exam-

ple, it would be very interesting to simulate tumor ontogenesis, in vitro, starting from as 

few as one or two cells. Yet, due to methodological limitations it is not possible to measure 

the cell proliferation until cells reach a critical point, where methodological approaches 

are able to determine the cell population. 

Thus, based on the aforementioned limitations, future efforts could focus on adding 

factors (for instance growth factors) to simulate the tumor microenvironment, and in par-

ticular, one factor at a time. Another interesting approach could focus on the investiga-

tions of methods that could measure very small cell populations and thus facilitating tu-

mor progression at the very first stages of growth. Finally, these recommendations could 

be investigated under the presence of chemotherapeutics (for example glucocorticoids, 

which are first line agents in the treatment of childhood leukemia). 

5. Conclusions 

Tumor cell proliferation is considered one of the most important properties to con-

sider for the diagnosis and treatment of cancer. One basic question, concerning cancer, 

still remains unsolved. How much time does it take for a tumor to be diagnosed beginning 

from the day the first tumor cells appear. In other words, what happens from the emer-

gence of the first cancer cells to the clinical presentation? This question is difficult to an-

swer. The only way to solve this problem is by understanding the proliferation dynamics 

of tumor cells and attempt to predict the phenomenon. Towards that end, in vitro models 
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can prove very useful since they allow us to perform multiple experiments from desirable 

low cell populations and observe their proliferation patterns. 

In that sense, we have made the observation that leukemic cells follow chaotic orbits, 

in vitro, as well as their population dynamics is dependent on initial conditions. Thus, we 

have presented evidence that cell proliferation progresses differently, dependent on the 

initial cell population. Based on this observation, it is possible that it would be feasible to 

estimate both the initial number of cells as well as the time needed for the leukemic cells 

to become diagnosed (in our case, produce a dense population resembling that of the clin-

ical presentation). 

Our understanding of tumor cell proliferation dynamics is still very limited. We be-

lieve that our approach could prove useful towards the understanding of cell proliferation 

mechanics and as such it consists for us an ongoing research topic. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-

cle/10.3390/cells10123584/s1, Figure S1: We have separated the growth curves for both the initial 

populations i.e. 20cells/ul (A) and 200cells/ul (B) into four phases: the first phase included the expo-

nential growth (designated as “exp” and colored with blue), the logistic growth (designated as “log” 

and colored with red), the logarithmic growth (designated as “logistic” and colored with purple) 

and a polynomial growth (designated as “poly” and colored with grey). These regressions consisted 

approximations of the total growth curve, therefore we have attempted to investigate the detailed 

non-linear dynamics for chaotic orbits. This analysis was performed by regressing each separate 

phase with known functions, whose R2 values are presented for each respective curve (using the 

same coloring scheme). Although regressions were performed, they still concerned an approxima-

tion of the growth curves, and therefore our intention was to investigate the details of the manifested 

non-linear dynamics with more specialized tools, Table S1: Cell Proliferation Data, Video S1: Ani-

mated Figure 11. 
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