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Abstract: This study investigates the diagnostic and prognostic potential of different forms of tau in
biofluids from patients with Creutzfeldt-Jakob disease (CJD). Extracellular tau, which is molecularly
heterogeneous, was measured using ultra-sensitive custom-made Simoa assays for N-terminal (NT1),
mid-region, and full-length tau. We assessed cross-sectional CSF and plasma from healthy controls,
patients with Alzheimer’s disease (AD) and CJD patients. Then, we evaluated the correlation of
the best-performing tau assay (NT1-tau) with clinical severity and functional decline (using the
MRC Prion Disease Rating Scale) in a longitudinal CJD cohort (n = 145). In a cross-sectional study,
tau measured in CSF with the NT1 and mid-region Simoa assays, separated CJD (n = 15) from AD
(n = 18) and controls (n = 21) with a diagnostic accuracy (AUCs: 0.98-1.00) comparable to or better
than neurofilament light chain (NfL; AUCs: 0.96-0.99). In plasma, NT1-measured tau was elevated
in CJD (n = 5) versus AD (n = 15) and controls (n = 15). Moreover, in CJD plasma (n = 145) NT1-tau
levels correlated with stage and rate of disease progression, and the effect on clinical progression was
modified by the PRNP codon 129. Our findings suggest that plasma NT1-tau shows promise as a
minimally invasive diagnostic and prognostic biomarker of CJD, and should be further investigated
for its potential to monitor disease progression and response to therapies.

Keywords: Alzheimer’s disease; biomarker; blood; cerebrospinal fluid; neurodegeneration; neurofil-
ament light chain; prion disease; Simoa-immunoassays

1. Introduction

Creutzfeldt-Jakob disease (CJD) is the most common prion disorder afflicting humans
and is characterized by rapid and widespread neurodegeneration [1-4]. Aggregates of tau
are a prominent feature of several neurodegenerative diseases [5,6] and an accumulation
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of phosphorylated tau akin to that seen in Alzheimer’s disease (AD) has been reported in
certain cases of CJD [7]. Elevated levels of tau in cerebrospinal fluid (CSF) are also seen in
CJD and AD [8-16], but, unlike neurofilament (NfL), an elevation of CSF tau is not seen in
most other neurodegenerative conditions [12,17,18].

An assessment of CSF tau using mid-region (MR) assays differentiates CJD from other
neurodegenerative conditions (including rapidly progressing AD) and controls [8,9,12,13,15,19].
Indeed, measurements of MR-tau in CSF achieved sensitivities (75-98%) and specificities
(67-99%) for CJD that exceeded the diagnostic performance of the accepted clinical marker
14-3-3 [15]. However, the use of a single immunoassay provides little information about
which forms of tau are elevated in CJD. This is important since increasing evidence sug-
gests that extracellular tau is molecularly complex and includes an array of differentially
truncated forms of tau, some of which may have greater diagnostic potential than oth-
ers [20-27]. Thus, measuring different forms of tau in human fluids not only affords an
opportunity to identify and evaluate new biomarkers, but should provide insights into the
forms of tau involved in disease and their molecular mechanisms.

Here, we measured tau in CSF using three well-validated assays: a novel assay, which
employs antibodies with epitopes identical to those used in the widely applied Innotest
assay, and requires a mid-region sequence of 194-224; the NT1 assay, which detects forms of
tau that contain the minimal sequence of 6-198 [28]; and an assay that employs antibodies
to the extreme N- and C-termini of tau and is specific for full-length protein [20]. When
used together, these assays provide information about the relative abundance of FL-tau,
N-terminal and mid-region fragments.

Biofluids from patients with CJD potentially contain infectious prions. To enable
the analysis of CJD samples in a standard research laboratory setting we optimized our
assays for use with samples treated with prion-destroying concentrations of guanidine
hydrochloride (GuHC]). In accordance with our prior findings [20], mid-region and NT1
assays measured the highest levels of tau in CSF, and we discovered that the NT1-tau
assay perfectly discriminated CJD from both AD and controls. Applying some of the same
ultrasensitive assays to plasma revealed that NT1-detected tau is increased in CJD versus
controls and AD. Importantly, NT1-tau levels were associated with functional decline and
rate of clinical progression, and a known modifier of CJD phenotype, polymorphism of the
prion gene (PRNP) at codon 129, influenced the rate of clinical progression [29-32].

2. Materials and Methods
2.1. Participants

Demographics and clinical information about cases and controls are provided in
Supplemental Table S1.

2.1.1. CJD Study Cohorts

CJD cases were from the UK National Prion Monitoring Cohort study (NPMC) [33]
and/or the PRION-1 trial [34]. CSF samples were from 15 CJD patients (13 sporadic and
2 jatrogenic) and these, together with 18 AD and 21 healthy control specimens (collected
in Gothenburg), are referred to as Study 1 samples. Plasma samples from six of the
same CJD patients in Study 1, together with 15 control and 15 AD specimens collected
at UCSD, constitute Study 2 samples. Plasma samples collected from 145 sporadic CJD
patients included 117 patients from whom plasma was taken at a single timepoint (Study 3)
and 28 patients from whom plasma specimens were obtained at two or more different
timepoints (Study 4).

All CJD patients included in this study were classified as either definite or probable
CJD according to published criteria [35]. Patients were systematically assessed at enroll-
ment and assessed at intervals of 6-8 weeks. Informed consent was obtained from all
subjects involved in the study. Specifically, research consent was obtained according to a
protocol reviewed by the Scotland A Research Ethics Committee (NPMC) or the Eastern
Research Ethics Committee (PRION-1). Functional status, and hence disease severity, was
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measured using the Medical Research Council Prion Disease Rating Scale (MRC Scale),
which ranges from 20 (no significant impairment) to 0 (severely impaired, bedbound,
unable to communicate or swallow) [33]. A slope coefficient representing the percentage
loss of function per day for individual patients was calculated [29].

Blood was collected in EDTA-coated tubes and centrifuged at 2000x g for 15 min.
Plasma was aliquoted into 1.5 mL polypropylene tubes and stored at —80 °C. Lumbar
CSF was collected into polypropylene tubes and processed within 1 h. Samples were
centrifuged at 2200x g for 10 min, aliquoted into 1.5 mL polypropylene tubes and stored at
—80 °C. Prior to shipment to the Walsh lab, samples were thawed and treated with 5 M
GuHCl to denature infectious prion species and then transported on dry ice.

2.1.2. AD and HC Study Cohort

CSF specimens came from AD and control cases (see Supplemental Table S1, CSF
study cohort 1) recruited at the University of Gothenburg [36] under the approval of the
local ethics committee. CSF was collected, processed, and stored as in Section 2.1.1. Patients
were designated as normal or AD according to CSF biomarker levels using cutoffs that are
90% specific for AD [37]: tau > 350 pg/mL and Ap42 < 530 pg/mL [38,39].

Plasma samples from AD and control subjects (Supplemental Table S1, plasma study
cohort 1) were collected at the Shiley-Marcos Alzheimer’s Disease Research Center (ADRC)
under a protocol approved by the UCSD Ethics Committee. Blood was collected, processed,
and stored as in Section 2.1.1. Control subjects had an MMSE score > 28, tau/A[31-42 ratio
< 0.5, and Ap1-42 concentration > 630 pg/mL. AD subjects had a tau/Ap1-42 ratio > 0.88
and AP1-42 < 630 pg/mL and an MMSE score of 15-24 points.

To enable a comparison of measurements made in CJD versus AD and control speci-
mens, samples from Gothenburg and UCSD were treated with 5 M GuHCI prior to analysis.

2.2. CSF and Plasma Analysis
2.2.1. Homebrew Simoa-Based Assays for N-Terminal and Full-Length Tau

Validation of the N-terminal (NT1) and the full-length (FL) tau assays were reported
previously [20,28]. The lower limit of quantitation (LLoQ) was defined as the lowest
standard: (i) with a signal higher than the average signal for the blank plus 9 SDs, and
(ii) allows a percent recovery >100 £ 20%. The LloQs (in the presence of 0.25 M GuHCl)
for the NT1 and FL-tau assays were 0.74 pg/mL. The repeatability of the NT1-tau and
FL tau assays for two internal control samples was determined as 8.2% and 6.9%, and
10.0% and 2.5%, respectively. Measurements of NT1-tau in 4 plasma samples (1.8% of all
specimens) produced inter-assay CVs > 20% (between initial and repeated analysis), and
these samples were excluded from further analysis.

2.2.2. Homebrew Simoa-Based Assay for Mid-Region Tau

Conjugation of beads with BT2 (194-198; Thermo, Waltham, MA, USA) and biotinyla-
tion of the detector antibody ADx202 (218-224; ADx Neurosciences, Gent, Belgium) were
carried out as described previously [28] and the assays were run using a 2-step procedure.
The MR-tau assay was highly sensitive to GuHCI and samples had to be diluted 1:40 to a
final concentration of 0.063 M GuHCI. The LLoQ in the presence of 0.063 M GuHCl was
6.7-20 pg/mL. The repeatability of the MR-tau assay for two internal control samples was
determined as 6.7% and 10.7%.

2.2.3. NfL

Simoa™ NF—light® Advantage (Quanterix, Billerica, MA, USA) kits were used accord-
ing to the manufacturer’s instructions. Samples pre-treated with GuHCI] were processed as
for the NT1- and FL-tau assay except NfL diluent was used. The LLoQ in the presence of
0.25 M GuHCl was 1.39-1.56 pg/mL. The repeatability of the NfL assay for two internal
control samples was determined as 4.0% and 3.3%.
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2.3. Statistical Analysis

Statistical analyses were carried out using GraphPad Prism, version 8 (LaJolla, CA,
USA) and Stata, version 15.1 (Stata Corp., College Station, TX, USA). Differences in
biomarker levels between groups were assessed using Kruskal-Wallis H test followed
by Dunn’s post hoc test. Normal distribution was assessed by Shapiro-Wilk test and
visual inspection of histograms and Q-Q-blots. Diagnostic accuracy was investigated
using receiver operating characteristic (ROC) curve analysis with a non-parametric ap-
proach. Linear regression fits were used to study the association of plasma logoNT1 tau
levels with severity of functional impairment (MRC Scale) and the rate of clinical pro-
gression (MRC slope), including an interaction term for the independent variable PRNP
codon 129 genotype. Models were adjusted for gender and age at blood collection. Visual
inspection of scatterplots indicated a linear relationship between variables. There was
homoscedasticity (assessed with visual inspection of residual plots, Cameron and Trivedi’s
decomposition of IM-test, and Breusch-Pagan test) and normality (assessed with visual
inspection of histograms, Kernel density estimates, P-P-plots, and Q-Q-plots) of the residu-
als. For analysis of repeated measures, linear mixed-effect (LME) models were fitted to test
whether stage of progression (MRC Scale) was associated with plasma NT1 tau levels in
PRNP codon 129 MV cases. From a total of 28 patients in the longitudinal sub study (see
Supplemental Table S1), 1 produced plasma NT1tau measurements with a CV > 20% and
3 had no MRC Scale available at time of blood draw, yielding a total of 24 patients available
for longitudinal analysis. The LME models were adjusted for age and gender, and included
random effects and intercepts nested within subject. For measurements that were below
the LLoQ of the respective assay (Study 1: CSF FL tau, HC/AD groups 19/39; Study 2:
Plasma NfL, HC/AD groups 27/30; Plasma NT1 tau, HC/AD groups 24/30; Plasma FL
tau, HC/AD groups 23/30; Study 3/4: Plasma NT1 tau, CJD 8/188), statistical analysis
was repeated after samples had been assigned values equal to the LLoQ of the assay but
produced similar results. The significance threshold was set to a two-sided p < 0.05.

3. Results
3.1. NfL, NT1- and FL-Tau Assays, but Not the Innotest MR-Tau ELISA, Are Compatible with
Concentrations of GuHCI Which Allow Detection of Tau in Human CSF

Biofluids from CJD patients have the potential to contain infectious prions and were
treated with an agent known to abolish infectivity prior to transport and assay. Here, we
tested compatibility with GuHCI of three established tau assays, a novel tau assay, and
a commonly used assay for NfL. The NfL, NT1 and FL-tau assays retained their high
sensitivity at GuHCI concentrations up to 0.25 M. Specifically, standard curves generated
in the presence of 0.25 M GuHCI were comparable to those obtained in the absence of
GuHCl (Figure 1B,C,F). In contrast, the presence of GuHCI greatly reduced the sensitivity
of the widely used Innotest hTau Ag ELISA (Figure 1D). The reduced sensitivity and
the requirement to dilute samples forty-fold (from 2.5 M to 0.063 M GuHCI) rendered it
impossible to use the Innotest assay to measure tau in GuHCl-treated CSF. To overcome
this problem, we developed and validated a Simoa-based MR assay that was ~27 times
more sensitive than the Innotest MR assay. Although our MR Simoa assay also had
low tolerance for GuHCI (Figure 1E), the increased sensitivity made it possible to dilute
samples to abrogate the effects of GuHCI and still detect accurate values (Figure 1E,
Supplemental Figure S1).
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Figure 1. The sensitivity of the NfL, FL-tau, and NT1-tau assays are similar in the presence/absence of 0.25 M GuHCIl.
(A) Schematic representation of tau 441, and epitopes of antibodies used in each tau assay. Standard curves in the presence
and absence of GuHCI for (B) Simoa FL-tau (LLoQ in the absence of GuHCI 0.25 pg/mL, LLoQ in the presence of 0.25 M
GuHCl1 0.74 pg/mL), (C) Simoa NT1-tau (LLoQ in the absence of GuHCl 0.25 pg/mL, LLoQ in the presence of 0.25 M
GuHC1 0.74 pg/mL), (D) Innotest MR-tau ELISA (LLoQ in the absence of GuHCI 30 pg/mL, LLoQ in the presence of
0.063 M GuHCl 540 pg/mL), (E) Simoa MR (LLoQ in the absence of GuHCl 6.67 pg/mL, LLoQ in the presence of 0.063 M
GuHCl 20 pg/mL), and (F) NfL (LLoQ in the absence of GuHCI 0.51 pg/mL, LLoQ in the presence of 0.25 M GuHCl
1.6 pg/mL). Each datapoint is the average £+ SEM from a triplicate measurement. Where the error bars are not visible,
the SEM is smaller than the size of the symbol. When appropriately diluted, GuHCI treatment did not alter detection of
analytes in CSF specimens from 5 HC and 5 AD subjects (B, C, E and F right panels)-green circles are HC and red circles are
AD patients (R? = 0.95-0.99). Open green circles indicate measurements below the LLoQ. Note: the dramatic reduction in
sensitivity of the MR Innotest caused by GuHCI precluded measurement of tau in CSF.

Importantly, when CSF from controls and AD subjects were analyzed in the presence
or absence of 0.25 M GuHCl (0.063 M GuHCI for MR-tau), the values obtained were highly
correlated (R? > 0.95). Thus, when GuHCl-treated samples are appropriately diluted, it is
possible to accurately measure NfL and various forms of tau (Figure 1B,C,E,F).

3.2. CSF NfL and Distinct Species of Tau Differentiate between Controls, AD and C]D

Next, we investigated the forms of tau present in CSF from patients with CJD, whether
they differed from forms of tau detected in AD and controls, and their relationship to a non-
specific marker of neurodegeneration, NfL. To enable a comparison of absolute amounts
of tau detected by different assays, the same recombinant tau standard was used for each.
In CSF from controls, the mid-region assay detected the highest signal (352 £ 28 pg/mL)
with the signals from the NT1 and FL assays, accounting for ~60% (220 £+ 12 pg/mL) and
~4% (13 & 3 pg/mL) of that detected by the MR assay. The levels of tau detected by each of
the three assays were elevated in AD versus controls, in CJD versus controls, and in CJD
versus AD (Figure 2). The average fold increase in CSF tau levels in AD and CJD versus
HC was highest for MR-tau (AD versus HC 4.1, CJD versus HC 36.6), followed by NT1-tau
(AD versus HC 2.6, CJD versus HC 26.8), and lowest for FL-tau (AD versus HC 1.7, CJD
versus HC 2.7). These results are consistent with our earlier studies comparing different
forms of tau in CSF from controls and AD patients [20], i.e., tau detected by mid-region
assays account for the highest levels of tau in AD CSF, NT1-tau detects comparable but
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lower amounts of tau than MR assays, and FL-tau, although elevated in AD, accounts for
only a fraction of the tau detected by the other two tau assays.
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Figure 2. CSF NfL and forms of tau measured with NT1, mid-region and full-length assays are
increased in CJD compared to AD and controls. Study 1 CSF samples comprise 21 HC (green circles),
18 AD (red squares) specimens collected in Gothenburg, and 15 CJD (blue triangles) samples collected
at UCL. All samples were treated with GuHCI, diluted as required and analyzed with Simoa-based
assays for (A) NfL, (B) NT1-tau (BT2-Taul2), (C) MR-tau (BT2-ADx202), and (D) FL-tau (TauAB-
Taul2). Each point represents a single individual and means + SEM are indicated. Differences
between groups were assessed with Kruskal-Wallis H test followed by Dunn’s post-hoc test. CSF
NT1, MR, and FL-tau was elevated in AD versus controls, whereas NfL only showed a trend towards
elevation in AD compared to controls. CSF levels of NfL, NT1, and MR-tau were strongly increased
in CJD versus AD and controls, whereas FL-tau levels were only modestly higher in CJD. #MR-tau
levels in CJD, AD and NC samples were measured in the presence of 0.063 M GuHCl, but samples
were diluted 1:4 for NC and AD, and 1:80 for CJD samples. Therefore, the actual LLoQ for the AD
and NC samples was ~27 pg/mL versus 536 pg/mL for the CJD samples. One CJD patient and one
AD patient had MR-tau measurements above the upper limit of quantitation. Abbreviations: AD,
Alzheimer’s disease; CJD, Creutzfeldt-Jakob disease; CSF, cerebrospinal fluid; FL-tau, full-length tau
assay; MR-tau, mid-region tau assay; NT1-tau, N-terminal tau assay type 1; SEM, standard of the
mean; n.s. non-significant; * p < 0.05; ** p < 0.01; ** p < 0.001; *** p < 0.0001.

NfL is an accepted marker of neurodegeneration [40] and, as expected for an aggres-
sive neurodegenerative disease such as CJD, NfL levels in CJD CSF were almost nine
times higher than in controls (Figure 2A). Reflective of the more chronic course of neu-
rodegeneration seen in AD [41], CSF NfL were only modestly elevated in AD versus
HC (Figure 2A).

These results imply that the elevation of tau in CJD and AD CSF is driven not only by
neurodegeneration, but by disease processes independent of neuronal death [23,42]. While
the biological reasons for elevations of NT1- and MR-detected forms of tau are unclear,
measurement of these analytes in CSF allow for a perfect or near-perfect separation of CJD
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patients from controls (AUC = 1 for both NT1-tau and MR-tau) and AD subjects (AUC =1
for NT1-tau, and 0.98 for MR-tau, Supplemental Figure S2), and is slightly better than that
obtained with NfL (Supplemental Figure S2). Even measurement of FL-tau in CSF permits
a reasonable differentiation between diagnostic groups (AUCs > 0.77). Forms of tau in CSF
measured with the mid-region tau assay, are highly correlated with tau detected with the
NT1-tau assay, but not the full-length tau assay (Supplementary Figure S3).

3.3. Plasma NfL and NT1-Tau Are Elevated in C|D Compared to AD and Controls
Given the encouraging results seen in CSEF, we expanded our study to investigate
plasma. Since the MR Simoa assay had a relatively high LLoQ and greater sensitivity to
GuHCl analysis, this assay was not used to measure tau in plasma. Even for the NfL,
NT1 and FL-tau assays, many AD and control plasmas, which, when unmanipulated,
had readily measurable values (Supplemental Figure S4), did not yield detectable signals
when treated with GuHCI (Figure 3). This was because the 20-fold dilution required to
accommodate GuHCI treatment often brought tau levels below the LLoQs of the assays. In
contrast, the high dilution required to accommodate GuHCI did not prevent the detection
of NfL, NT1-tau and FL-tau in CJD samples (Figure 3A-C).
A B ¢
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Figure 3. Plasma NfL, NT1-tau and FL-tau are elevated in CJD compared to HC and AD subjects. Study 2 samples
included plasma from 15 HC (green circles) and 15 AD (red squares) subjects collected at UCSD, and from 6 CJD (blue
triangles) subjects collected at UCL. All samples were treated with GuHC], diluted appropriately, and analyzed with
Simoa-based assays for (A) NfL, (B) NT1-tau, and (C) FL-tau. Each point represents a single individual and means + SEM
are indicated. Differences between groups were assessed with Kruskal-Wallis H test followed by Dunn’s post-hoc test.

Plasma levels of NfL, NT1, and FL-tau were elevated in CJD compared to controls and AD subjects. n.s. non-significant;
*p <0.05; ** p < 0.01; *** p < 0.0001. Note: because of the 10-fold dilution required to mitigate interference by GuHCl many
AD and control values were below the reliable limit of quantitation; in contrast, when AD and HC samples were analyzed
without addition of GuHCI NfL, NT1-tau and FL-tau were readily detected (see Supplemental Figure S4).

3.4. NT1-Tau Levels Are Associated with Clinical Progression of C[D

Having shown that NT1-tau can readily be detected in plasma from patients with CJD,
and at levels elevated versus AD and HC (Figure 3), we next investigated whether NT1-tau
levels change with the progression of CJD. First, we conducted a cross-sectional analysis of
145 CJD individuals across a spectrum of disease stages (including Study 3 samples and
baseline samples from Study 4; see Supplemental Table S1). We examined the relationship
between plasma NT1-tau levels and two parameters, MRC Scale (Figure 4A) and MRC
slope (Figure 4B). The 20-point MRC Scale has been shown to capture progression across
the full range of physical and cognitive domains that are affected by CJD [33]. MRC scale
is a snapshot of the clinical status of a patient at the time of sampling, and the MRC slope
provides a measure of the rate of disease progression throughout the observed disease
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period. Stage of disease based on the MRC scale was a predictor of higher logoNT1-tau
levels in CJD patients (3 = —0.07, p < 0.001) (Supplemental Figure S5A). LogyNT1-tau
levels were higher in MM vs. MV and VV carriers (p < 0.001), but changed at a similar rate
with increasing MRC scale between codon 129 carriers (MRC-Scale*Codon129 interaction:
p = 0.835) (Figure 4A). Rate of disease progression based on the MRC slope correlated
with logpNT1-tau levels, but the effect was modified by the PRNP codon 129 genotype
(Supplemental Figures S5B and Figure 4B). Higher logyNT1-tau levels predicted steeper
MRC slopes in MM patients (MRC-Slope, 5 = 0.72), but not in MV (f = —0.03) and VV
cases (3 = —0.87) (MRC slope*Codon129 interaction: p = 0.012) (Figure 4B).
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Figure 4. Plasma NT1-tau levels positively correlate with disease progression in CJD subjects. Samples from Study 3
and baseline samples from Study 4 comprised plasma specimens from 145 CJD patients. Association of plasma NT1-tau levels
with (A) severity of functional impairment measured with the MRC Scale, and (B) the rate of clinical progression determined
with the MRC Slope was modelled using linear regression stratified by (PRNP) polymorphism at codon 129. (A) Severity of
functional impairment (lower MRC Scale) correlated with higher plasma logyNT1-tau levels in CJD patients (Supplemental
Figure S5A). Plasma logyNT1-tau levels were higher in MM (blue) vs. MV (red) and VV cases (green) (p < 0.001), but the
slopes were not significantly different between codon genotypes (MRC scale*Codon129 interaction: p = 0.835). (B) A faster
rate of clinical progression (greater MRC Slope) was associated with increased levels of logoNT1-tau in MM (blue), but not
in MV (red) and VV cases (green) (MRC slope*Codon129 interaction: p = 0.012). (C) Study 4 samples were from 17 MV CJD
cases and included a total of 46 longitudinal plasmas. Fold changes in repeated NT1-tau measures were calculated relative to
the measurement at initial visit, and are expressed as relative plasma NT1-tau levels. Association of plasma NT1-tau levels

with MRC Scale was modelled using a linear mixed effects regression. Shaded areas represent 95% confidence intervals.

Spaghetti plots show repeated measures for individual subjects. Relative plasma NT1-tau levels increase moderately in MV
cases (p = 0.008). Repeated measures were only available from a limited number of MM (1 = 2) and VV (n = 5) cases, and are
shown in Supplemental Figure S5C.

Next, we investigated longitudinal samples from 24 CJD patients for which MRC
Scale scores were available at the time of blood collection. When sampled at a time-
point with a lower MRC Scale score versus baseline, plasma NT1-tau levels were in-
creased in 16 patients, 3 were unchanged, and 5 had decreased NT1-tau concentrations
(Supplemental Figure S5C). Due to the low numbers of MM (1 = 2) and VV (n = 5) patients,
we restricted our longitudinal statistical modeling to the 17 MV cases. The mixed linear
model showed that relative levels of plasma NT1-tau increased with disease progression
(Figure 4C; MRC Scale predictor, 3 = —0.03, p = 0.008).

Collectively, our cross-sectional and longitudinal results indicate that plasma NT1-tau
increases with functional decline and the rate of clinical progression in CJD, and the effect
on rate of clinical progression is modified by the PRNP codon 129.

4. Discussion

In CSF from HC, AD, and CJ]D subjects, fragments of tau were found to be much more
abundant that FL-tau. Although all forms of tau were increased in AD and CJD, levels of
FL-tau accounted for less than 4% of MR-detected tau. The elevation of all forms of tau in
AD CSF, in the absence of increased NfL, is consistent with our earlier finding that certain
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forms of tau are released from neurons independent of cell death. Moreover, it is notable
that even in CJD, where there is severe and ongoing neurodegeneration, FL-tau was only
2.7 times higher than controls, whereas NT1-tau levels in CJD were more than 26-fold
higher. Indeed, while the measurement of NT1 and MR-tau allowed for a near perfect
separation of CJD from AD and controls, equal or superior to NfL, FL-tau performed less
well. The modest change in FL-tau in CSF from individuals suffering with severe and
chronic neurodegeneration suggests that FL-tau is not well released when axons degenerate
and neurons die.

In cell culture experiments, we and others found that MR-tau is released from neurons
independent of neuronal compromise [21,22,27], but treatment with excitotoxic levels of
glutamate causes a massive increase in extracellular MR-tau coincident with an increase in
markers of cell compromise [22]. In contrast, cultures decimated by glutamate treatment
showed only a marginal increase in FL-tau [22]. These prior in vitro experiments, the results
from the current study of CJD CSF, and recent studies of CSF from patients with a variety
of neurodegenerative diseases [20,21,24-26,43] indicate that FL-tau is not readily released
from either healthy or compromised neurons. Collectively, these results indicate that
measurement of certain tau fragments will be more diagnostically useful than assessment
of FL-tau.

Blood-based markers are more easily accessible and would facilitate the repetitive
assessments essential for a longitudinal monitoring of disease onset in patients at risk for
CJD, and as an objective read-out for clinical trials [15]. Given the incompatibility of MR-tau
assays with GuHCI, and the high sensitivity and specificity of NT1-tau measurements in
CSEF, we focused our efforts on applying the NT1 assay to the analysis of CJD plasma. In
initial experiments with plasma, we also used the FL assay. Both assays measured higher
levels of tau in CJD plasma compared to controls and AD, but, as expected from the CSF
results, the NT1 assay allowed for a better separation between the diagnostic groups than
did FL-tau.

In plasma from control and AD subjects, the values measured by the FL and NT1
assays were of a similar magnitude. These results are consistent with our prior study, which
revealed that the level of FL-tau relative to other forms of tau was much higher in plasma
than in CSF [20]. This finding implies either a different half-life of certain forms of tau in
CSF versus blood, or, more likely, a peripheral source of tau, which allows for a greater
release of FL-tau than in brain. Whatever the reason for the relatively high levels of FL-tau
in plasma, the better relationship between NT1-tau in plasma and CSF further emphasizes
the greater potential of NT1-tau as a plasma biomarker for both AD and CJD. Moreover, it
is noteworthy that several prior studies that used the Quanterix tau assay found interesting
trends between plasma tau and the presence and/or severity of CJD. As in the NT1-tau
assay, the Quanterix assay also relies on antibodies directed to the N-terminal domain of
tau. However, our NT1-tau assay is superior to the Quanterix assay at discriminating AD
and AD-MCI from controls [20,28], and allows for a perfect segregation of CJD from AD
and controls in CSE.

Using the MRC Scale as a measure of functional decline, we investigated the rela-
tionship between plasma NT1-tau levels and the rate and stage of clinical progression in
145 patients with CJD. Plasma NT1-tau levels were associated with disease severity (MRC
scale at the time of testing) and a faster rate of functional decline (assessed by MRC slope).
Strikingly, the effect on functional decline was moderated by the PRNP codon 129 genotype.
Plasma NT1-tau correlated with a faster rate of clinical decline in MM carriers (but not
in VV and MV individuals). The MM genotype has a profound influence on the rate of
functional decline in CJD, where a 10% functional loss on the MRC Scale is observed in
only 5 days versus 12 days in VV, and 28 days in MV carriers [29]. Higher plasma tau
levels have been reported in MM compared to VV and MV carriers [11,44,45], and prior
studies using the Quanterix tau assay observed an interaction between the PRNP genotype
and plasma tau levels and survival time [45—47]. Our results are in agreement with these



Cells 2021, 10, 3514

10 of 13

previous findings, but we also show that plasma NT1-tau concentration correlated with a
faster rate of clinical decline in MM.

As in our cross-sectional study, plasma NT1-tau was found to increase with disease
progression in most cases (67%) available for longitudinal analysis. Notably, both MM
cases and four out of five VV subjects showed increased plasma NT1-tau with advancing
disease.

Limitations

Although very promising, our study is not without limitations. The custom-made
NT1-tau assay will need to be further developed from a research-grade to a clinical-grade
assay. Future work will include a definition of reference materials and optimization of
cut-offs before moving this biomarker to clinical routine or use in treatment trials. A further
limitation is the predominance of patients with an MV genotype in our longitudinal study.
New studies should include more MM and VYV cases, and the overall number of patients
and longitudinal timepoints should be increased. Finally, longitudinal studies of plasma
NT1-tau (and additional forms of extracellular tau) in other tauopathies and across different
disease stages are warranted to further elucidate the diagnostic and prognostic power of
tau biomarkers across neurodegenerative diseases.

5. Conclusions

We provide evidence that plasma NT1-tau concentrations show promise as a minimally
invasive biomarker for diagnosis and monitoring disease progression in CJD. Our results
are particularly encouraging because, unlike CSF collection, which requires a lumbar
puncture, blood samples can be easily and repeatedly obtained. Our findings warrant
further investigation of NT1-tau as a predictor of disease course, its usefulness in clinical
trial stratification, and its use as an outcome parameter in CJD trials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10123514/s1, Supplemental Table S1: Participant Characteristics, Supplemental Figure S1:
The in-house Simoa mid-region assay measures highly similar amounts of tau in CSF as the clinical-
grade Innotest tau assay, Supplemental Figure S2: CSF NfL, NT1-tau, and mid-region tau allow for
excellent discrimination of CJD from AD and controls, Supplemental Figure S3: Forms of tau in CSF
measured with the mid-region tau assay are highly correlated with tau detected with the NT1-tau
assay, but not the full-length tau assay, Supplemental Figure S4: Plasma NfL and NT1-tau, but not
FL-tau, are elevated in AD subjects, Supplemental Figure S5: Plasma NT1-tau levels increase with
disease progression of CJD.
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