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Abstract: Chronic lung diseases (CLDs) represent a set of disorders characterized by the progressive
loss of proper lung function. Among severe CLDs, the incidence of chronic obstructive pulmonary
disease (COPD) and idiopathic pulmonary fibrosis (IPF) has grown over the last decades, mainly
in the elderly population. Several studies have highlighted an increased expression of senescence-
related markers in the resident progenitor cells in COPD and IPF, possibly undermining epithelial
integrity and contributing to the progression and the aggravation of both diseases. Recently, the
chronic activation of the canonical Wnt/β-catenin pathway was shown to induce cellular senescence.
Here, we investigated the localization and the expression of leucin-rich repeat-containing G-protein-
coupled receptor 6 (LGR6), a protein that activates and potentiates the canonical Wnt signalling.
Through immunohistochemical analyses, we identified a lesion-associated rise in LGR6 levels in
abnormal lung epithelial progenitors in COPD and IPF when compared to histologically normal
tissues. Moreover, in areas of aberrant regeneration, chronic damage and fibrosis, LGR6-expressing
epithelial progenitors displayed a major increase in the expression of senescence-associated markers.
Our study suggests the involvement of LGR6 in the chronic activation of the Wnt/β-catenin pathway,
mediating the impairment and exhaustion of epithelial progenitors in COPD and IPF.

Keywords: LGR6; COPD; IPF; senescence; lung; progenitor cells

1. Introduction

Aging is one of the main risk factors for developing chronic life-threatening con-
ditions [1]. In the lung, aging is associated with structural and functional changes that
increase susceptibility to chronic lung diseases (CLDs) [2,3]. Among CLDs, the prevalence
of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF)
has been found to increase dramatically with age [4,5], with COPD being the third lead-
ing cause of death worldwide in 2019 [6]. Growing evidence suggests that anomalies in
signalling pathways involved in lung morphogenesis and postnatal development may
impact the integrity of epithelial progenitors in COPD and IPF [7,8]. Proliferation of resi-
dent bronchiolar and alveolar progenitors is critical for tissue regeneration in the light of
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re-establishing tissue homeostasis and maintaining correct lung functionalities [9]. Notably,
bronchiolar regeneration is ascribed to club (CC10+) and basal (p63+, CK5+) progenitors
that are capable of self-renewing and differentiating towards specialized ciliated and gob-
let cells [9]. In some circumstances, basal progenitors can migrate and proliferate in the
alveolar compartment, where alveolar-type I (ATI) and -type II (ATII) cells are the sole
resident epithelial cells. Beyond producing surfactant proteins, as surfactant protein-C
(SPC+), ATII cells are the main alveolar progenitors and can differentiate into ATI cells
and regenerate the distal lung epithelium [9]. Among other pathways, components of
canonical and non-canonical Wnt signalling are expressed in the bronchial and in the
alveolar progenitors of the adult lung [10]. In recent decades, the role of canonical Wnt
signalling as a critical regulator for balancing stem cell proliferation and differentiation
and as an inhibitor of apoptosis has been established for several human tissues and related
diseases [11]. More specifically, in COPD and IPF, several studies highlighted the presence
of aberrant Wnt activity [10,12–15]. Despite the fact that recent studies have provided new
insights about the activation of the canonical Wnt pathway in IPF [15–17], the involvement
of Wnt/β-catenin signalling in COPD is less clear. While previous findings suggested a
shift from canonical to non-canonical Wnt pathway activation in emphysema [18], recent
investigations showed that the Wnt/β-catenin pathway may be upregulated in the airway
epithelium of patients with COPD [12,19].

In chronic diseases, the persistent activation of resident stem and progenitor cells can
lead to stem cell exhaustion and senescence, resulting in reduced reparative capacities of
tissues and organs [20,21]. Cells harbouring a senescent phenotype show an irreversible cell
cycle arrest, mediated by increased levels of cell cycle inhibitors p16INK4A and p21CIP1 and
high senescence-associated β-galactosidase (SA-β-gal) enzymatic activity [22,23]. While
senescence may initially support tissue repair [24], the accumulation of exhausted stem and
progenitor cells may eventually impact the surrounding microenvironment and undermine
effective tissue regeneration [1,25]. Recently, chronic Wnt pathway activation has also been
associated with acquisition of a senescent phenotype by lung progenitor cells [26].

Previous studies conducted in human lungs revealed the existence of a bronchoalveo-
lar multipotent progenitor population expressing the surface marker leucin-rich repeat-
containing G-protein coupled receptor 6 (LGR6) [27]. As other members of the LGR family,
LGR6 acts as a promoter of the canonical Wnt signalling [28] and its dynamic expres-
sion has been reported in epithelial stem and progenitor cells in several tissues, such as
the skin, the bone and the mammary glands [29–33]. While ablation of LGR6-positive
cells has detrimental consequences for the regeneration of skin, nails and bone, leading
to defective tissue repair [34,35], increased LGR6 expression has been associated with
tumour proliferation and invasion [30,34]. In the lung, due to their intrinsic capacity of
differentiating into mature bronchiolar and alveolar cell types, LGR6-positive epithelial
progenitors may be involved in the maintenance of lung homeostasis [27,36]. Moreover,
a stage-related enrichment in LGR6-expressing cells was observed in advanced stages of
lung adenocarcinoma, suggesting a role for LGR6-positive cells in lung cancer progres-
sion [37]. Considering the central role of Wnt pathway regulation in COPD and IPF and
the importance of LGR6-expressing cells in other lung diseases, we currently investigated
the localization and the expression of LGR6 in COPD and IPF lung tissues and its potential
association with senescence of progenitor cells, a detrimental mechanism for epithelial
barrier integrity and function. Our work suggests that increased LGR6 levels may foster
the chronic activation of canonical Wnt/β-catenin signalling, which eventually results in
the impairment and exhaustion of epithelial progenitor cells in both types of CLDs.

2. Materials and Methods
2.1. Samples Collection

All lung explants from donor and end-stage COPD and IPF patients (n = 29; Supple-
mentary Table S1) were collected with informed consent, following the approval of the
KU Leuven/UZ Leuven ethical committee (S52174 and S55886). Patients were recruited
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between January 2019 and September 2020. In 2020, following measures implemented
at UZ Leuven, all recruited patients underwent COVID-19 RT-PCR tests and were found
to be negative for SARS-CoV-2. Diagnoses for COPD and IPF have been performed
according to GOLD and ATS/ERS consensus guidelines, respectively [38,39]. Despite
being histologically normal, donor tissues were not used for transplantation due to non-
pulmonary related reasons (lobar or single-lung transplantation, logistical issues, embolism,
etc.). After excision, the use of samples was maximized to perform flow cytometry anal-
yses, immunofluorescence and immunohistochemical evaluations. Briefly, portions of
the explanted lungs were dissociated in enzymatic solutions (cfr. ‘Tissue Dissociation’),
freshly frozen in liquid nitrogen-cooled isopentane and stored at −80 ◦C or fixed with 4%
phosphate-buffered formaldehyde for at least 24 h.

2.2. Tissue Dissociation

Fresh tissues were thoroughly washed in cold Dulbecco’s Phosphate-Buffered Saline
(D-PBS; Life Technologies, Paisley, UK, cat. no. 14190250) with antibiotics and antimycotics
(Antibiotics-Antimycotics 100X; Life Technologies, 15240-062) to reduce fungal and bacterial
contamination in the subsequent steps. Lung specimens were minced into fine pieces and
transferred to fresh Advanced DMEM-F12 (Life Technologies, 12634028) supplemented
with 1–3 mg/mL of collagenase type I, 1 mg/mL of dispase II (Life Technologies, 17100017
and 17105-041) and 1X PenStrep (Life Technologies, 15140122). The suspensions were
incubated at 37 ◦C for 45–60 min and centrifuged at 1200 rpm for 5 min. The digested
pellets were then resuspended in Advanced DMEM-F12 supplemented with 10% foetal
bovine serum (FBS; Life technologies, 10500-064) to cease the enzymatic reactions. Samples
were filtered through 70 µm cell strainers (Greiner Bio One, Frickenhausen, Germany,
542070) and serial centrifugation steps were performed at 1200 rpm for 5 min. Cell pellets
were washed in D-PBS and treated with red blood cell lysis buffer (Roche, Mannheim,
Germany, 11814389001) for 10 min at room temperature. After centrifugation, isolated cells
were washed in D-PBS and preserved for further analyses.

2.3. Immunohistochemical Stainings

Formalin-fixed and paraffin-embedded (FFPE) serial sections of 4 µm were cut at
the microtome and transferred on Leica microscope slides (Leica Microsystems, Wetzlar,
Germany, S21.2113.A). Slides were dried and haematoxylin and eosin stainings were
performed. Sections for each specimen were selected for further immunohistochemical
(IHC) and immunofluorescent (IF) investigations. Staining procedures were conducted
using an automated IHC system (Bond™ Max, Leica Biosystems, Nussloch, Germany)
according to the manufacturer’s instructions. Primary antibodies and respective dilutions
used for the non-automated staining procedures are listed in Supplementary Table S2.
Secondary anti-rabbit and anti-mouse HRP-conjugated antibodies were obtained from
Dako (Agilent, Glostrup, Denmark, K400311-2 and K400111-2). 3,3′-diaminobenzidine
solution (DAB; Liquid DAB+ Substrate Chromogen System, Dako, K346889-2) was used as
a chromogen to detect antigen–antibody complexes. After staining, slides were washed
and mounted using a Leica CV5030 Glass Coverslipper machine (Leica Biosystems) and
pictures were acquired with a Leica DM2000 Histology Microscope (Leica Microsystems,
RRID: SCR_020223). Stainings were quantified with QuPath (version 0.2.3, University of
Edinburgh, Edinburgh, UK, RRID: SCR_018257), and non-parametric ANOVA with Dunn’s
post hoc test was performed with Anaconda Software (version 1.9.7, Anaconda Inc., Austin,
TX, USA). Values of p < 0.05 were considered significant.

2.4. Immunofluorescence Analyses

Tissue slides were deparaffinized in a Leica Autostainer XL Automated Slide Stainer
(Leica Microsystems, RRID: SCR_020212) and heat-induced epitope retrieval was per-
formed using a citrate buffer (EnVision FLEX Target Retrieval Solution Low pH, Dako,
K8005) in a PT Link module (Dako), following manufacturer’s instructions. Lung sections
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were blocked with 5% bovine serum albumin (BSA, Roche, 03116956001) for at least 30 min
at room temperature and incubated at 4 ◦C overnight with primary antibodies (Supple-
mentary Table S2). After washing, Alexa Fluor® 488 and 647 secondary antibodies (1:300,
Jackson ImmunoResearch Europe Ltd., Ely, UK, 711-545-149, 715-545-150, 711-605-149
and 715-605-150) were applied onto the sections for 45–60 min. Slides were mounted
using a ProLong™ Gold Antifade Mountant with DAPI (Thermo Fisher Scientific, Eugene,
OR, USA, P36931) and IF analyses were carried out using a Leica DM2000 microscope
(Leica Microsystems).

2.5. SA-β-Galactosidase Stainings

Senescence-associated β-Galactosidase (SA-β-Gal) is a hydrolytic enzyme residing
in lysosomes, where it converts β-galactosides into monosaccharides. The enzymatic
activity of SA-β-Gal is increased when cells become senescent, and its expression has been
correlated with cellular aging and senescence in cultured cells and in tissues [40]. SA-β-Gal
staining was performed on frozen sections using a Senescence β-Galactosidase Staining
Kit (Cell Signaling Technology, Danvers, MA, USA, #9860). Lung tissues were preserved in
OCT (KP Cryo-compound; VWR, Gavere, Belgium, K1620-C), frozen in liquid nitrogen-
cooled isopentane (2-Methylbutane; Acros Organics, Geel, Belgium, AC126470010) and
stored at −80 ◦C. Frozen sections were obtained using a Cryostar NX70 (Thermo Scientific,
Waltham, MA, USA) and transferred on microscope slides. Samples were fixed in 1X fixative
solution for 10 min at room temperature and rinsed twice with D-PBS. β-Galactosidase
staining solution was freshly prepared according to the manufacturer’s instruction and
applied on the sections. Lung sections were incubated at 37 ◦C overnight in a dry incubator
in absence of CO2. On the following day, tissues were checked under a microscope for
the development of blue colour and stored at 4 ◦C with a layer of 70% glycerol solution
(Glycergel®, Dako, C0563), before image acquisition.

2.6. Flow Cytometry Analyses

Isolated human lung cells were stained for SA-β-Gal using the Cell Event™ Senes-
cence Green Flow Cytometry Assay Kit (Invitrogen™, Thermo Fisher Scientific, C10840),
following manufacturer’s instructions. Briefly, after dissociation, lung cells were fixed in
2% PFA (Thermo Scientific, 28908) for 10 min at room temperature. Cells were washed,
centrifuged, and resuspended in freshly prepared working solution and incubated for 1–2 h
at 37 ◦C in a dry incubator, protected from the light. After incubation, cell suspensions
were washed twice with 1% BSA in D-PBS and permeabilized with 0.1% Tween20® (Sigma,
St. Quentin Fallavier, France, P1379) in D-PBS for 15 min on ice. After washing, cells were
incubated with anti-LGR6 antibody (1:100; Abcam, Waltham, MA, USA, ab126747) and
with APC-conjugated anti-human CD45 and CD31 antibodies (1:1000 and 1:1500; BioLe-
gend, San Diego, CA, USA, 304012 and 303116) for 60 min on ice. Secondary DyLight™ 405
donkey anti-rabbit (1:500; Jackson ImmunoResearch Europe Ltd., 711-475-152) was used
to detect LGR6 expression. Samples were run on BD Scientific Canto II Flow Cytometer
(BD Bioscience, San Diego, CA, USA, RRID: SCR_018056) and flow cytometry data were
analysed with FCS Express™ (version 7, DeNovo Software, Glendale, CA, USA, RRID:
SCR_016431).

2.7. TUNEL Assay

TUNEL assay was performed on FFPE tissue slides using Click-iT™ Plus TUNEL
Assay kit (Invitrogen™, C10617) according to the manufacturer’s instructions. After
deparaffinization of tissue sections, slides were fixed in 4% PFA (Thermo Fisher, Kandel,
Germany, 043368.9M) for 15 min at 37 ◦C and washed in PBS. Tissue sections were covered
with permeabilization reagent, incubated for 15 min, and washed in D-PBS before being
incubated with 4% PFA for further 5 min at 37 ◦C. After pre-treatment with the reaction
buffer, TdT enzymatic solution was prepared following the provided instructions and
allowed to incubate with tissue sections for 60 min at 37 ◦C. Slides were rinsed in deionized
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water, washed with 0.1% of Triton™ X-100 (Sigma, Burlington, MA, USA, T8787) + 3% BSA
in PBS for 5 min. After rinsing with PBS, tissues were incubated with freshly prepared
Click-iT™ TUNEL Reaction cocktail for 30 min at 37 ◦C, protected from the light. Slides
were washed and mounted with ProLong™ Gold Antifade Mountant with DAPI and IF
analyses were carried out using a Leica DM2000 fluorescent microscope.

3. Results
3.1. LGR6 Expression Is Increased in Fibrotic and Inflated Lesions and in Areas of Bronchiolization
in COPD and IPF Samples

We first investigated the intracellular expression of leucine-rich repeat-containing
G-protein-coupled receptor 6 (LGR6) in donor (n = 7), COPD (n = 15) and IPF (n = 7) lungs
(Figure 1 and Supplementary Table S1). In normal human lungs, no to low intracellular
LGR6 expression was observed, and if present, it was limited to the apical portion of few
bronchiolar cells and to perivascular and peribronchiolar pneumocytes, as assessed through
morphological and immunophenotypical analyses on serial sections (Figure 1A–C).

We observed distinguishable patterns of expression for LGR6 in lungs obtained from
patients with COPD. While emphysematous alveolar regions were completely negative
(Supplementary Figure S1A), medium to high intracellular LGR6 expression was observed
in fibrotic alveolar areas harbouring thick alveolar walls and inflammation (Figure 1D,E).
To a similar extent, increased LGR6 levels were reported in narrowed airways and damaged
bronchioles with evident loss of bronchiolar cells or expansion of bronchiolar cells towards
the alveolar regions (Figure 1F).

In samples obtained from patients diagnosed with severe IPF, we observed a more
homogeneously distributed, high intracellular LGR6 expression in all epithelial progen-
itors, with high protein concentration in disrupted airways as well as in alveolar areas
(Figure 1G–I).

In diseased tissues, LGR6 staining was also detected to a variable extent in immune
cells, reaching high levels in alveolar and interstitial macrophages in COPD and IPF samples
(Supplementary Figure S1B,C). While the expression of LGR6 has been reported before
in human phagocytes, albeit its role is not completely explored, and to our knowledge
LGR6 expression has not yet been documented in other immune populations, we observed
increased LGR6 levels in alveolar and interstitial macrophages and in lymphoid follicles
(Supplementary Figure S1B–D) of COPD and IPF lungs.

Overall, lung specimens from patients with COPD and IPF showed a significant
increment in the number of LGR6-positive (LGR6+) cells when compared to donor tissues
(Figure 1J; pdonor vs. COPD = 0.010918 and pdonor vs. IPF = 0.000496).

3.2. LGR6 Is Highly Expressed in Basal, Club and Alveolar Type II Progenitors Localized in
Damaged Bronchioles and Fibrotic Alveoli

Previous studies conducted on epithelial progenitors in human lung tissues proved the
existence of a LGR6+ progenitor population: LGR6+ epithelial progenitors are responsible
for the homeostatic maintenance of the bronchoalveolar epithelium [27] and are involved
in the lung adenocarcinoma progression [37]. Similarly, in donor tissues we observed
sporadic and low intracellular LGR6 expression in few epithelial cells (Figure 1A). We
further investigated the expression of LGR6 protein in epithelial progenitors of COPD and
IPF (Figure 2A–H), where the bronchiolar and alveolar compartments showed prominent
rearrangements, with epithelial progenitors harbouring manifest morphological alterations
(Supplementary Figure S2A–H). To determine whether LGR6 positivity correlated with a
specific population, we performed co-stainings between LGR6 and cell type specific mark-
ers for ATII cells (SPC+), club (CC10+) and basal (p63+ and CK5+) progenitors (Figure 2
and Supplementary Figure S3).

In COPD tissues, club (CC10+) and basal cells (p63+ and CK5+) expressing LGR6 were
observed in narrowed airways and damaged bronchioles (Figure 2A–C). Moreover, intra-
cellular LGR6 also showed a trend of increased expression at the interphase between bron-
chioles and alveoli, where club (CC10+) and basal progenitors (p63+ and CK5+) expanded



Cells 2021, 10, 3437 6 of 13

towards the alveolar region (Supplementary Figure S3E–G). In the alveolar compartment,
while ATII cells (SPC+) of emphysematous areas were negative for LGR6, we identified
niches of morphologically abnormal LGR6+/SPC+ ATII cells in proximity to fibrotic lesions
(Figure 2D and Supplementary Figure S3H).
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(A–I): Immunohistochemical images representative of human donor, COPD and IPF lungs stained
at 10× (A,D,G; scale bar = 300 µm) and at 20× (bar = 100 µm) magnification to detect localization
of LGR6 in alveolar (B,E,H) and bronchiolar (C,F,H) areas. (J): Quantification of LGR6-positive
cells for donor (n = 7), COPD (n = 15) and IPF (n = 7) tissues. Statistics: non-parametric ANOVA
(pdonor vs. COPD = 0.010918, pdonor vs. IPF = 0.010918 and pCOPD vs. IPF = 0.408217).
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Figure 2. Increased LGR6 expression is observed in epithelial progenitor cells. (A–H): Immunofluorescence analyses
depicted co-expression of LGR6 (red) and main epithelial progenitor markers (green). CK5 (A,E; bar = 50 µm) and p63
(B,F) markers were used to identify basal progenitors, CC10 stained club cells (C,G) and SPC was used to recognize ATII
cells (E,H).

A general expansion of the bronchiolar regions and a nearly complete loss of the
alveolar compartment were observed in IPF tissues (Supplementary Figure S2E–H). Similar
to proliferating bronchiolar progenitors in COPD samples, the expression of LGR6 was
increased in basal (p63+ and CK5+), club (CC10+) and ATII (SPC+) cells (Figure 2E–H
and Supplementary Figure S3I–L). Interestingly, at the bronchiole–alveoli interphase, we
detected narrowed alveolar regions with co-existing LGR6+/SPC+ and LGR6+/p63+/CK5-

cells (Supplementary Figure S4D–F), with low to medium SPC levels and weak p63 nuclear
positivity, as observed in immunohistochemical stainings (Supplementary Figure S4A–C).
Further immunofluorescent analyses confirmed the consistent co-expression between
basal and ATII markers in some cells of these regions (Supplementary Figure S4G–J).
Despite the contiguity of the respiratory bronchioles with the alveolar compartment, co-
expression of basal (p63+) and ATII (SPC+) markers were rarely observed in COPD samples
(Supplementary Figure S4K–N).

3.3. In Fibrotic and Inflated Areas, Senescent Progenitor Cells Show Increased LGR6 Expression

Signs of physiological lung aging have been previously reported in COPD and IPF
tissues [23]. Moreover, increased Wnt signalling has been associated with accelerated aging
and induction of cellular senescence [26,41]. Considering the role of LGR6 as an enhancer
of the canonical Wnt pathway, we investigated the expression of senescence-associated
markers in LGR6+ epithelial progenitors. While we did not observe the nuclear expression
of proliferation marker Ki67 (Supplementary Figure S5A–F) and we excluded the presence
of apoptotic events occurring in COPD and IPF tissues (Supplementary Figure S5K–N), we
detected increased levels of Wnt-related markers total β-catenin and glutamine synthetase
in lesions harbouring LGR6+ progenitors (Supplementary Figure S5G–J). Using flow cyto-
metric analyses, we evaluated changes in the enzymatic activity of senescence-associated
β-Galactosidase (SA-β-Gal) in cells obtained from control, COPD and IPF biopsies. After
negative selection for CD45 and CD31 markers to avoid hematopoietic and endothelial
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contamination, we assessed the expression for SA-β-Gal in LGR6+ cells. As shown in
Figure 3A, we observed an increased SA-β-Gal enzymatic activity in LGR6+ cells obtained
from dissociated COPD and IPF specimens, when compared to cells isolated from healthy
donor biopsies.
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Figure 3. LGR6+ cells express increased levels of senescence-associated markers. (A,B) SA-β-Gal
enzymatic activity was evaluated in donor, COPD and IPF cells isolated from freshly dissected lung
biopsies (A). SA-β-Gal expression was confirmed in bronchoalveolar compartment of COPD and IPF
tissues ((B); bar = 100 µm). (C) Representative photomicrographs showing co-expression of LGR6
in red with p16INK4A ((I)–(III)) and p21CIP1/WAF1 ((II)–(IV)) in green in the bronchoalveolar
compartment of COPD and IPF patients ((C); scale bar = 50 µm).

We further confirmed the expression of SA-β-Gal in COPD and IPF frozen sections
(Figure 3B). Immunohistochemical analyses showed increased levels of expression of cell
cycle markers p16INK4A and p21CIP1 (Figure 3C and Supplementary Figure S6), which
are routinely used as markers for senescent cells [42].
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In COPD samples, some niches of morphologically abnormal LGR6+ epithelial progen-
itors with altered morphology showed increased p16INK4A and/or p21CIP1 expression
(Figure 3CI,II and Supplementary Figure S6C,D). LGR6+ progenitors expressing senescence-
associated markers were found in proximity to fibrotic alveolar areas and damaged bronchi-
oles. Further investigations revealed that LGR6+ cells of damaged areas were also SPC+ and
CC10+ cells expressing p16INK4A and/or p21CIP1 (Supplementary Figure S7E–H). While
sporadic senescent LGR6+/p63+ cells were observed in few COPD samples, senescence-
associated markers were not expressed in CK5+ or p63+ basal progenitors of thick periph-
eral airways (Supplementary Figure S7A–D).

The expression of senescence-related markers was increased in LGR6+ epithelial pro-
genitors throughout all IPF tissues (Figure 3CIII,IV and Supplementary Figure S6E,F). High
levels of p16INK4A and p21CIP1 were reported in LGR6+/SPC+ and LGR6+/CC10+ pro-
genitors. The expression of p16INK4A and p21CIP1 was more diffuse in the LGR6+/CK5+
basal population than in LGR6+/p63+ cells.

Our studies show that, in end-stage COPD and IPF tissues, bronchoalveolar epithelial
progenitor cells display a lesion-associated rise of LGR6 levels, which is followed by
an overall increased expression of canonical Wnt-related markers, total β-catenin and
glutamine synthetase and by the expression of senescence-associated markers p21 and p16
in areas of aberrant tissue regeneration.

4. Discussion

Although current treatments can relieve symptoms and delay the progression of the
two diseases, COPD and IPF remain progressive and incurable conditions [38,39]. Our
understanding of pivotal mechanisms involved in CLDs has improved in recent decades,
however, not to the complete elucidation of the complex machinery contributing to COPD
and IPF development and exacerbation [7,8,43–47].

Among all proposed pathways, increasing interest has been raised around the activity
of Wnt signalling in CLDs. Whilst in patients with IPF, the involvement of Wnt/β-catenin
signalling has been widely investigated in recent decades [15–17], in COPD the activation of
canonical Wnt pathway is still debated and its upregulation may be lesion specific [12,18,19].
In our study, we explored the expression and localization of LGR6, a known enhancer of
the canonical Wnt signalling that has been previously shown to contribute to lung adeno-
carcinoma progression [37]. In lungs with COPD and IPF, we found increased intracellular
LGR6 expression in epithelial niches of fibrotic lesions and proximal to parenchymal and
peribronchiolar lymphoid follicles. In contrast, LGR6 was absent in normal lungs and in
emphysematous regions of COPD tissues. Whilst bronchiolar and alveolar fibrotic lesions
showed a corresponding increase in LGR6 levels in club and ATII cells, the pattern of LGR6
expression in basal progenitors of IPF and COPD was more heterogeneous. In IPF samples,
LGR6 expression was generally increased in the basal progenitor populations, reaching the
highest protein levels in areas of bronchiolization and honeycombing, whereas in COPD
tissues, LGR6-positive basal cells were observed in damaged and inflated bronchioles
and in proliferative bronchiolar lesions, but not in airways proximal to emphysematous
lesions. The presence of LGR6 in lung epithelial progenitors of damaged and proliferating
bronchioles and in fibrotic alveoli may suggest a Wnt-mediated response in divergent
chronic insults occurring in COPD and IPF [10,46,48].

Aberrant Wnt/β-catenin signalling has been widely reported in aging-related dis-
eases and in fibrosis in several tissues, including human lungs [15,25,43,49]. Recent studies
showed that chronic activation of canonical Wnt signalling may contribute to progenitor
exhaustion through induction of senescence [26,49,50]. Senescence is considered one of the
main hallmarks of aging and accumulation of senescent cells and secretion of senescence-
related factors (SASPs) may contribute to exacerbation, inflammation and failure of tissue
regeneration [9,23]. Alongside the increased expression of LGR6 in epithelial progenitors
of COPD and IPF tissues, we observed higher senescence-associated β-galactosidase (SA-β-
Gal) activity and increased p16INK4A and p21CIP1 levels in LGR6-expressing cells. Interest-
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ingly, while p16INK4A expression was homogenously increased in all epithelial progenitors,
p21CIP1 staining was limited to some regions harbouring evident fibrotic lesions, tissue
damage and/or defective bronchiolization. As recently published by Lehmann et al. [26],
while an increase in p16INK4A levels tends to occur early and may not be sufficient to induce
a manifest senescent phenotype, accumulation of p21CIP1 occurs later in time, in parallel
with rising SA-β-Gal activity. According to these observations, our findings may suggest
that LGR6-positive ATII and a few club and basal progenitors harbouring high p21CIP1

levels may display an actual senescent phenotype in IPF. In contrast, in COPD the presence
of senescent LGR6-positive ATII cells may be limited to some niches of the alveolar com-
partment, where evident parenchymal fibrosis and senescence may be extended to sporadic
LGR6-expressing club and basal progenitors in areas of defective bronchiolization.

While activation of the canonical Wnt pathway has been proposed as a supporting
mechanism for tissue regeneration [11], aberrant Wnt activation may lead to induction of
a senescent phenotype [26,49]. R-spondins (RSPOs) can elicit the activation of the Wnt
pathway through binding with LGR receptors [11]. Recently, some studies have reported
the accumulation of RSPO2 and RSPO3 in fibroblasts and epithelial cells of fibrotic lungs,
supporting their potential as molecular targets [51,52] and, in light of our work, a newfound
place for LGR6 in mediating fibrotic diseases. In parallel, the impairment of the phagocytic
and the efferocytic activities for human macrophages has been reported in COPD and IPF,
respectively [53,54]. Recent findings highlighted the capacity of LGR6 in stimulating innate
immune response in human phagocytes [55] through maresin1 interaction, suggesting a
new potential function for LGR6 in resolving inflammation and supporting wound healing.
All these breakthroughs may imply a novel role for LGR6 in physiological and pathological
conditions that will require further investigation.

Our data indicate the involvement of LGR6 in CLDs, suggesting a pro-regenerative
LGR6-mediated activation of canonical Wnt/β-catenin pathway in COPD and IPF, which
ultimately results in a chronic signalling that fosters the acquisition of a senescent pheno-
type and the exhaustion of lung epithelial progenitors. Further in vitro studies would be
needed to elucidate the precise underlying mechanisms.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10123437/s1, Table S1: Demographic data and smoking history of all recruited patients;
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lungs with COPD and IPF; Supplementary Figure S3: LGR6 expression in progenitor populations;
Supplementary figure S4: LGR6 in alveolar and basal progenitors; Supplementary Figure S5: Non
proliferating LGR6+ cells express markers of senescence and Wnt pathway activation, but not
markers of apoptosis; Supplementary Figure S6: Senescent LGR6+ cells accumulate in COPD and
IPF tissues; Supplementary Figure S7: Lung epithelial progenitors show expression of senescence-
associated markers.
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