
cells

Article

Evolutionary Adaptation of the Thyroid Hormone Signaling
Toolkit in Chordates

Alfonso Esposito 1 , Luca Ambrosino 2 , Silvano Piazza 1, Salvatore D’Aniello 3 , Maria Luisa Chiusano 2,4

and Annamaria Locascio 3,*

����������
�������

Citation: Esposito, A.; Ambrosino,

L.; Piazza, S.; D’Aniello, S.; Chiusano,

M.L.; Locascio, A. Evolutionary

Adaptation of the Thyroid Hormone

Signaling Toolkit in Chordates. Cells

2021, 10, 3391. https://doi.org/

10.3390/cells10123391

Academic Editors: Michelina Plateroti

and Maria Sirakov

Received: 27 August 2021

Accepted: 26 November 2021

Published: 2 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computational Biology Unit, International Centre for Genetic Engineering and Biotechnology, ICGEB,
34149 Trieste, Italy; alfonso.esposito@icgeb.org (A.E.); silvano.piazza@icgeb.org (S.P.)

2 Department of Research Infrastructure for Marine Biological Resources, Stazione Zoologica Anton Dohrn,
Villa Comunale, 80121 Napoli, Italy; luca.ambrosino@szn.it (L.A.); chiusano@unina.it (M.L.C.)

3 Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa
Comunale, 80121 Napoli, Italy; salvatore.daniello@szn.it

4 Department of Agriculture, Università degli Studi di Napoli Federico II, 80055 Portici, Italy
* Correspondence: annamaria.locascio@szn.it

Abstract: The specification of the endostyle in non-vertebrate chordates and of the thyroid gland
in vertebrates are fundamental steps in the evolution of the thyroid hormone (TH) signaling to
coordinate development and body physiology in response to a range of environmental signals. The
physiology and biology of TH signaling in vertebrates have been studied in the past, but a complete
understanding of such a complex system is still lacking. Non-model species from non-vertebrate
chordates may greatly improve our understanding of the evolution of this complex endocrine
pathway. Adaptation of already existing proteins in order to perform new roles is a common feature
observed during the course of evolution. Through sequence similarity approaches, we investigated
the presence of bona fide thyroid peroxidase (TPO), iodothyronine deiodinase (DIO), and thyroid
hormone receptors (THRs) in non-vertebrate and vertebrate chordates. Additionally, we determined
both the conservation and divergence degrees of functional domains at the protein level. This study
supports the hypothesis that non-vertebrate chordates have a functional thyroid hormone signaling
system and provides additional information about its possible evolutionary adaptation.

Keywords: endostyle; thyroid gland; comparative genomics; ascidians; cephalochordates

1. Introduction

Via thyroid hormone (TH) signaling, organisms are able to regulate many physiologi-
cal processes. In animals, this system is very important for key biological features such as
development, metamorphosis, and cell and organism regeneration [1–3]. Thyroid hormone
signaling has emerged as a biological system to convey environmental information to cells
and maximize the exploitation of environmental resources. Moreover, it may be considered
a key regulator of development and metabolism that arose very early in life history [3].
Over the last decades, thyroid hormone signaling pathways have been deeply character-
ized mainly in vertebrates. Among the many elements involved in this signaling pathway,
there are three key enzymes that have also been identified in a few invertebrate taxa [4].
The study of these three enzymes—thyroid peroxidase (TPO), selenoprotein iodothyronine
deiodinase (DIO), and the thyroid hormone receptor (THR)—may unveil the evolutionary
route of the TH signaling pathway from non-vertebrate to vertebrate chordates [5]. TPO,
located in the thyroid gland, synthesizes the pro-hormone L-thyroxine (known as T4)
using iodine and tyrosine as precursors (Figure 1). TPO belongs to the animal peroxidase
family [6], which includes large proteins (approximately 700 aa) containing heme groups.
This enzyme catalyzes the oxidation of iodine by H2O2 as an electron acceptor; the ox-
idized form of iodine reacts with tyrosine to produce T4. The mechanisms of action of

Cells 2021, 10, 3391. https://doi.org/10.3390/cells10123391 https://www.mdpi.com/journal/cells

https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0003-0726-5290
https://orcid.org/0000-0003-1756-9538
https://orcid.org/0000-0001-7294-1465
https://orcid.org/0000-0002-6296-7132
https://orcid.org/0000-0001-6956-2157
https://doi.org/10.3390/cells10123391
https://doi.org/10.3390/cells10123391
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cells10123391
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells10123391?type=check_update&version=1


Cells 2021, 10, 3391 2 of 13

peroxidases rely on two histidines (named the distal and the proximal histidines in the
work of Taurog [1]), a catalytic arginine, and an asparagine residue, linked to the proximal
histidine. These residues, together with the heme iron center, cleave the O=O bond of the
hydrogen peroxide to oxidize iodine. The T4 is transported to the peripheral tissues, where
DIO catalyzes its conversion into the active form 3,3′,5-triiodothyroxine (known as T3,
Figure 1). In vertebrates, DIOs consist of three paralogous proteins that exert slightly differ-
ent functions to fine-tune the action of T4. They have different catalytic properties and are
located in different cellular compartments, where they can be expressed at different stages.
DIO1 and DIO2 convert T4 to T3, whereas DIO3, also known as thyroxine 5-deiodinase,
converts T4 and T3 into inactive metabolites (reverse T3 and T2, respectively) [7]. DIO1 is
present on the plasma membrane, DIO2 on the endoplasmic reticulum [8] and DIO3 can be
located on either the plasma membrane or the nuclear membrane [9]. T3 binds the THRs
(Figure 1), which belong to the nuclear receptor superfamily 1. These receptors contain a
DNA-binding domain at the N-terminal and a ligand-binding domain at the C-terminal.
The former is well conserved, whereas the latter exhibits more variability [10]. The genetic
modulation mechanism consists of the binding of THR to the thyroid hormone response
elements, which are specific short genomic elements. In particular, the THR protein binds
as a monomer, homodimer, or heterodimer to regulate the transcription of downstream
genes [11].

Knowledge about the thyroid hormone signaling system in non-vertebrate chordates,
including cephalochordates and tunicates, is still incomplete, and it is limited to a few
studies on some model species [12–15]. However, in the last decade, scientific evidence
has been accumulating that thyroid hormone signaling, homologous to the one known
in vertebrates, are present in non-vertebrate chordates as well and probably even outside
chordates/deuterostomes [16].

In fact, some evidence from non-vertebrate chordates suggest the involvement of TH
signaling in the metamorphosis regulation [2,5]. The presence of T4 in the tunicate Ciona
intestinalis has been suggested by immunodetection methods [6], while in the cephalochor-
date (amphioxus) Branchiostoma lanceolatum, a smaller derivative of triiodothyroacetic acid
(TRIAC) was identified as the primordial bioactive TH [5,7]. DIO and THR vertebrate
orthologs have been identified in the tunicates Halocynthia roretzi and C. intestinalis and
in cephalochordates; however, since they are so divergent, it is difficult to clarify their
binding activities [6,9]. In amphioxus, there are eight iodine symporter-related genes that
may participate to the transport of TH-like compounds [11], suggesting that they may have
a role in the metabolism and transport of these active compounds. Nevertheless, as in
tunicates, TH binding to THRs has not been demonstrated yet [4,12].

Recently, the functional characterization of thyroid-stimulating hormone in cephalo-
chordates and the identification of a thyroid-stimulating hormone orthologue in the genome
of tunicates further suggest an ancestral origin of the TH signaling pathway [13].

However, the vertebrate model of iodine uptake cannot be generalized in all chordates,
and the evolutionary steps that led to complete hormonal control, which on the other hand
can be observed in vertebrates, are still an open question.

Cephalochordates and tunicates produce TH in the endostyle, a specialized organ
homolog to the vertebrate thyroid gland [14,15]. Interestingly, both the thyroid gland
and endostyle are closely associated with the pharyngeal region of the digestive tract,
suggesting a link between thyroid hormone function and food uptake [11,14,16].

A noteworthy example of thyroid signaling evolution may be found in the agnathan
lamprey, which exhibits at the larval stage of an endostyle, which in the adult stage, after
metamorphosis, becomes a thyroid gland-like organ [17]. Thus, it has been suggested that
the endostyles of urochordates, cephalochordates, and lampreys are homologous to each
other and that they were precursors of the proper thyroid gland, typical of vertebrates
(reviewed in [18]).

It is clear that during TH signaling evolution, the ability to self-synthesize TH has been
a fundamental acquisition. To decode the functional evolution of this signaling system and
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to understand its role in chordates before the emergence of a defined thyroid gland, it is
fundamental to investigate the evolution of the genetic toolkit involved in the TH signaling
among as many species of chordates as possible.

With this purpose, we focused our attention on TPO, DIO, and THR looking for
orthologous genes and proteins both in invertebrate and vertebrate chordates, taking
advantage of available genome sequences and transcriptome data. We further investigated
the presence of specific protein domains and the divergence of their flanking sequences in
order to establish their structural properties and their evolutionary conservation.
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Figure 1. Diagram representing the thyroid hormone signaling system. The thyroid drawing was
taken from BioRender (https://biorender.com/, access date 15 September 2021), and the stylized cell
was drawn starting from the animal cell clipart (https://svg-clipart.com/cartoon/lCu7ktQ-animal-
cell-clipart, access date 15 September 2021).

2. Materials and Methods

We obtained the list of the TPO, THRs, and DIOs orthologs in non-vertebrate chordates
with the combination of two approaches: (i) we created a reference data set of proteins
from annotated collections; (ii) we increased the data set by including computationally
defined homolog proteins. More specifically, in the first step, the sequences representing
TPO, DIO, and THR proteins were downloaded from the UniProt database [19] including
those from exemplificative vertebrates. With this aim, we queried the InterPro public
resource [20] using TPO, DIO, and THR reference sequences from Homo sapiens and re-
trieved the associated family and domain entries. All UniProt proteins (both reviewed and
unreviewed) deriving from non-vertebrate chordates and associated to the detected en-
tries (i.e., IPR019791 (“thyroid peroxidase”), IPR000643 (“iodothyronine deiodinase”), and
IPR001728 (“thyroid hormone receptor”)) were downloaded in the FASTA format, while
the corresponding vertebrate entries were selected from the reviewed collection. Among
vertebrates, we retained data on the model species H. sapiens, Gallus gallus, Danio rerio, and
Petromyzon marinus. The vertebrate sequences, if not available in UniProt, were obtained
by querying the NCBI protein database [21]. When multiple sequences of the same protein
in the same species were available, we performed a BLAST sequence similarity search [22]
selecting the highest similar ones with respect to the human protein. In the second step,
we searched for ortholog sequences of the human reference proteins by performing BLAST
similarity searches [22] against either the available proteome or transcriptome from the
ANISEED [23] collection for those species that had missing data in the UniProt database.

We considered the non-chordate deuterostome—the purple sea urchin Strongylocen-
trotus purpuratus—as the outgroup species in the phylogenetic analyses. Specifically, the
outgroup for the TPO sequence analysis was represented by the homologous protein
ovoperoxidase as was conducted in previous works [24]. The outgroup protein for DIOs
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was the iodothyronine deiodinase (acc. no. A0A7M7HMF2), while for THRs, it was the
thyroid hormone receptor (acc. no. XP_030829710.1). For each protein, the homologous
sequences across all species were aligned using the MAFFT software [25]. The sequences
in the multiple alignments were trimmed to remove background noise using the trimAl
software [26] with the following options “-gt 0.25 –res overlap 0.25 –seq overlap 75”. Phy-
logenetic trees were reconstructed using the maximum likelihood method, utilizing the LG
model for aminoacidic substitution [27] and calculating a bootstrap after 999 permutations.
These analyses were performed using the software MEGA X (Molecular Evolutionary
Genetics Analysis across computing platforms) [28]. The phylogenetic tree “branches”
length represents the number of substitutions per site, which is a standard measure. With
this scale, it is possible to estimate the number of substitutions occurring between two
given leaves of a tree by summing the length of the branches and multiplying it by the
length of the alignment. In order to identify conserved motifs, aligned sequences were
submitted to the online tool MEME suite [29].

3. Results and Discussion
3.1. The Search for the TH Protein Members and Removal of Misannotated Sequences

The InterPro public resource contains 207 sequences associated to the query IPR019791
TPO. Among vertebrates, the sequences from H. sapiens, D. rerio, P. marinus, and G. gallus
were retained for further analyses. Among the unreviewed proteins from non-vertebrate
chordates, eight sequences were annotated as TPO: one was from C. intestinalis, five from
Branchiostoma belcheri, and two from Branchiostoma floridae.

We obtained for IPR000643 (“iodothyronine deiodinase”) 64 sequences, and 62 could
be annotated as type I or II DIO or thyroxine 5-deiodinase (i.e., DIO1, DIO2, and DIO3,
respectively). The two remaining sequences, annotated as “uncharacterized protein”, were
removed as well as the DIO proteins from vertebrates other than H. sapiens, P. marinus, G.
gallus, and D. rerio. This procedure resulted in 43 sequences. All three DIO paralogues were
retrieved for H. sapiens, G. gallus, and D. rerio. A single DIO sequence was retrieved for P.
marinus, showing the highest similarity score with the human DIO2 (46% identities and 59%
positives). The orthologous sequence of DIO3 for this species was retrieved from the NCBI
protein database. The remaining sequences belonged to B. belcheri (nine sequences), B.
floridae (seven sequences), Oikopleura dioica (eight sequences), C. intestinalis (two sequences),
and H. roretzi and Phallusia mammillata (one sequence each).

The search for IPR001728 (“thyroid hormone receptor”) produced 97 sequences. Simi-
lar to TPO, many proteins have generic annotations such as “nuclear receptor” or “LBD
domain-containing protein”. We kept those proteins with a functional annotation corre-
sponding to “THR” in non-vertebrate chordates and orthologous of the vertebrate species
(two paralogous from H. sapiens, G. gallus, and P. marinus and four paralogues from D.
rerio). In addition to the THRs, for the reference vertebrate species, the sequences retrieved
for non-vertebrate chordates were from B. belcheri, B. floridae, and Branchiostoma lanceolatum
(one sequence for each species).

We further investigated the ANISEED resource by sequence similarity, looking for
TH orthologue sequences in tunicates that were missing from the previous step. Thanks
to this approach, we detected 15, 22, and 20 more sequences for TPO, DIOs, and THRs,
respectively (Table 1).
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Table 1. Summary of the sequences retrieved from the UniProt database or inferred by sequence similarity searches; all
sequences can be found in Supplementary Material Files S1–S3.

Taxon Species TPO THRs DIOs

Paralogues Single Paralogue in All Species THRa THRb DIO1 DIO2 DIO3

Vertebrates Homo sapiens P07202 P10827 P10828 P49895 Q92813 P55073

Vertebrates Gallus gallus XP_040523114.1 P04625 P68306 O42411 Q9IAX2 O42412

Vertebrates Danio rerio XP_0213229452 Q98867,U3JAT9 Q9PVE4,S6BPQ3 NP_001007284.3 NP_997954.4 NP_001171406

Vertebrates Petromyzon
marinus XP_0328815489.1 Q2PK09,Q2PK08 - L7WGA7 XP_032820886.1

Tunicates Ciona robusta KH.C8.354.v1.R.ND1-1 KY.Chr11.1143.v1.ND1-1 KY.Chr9.332.v1.SL1-1

Tunicates Ciona intestinalis Q9XXZ7 - H2Y0H0

Tunicates Halocynthia
roretzi

Harore.CG.MTP2014.S42.
g15904.01.t Harore.CG.MTP2014.S302.g07324.01.t Q6U6H1

Tunicates Halocynthia
aurantium

Haaura.CG.MTP2014.S222.
g03436.01.t Haaura.CG.MTP2014.S16.g00477.01.t Haaura.CG.MTP2014.S697.g06289.01.t

Tunicates Molgula oculata Moocul.CG.ELv1_2.S84209.
g06362.01.t Moocul.CG.ELv1_2.S59439.g03711.01.t Moocul.CG.ELv1_2.S94311.g07746.01.t

Tunicates Phallusia fumigata Phfumi.CG.MTP2014.S1776.
g04105.01.t Phfumi.CG.MTP2014.S839.g02838.01.t Phfumi.CG.MTP2014.S7504.g07770.03.t

Tunicates Phallusia
mammillata

Phmamm.CG.MTP2014.S185.
g04959.01.t Phmamm.CG.MTP2014.S30.g01201.01.t A0A6F9DAE7

Tunicates Oikopleura dioica Moocul.CG.ELv1_2.S84209.
g06362.01.t Oidioi.CG.OSKA2016.S6.g07336.01.t Oidioi.CG.OSKA2016.S2.g03083.01.t

Cephalochordates Asymmetron
lucayanum gb|GETC01130702.1 gb|GETC01035308.1 -

Cephalochordates Branchiostoma
floridae C3YBC9 A7L5U9 C4A0H0

Cephalochordates Brachiostoma
belcheri A0A6P4ZNS4 A0A6P4ZQY8 XP_019647376.1

Echinodermata Strongilocentrosus
purpuratus XP_030847933.1 XP_030829710.1 A0A7M7HMF2

3.2. Thyroid Peroxidase

A single protein from the TPO class was found in all of the species here considered
(Supplementary Materials File S1). The protein sequence lengths for both vertebrate
and non-vertebrate chordates ranged from 549 aa (for P. mammillata) to 1415 aa (for B.
belcheri); the second longest sequence was from M. oculata (970 aa long) and resulted in an
alignment of 1651 positions (Supplementary Materials Figure S1). The trimmed alignment
consisted of 962 phylogenetically informative sites (Supplementary Materials Figure S2).
The aligned sequences showed an average identity of 34.79%± 11.08%, ranging from 18.2%
(in the comparison between B. belcheri and Phallusia fumigata) to 82.3% (among the two
Halocynthia species).

The phylogenetic tree obtained from the trimmed alignment of the TPO sequences
is shown in Figure 2. The vertebrates form a distinct cluster as well as the tunicates
and cephalochordates, reflecting their divergence in the chordate phylum evolution. The
sequence deriving from P. fumigata was too short, lacking most of the amino acid sites,
and, from a preliminary screening, it clustered together with cephalochordates. The short
length is probably due more to the fact of poor annotation (e.g., due to the fact of assembly
mistakes or low reads coverage) rather than to a real biological variant. To avoid inaccurate
contributions of this sequence to the alignment, it was eliminated from the phylogenetic
tree shown in Figure 2.
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Figure 2. Phylogenetic tree of TPO proteins inferred by the maximum likelihood method. Pictured is
the tree with the highest log likelihood (−20,923.40). The percentage of trees in which the associated
taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were
obtained automatically by applying the neighbor-join and the BioNJ algorithms to a matrix of
pairwise distances estimated using the JTT model as implemented in the software MEGA X [28] and
then selecting the topology with best log likelihood value. At the bottom, there is the substitution
per site, a standard measure for tree branch length. A total of 956 positions were considered in
the alignment.

As shown in Figure 3, the alignment of TPO proteins underlined a large insertion
(383 aa long, from position 271 to 654 of the alignment) in the protein of B. belcheri and
two 60 aa long deletions for both Halocynthia species (located at positions 772–849 and
938–997 of the alignment). Interestingly, the analysis of the conserved motifs revealed
that the long insertion in the B. belcheri protein contained a second copy of the conserved
motif GQ(Y/F)(I/L/V)DHD (green box in Figure 3), which according to Taurog, 1999 [1]
contains a distal histidine residue. The observed differences in these two sites indicate that
they were likely derived from a duplication event that only took place in the B. belcheri
genome. A proximal histidine was also well conserved (light blue box in Figure 3) and
represented by the motif RFGH (positions 1039–1043 of the alignment). Another well
conserved site had the motif QRGRDH (position 1132–1137 of the alignment), located
immediately downstream of the conserved Asn residues (red box in Figure 3), which
form hydrogen bonds with the proximal histidine. A closer look at the two Halocynthia
spp.’s first deletion revealed that it includes an homologous region to the Ca-binding site
(asterisks in Figure 3). Downstream of this deletion, there was a conserved motif with the
pattern VYGS.
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sequences. The proteins were aligned to highlight the occurrence and positioning of the homologous
conserved domains; the positions of the boxes reflect the actual positions in the alignment (see Supple-
mentary Materials Figure S1). Distal and proximal histidine conserved domains are shown in the green
and light blue boxes, respectively, while the asterisks denote the region of the Ca-binding site. Slightly
downstream, the third conserved sequence containing the Asn residue can be found (red box).

3.3. Iodothyronine Deiodinase

Searching for DIO orthologs in both non-vertebrate chordates and P. marinus, we
identified only two out of three paralogues in P. marinus and a single homolog pro-
tein in non-vertebrate chordates except for A. lucayanum, where none could be detected
(Supplementary Materials File S2). The sequence length for the DIO orthologs ranged from
118 aa (for H. aurantium) to 305 aa (for the H. sapiens DIO3) and resulted in the alignment of
424 positions (Supplementary Materials Figure S3). The alignment was trimmed and found
to consist of 273 phylogenetically informative sites (Supplementary Materials Figure S4).
These sequences showed an average identity of 24.65% ± 10.79%, ranging from 11.9%
(with regard to the comparison between O. dioica and M. oculata) to 82.3% (for that which
concerns the two DIO2 paralogues from H. sapiens and G. gallus). The phylogenetic tree dis-
played a clustering pattern that grouped the three paralogues together with the vertebrates,
supported by high bootstrap support (Figure 4). Previous studies suggest that DIO1 is the
oldest among the paralogues in vertebrates, and that DIO2 and DIO3 are the most recent
ones [30]. The phylogenetic tree confirms that DIO1 proteins show a high conservation
degree and form a cluster outside an ingroup represented by DIO2 and DIO3 subfamilies.
Tunicate DIOs form a cluster that branches as a sister group with the DIO2 and DIO3
paralogues in vertebrates. Looking at the positions of the tunicate DIOs in the tree, there
could be some discrepancies with the known species phylogeny. This could be explained
by the high sequence divergence among the analyzed species. However, the low bootstrap
support for the clustered branches of the tree can help in addressing the main relationships.
When the bootstrap value is low, there could be sites missing from an absent protein por-
tion, as it can be observed in most tunicates (Supplementary Materials Figures S3 and S4);
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alternatively, the tree could be produced by the homoplasy generated by a data set consisting of
a different number of paralogues among the taxa. Considering the bootstrapping value derived
from vertebrates together with the position of the single-copy DIO orthologs in tunicates, it
becomes evident that this clade groups independently from vertebrates, while the vertebrate
DIO2/3 paralogs appear as more recent and vertebrate specific. The placement of Branchiostoma
spp. as an outgroup of all the proteins (including the DIO1 cluster) could be explained by a
higher conservation caused by the Branchiostoma evolutionary rate being one of the slowest
in non-vertebrate chordates [31]. The absence of DIO proteins in Asymmetron lucayanum is
likely due to the lack of genome information. Alternatively, but less likely, this gene has been
lost as a synapomorphy in this species, which could have kept relying on the TRIAC as a
thyroid hormone signaling system analogous pathway. The biosynthetic pathway described
for the amphioxus TRIAC, which is characterized by an inner ring deiodination catalyzed by a
non-selenoprotein DIO that acts selectively and does not show activity towards T3 and T4 [7],
could support the second hypothesis [7]. Consequently, both of these hypotheses require further
explorations. As expected from the 2R genome duplication hypothesis, the number of DIOs
found in non-vertebrate chordates is lower than the ones in vertebrates. Since DIOs are essential
for regulating the active/non-active thyroid hormone ratio at the peripheral level, it seems
that the genes involved in this regulatory pathway were duplicated in concomitance with the
emergence of anatomically and histologically more complex organizations. This evidence is also
consistent with the limited number of paralogues found in P. marinus, which features a more
complex design compared to the amphioxus but not as complicated as the one in vertebrates.
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on 274 positions). The tree was built via the maximum likelihood method using the JTT model for
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likelihood (−7865.03) is shown. The bootstrap support is shown on each node. The scale at the
bottom is the substitution per site, a standard measure of tree branch length.
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The three DIOs show a similar organization in vertebrates, consisting of four domains:
an N-terminal transmembrane domain (TM), a hinge (H), a linker (L), and a globular
domain with catalytic function (G) [30]. The latter is the most conserved one, whereas
the former three are located in the region at the N-terminal, which is more variable [30].
Another conserved domain, according to Orozco et al. (2012), is implicated in the deio-
dinase dimerization domain [30]. The proteins from non-vertebrate chordates, however,
apparently do not possess TM, H, and L domains. These proteins were generally shorter
than the ones from vertebrates. In particular, the sequences from the two Ciona and Phallu-
sia—H. aurantium and O. dioica—were missing almost half of the protein sequence at the
N-terminal (Figure 5). The analysis of conserved domains found two conserved domains,
one with the motif RPLYXXFGS (light blue box in Figure 5) that corresponded to the G
domain in vertebrates. Another conserved domain was located downstream and had the
motif (V/I)YXEAH (red box in Figure 5), corresponding to the dimerization domain of
vertebrates. While the former was not found in all species, the latter was ubiquitous. Inter-
estingly, the RPLYXXFGS motif was found in all vertebrates in H. roretzi and B. belcheri and,
hence, the presence of an active homologue of the vertebrates iodothyronine deiodinase
was, for the first time, experimentally demonstrated in non-vertebrate chordates precisely
for the ascidian species H. roretzi [9]. Another question mark is the absence of the G domain
in all tunicate species and two out of three cephalochordates. This suggests that the G
domain is crucial for protein functioning in vertebrates, but the homologous proteins in
protochordates may possess different catalytic sites. Further investigation of the structural
gene annotation of tunicates is required to deeply investigate this aspect.
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3.4. Thyroid Hormone Receptors

We found two THR proteins for most vertebrates (in D. rerio there were four), whereas
only one in all non-vertebrate chordates was here analyzed (Supplementary Materials File S3).
These proteins’ length ranged from 315 aa (for P. fumigata) to 592 aa (C. robusta). The
alignment had 1295 positions, explained by the two Halocynthia sequences which had
lengths over 1000 aa each (Supplementary Materials Figure S5). Sequences’ identities
were, on average, 40.81% ± 22.18%, ranging from a minimum of 11.8% (deriving from
the comparison between P. mammillata and C. robusta) to a maximum of 99.6% (for what
concerns the two Phallusia species). The trimmed alignment resulted in 443 phylogenetically
informative positions (Supplementary Materials Figure S6).

The phylogenetic tree shows a distinct clustering pattern in the vertebrates, separating
the two paralogues in a similar fashion to the DIOs. C. robusta constituted an independent-
one-taxon branch from the remaining group of Ascidiacea, where Branchiostoma spp. was the
outgroup of other chordates (Figure 6). Moreover, the two THR paralogues in P. marinus had a
similarity score of 68.4% and grouped together but did not cluster with neither the vertebrates
THRa nor THRb. This fact could point to a separate duplication event that gave rise to two
copies of THR and probably occurred in the common ancestor of lampreys. We detected a
single ortholog in non-vertebrate chordates in THRs as well. This suggests that the duplication
of the THR is also associated with the emergence of a more complex physiology and anatomy
of vertebrates, i.e., THRs required a more subtle modulation of gene expression in different
moments of metamorphosis in Xenopus laevis [32]. This further confirms that a higher number
of paralogues in this regulatory pathway led to greater tissue diversification in vertebrates.
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In comparison to both TPOs and DIOs, THRs are better conserved, since fewer large re-
arrangements were detected, i.e., a 66 aa long insertion (positions 629–695 of the alignment)
in the human THR alpha and an extended C-terminal portion in the two Halocynthia species
(Figure 7; Supplementary Materials Figure S5).

The N-terminal region of these sequences contains different domains related to DNA
binding such as the DNA-binding domain and the P-box. While the former was well
conserved across all sequences, including basal chordates (Figure 7), the latter was not
present in the two Phallusia species (red box in Figure 7), and only B. belcheri contained a D
residue instead of an E, which is crucial for DNA-binding specificity. As shown in Figure 7
(light blue box), 30 amino acids downstream of a second conserved region, corresponding
to a T-box and an A-box, can be found. These two regions contain a zinc-finger domain,
involved in the recognition of the DNA-binding site, and are crucial in the dimerization of
the protein [33].
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4. Conclusions

The presence of a thyroid hormone-producing endostyle in non-vertebrate chordates
supports the hypothesis that the thyroid hormone signaling system is an ancient feature
of all chordates. Homologous proteins for each of the three key proteins in the thyroid
hormone signaling system were found for most of the tunicates and cephalochordates.
However, we detected fewer paralogous genes for DIO and THRs. We discovered a du-
plication for a conserved domain in the TPO of B. belcheri and highlighted the possible
evolutionary framework of the DIO proteins. Such proteins displayed higher conservation
in cephalochordates compared to the tunicates and evolved by two runs of duplications
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exclusively in vertebrates, in agreement with the 2R hypothesis. Our analyses also high-
lighted the absence of a conserved catalytic globular domain G in most but not all the
non-vertebrate chordate DIOs. Better structural annotation of the genomes of tunicate
and amphioxus species will help to check the real loss of this domain and the possible
presence of a catalytic site with different functional characteristics. For that which con-
cerns THRs, we propose that two independent duplication events occurred that led to the
two THR paralogues in vertebrates. A first gene duplication took place in the ancestor
lineage leading to P. marinus and a second one in the common vertebrate ancestor. In the
former species, the divergence among the two paralogues was lower than in the other
vertebrates. Our findings further corroborate the fundamental role played by large-scale
gene duplications in vertebrates after the split between them and the other chordates thus
allowing for the development of more complex regulatory mechanisms in the thyroid
hormone signaling pathway and, accordingly, promoting a more extensive and specialized
tissue diversification.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10123391/s1, Figure S1, Alignment of TPO full protein sequences; Figure S2, Alignment
of TPO trimmed protein sequences; Figure S3, Alignment of DIO full protein sequences; Figure S4,
Alignment of DIO trimmed protein sequences; Figure S5, Alignment of THR full protein sequences;
Figure S6, Alignment of THR trimmed protein sequences; File S1, FASTA sequences of the retrieved
TPO proteins; File S2, FASTA sequences of the retrieved DIO proteins; File S3, FASTA sequences of
the retrieved THR proteins.
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