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Abstract: The recent (re)discovery of the meningeal lymphatic system has opened new theories as
to how immune cells traffic and interact with the central nervous system (CNS). While evidence is
accumulating on the contribution of the meningeal lymphatic system in both homeostatic and disease
conditions, a lot remains unknown about the mechanisms that allow for interaction between the
meningeal lymphatic system and immune cells. In this review, we synthesize the knowledge about
the lymphatic immune interaction in the CNS and highlight the important questions that remain to
be answered.
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1. Introduction

The (re)discovery of the meningeal lymphatics reveals new concepts about central
nervous system (CNS) drainage and immune cell trafficking that has prompted a review of
immune cell privilege in the CNS [1]. The meningeal lymphatics play an important role
in this context by both draining the fluid within the subarachnoid spaces and allowing
immune cell recirculation, and possibly being the main route of communication between the
brain and the periphery [2]. In this review, we highlight the contribution and mechanisms
of immune cell trafficking through the meningeal lymphatics in neurological disorders and
emphasize the future of research on the topic.

2. Meningeal Lymphatics: Concepts, Development, and Extension of the Network

The rodent meningeal lymphatics vessels (mLVs) are a network of lymphatic vascula-
ture extending in the entirety of the meningeal compartment starting most rostrally from
the cribirform plate in front of the olfactory bulbs all the way to the lumbar regions of the
spinal cord [3–6] (Figure 1). The mLVs are primarily located in the outmost layer of the
meninges called the dura and are physically separated from the cerebrospinal fluid (CSF)
by the arachnoid barrier. Originally described by Paolo Mascagni in the 1600s [7], they
were only recently functionally characterized in rodents [3,8], zebrafish [9,10], primates,
and humans [8,11].

Elegant studies have used transgenic mice to investigate how the mLVs develop
in mammals [12–14]. Interestingly, mLVs develop during the postnatal period differing
from other tissues where the lymphatics develop earlier in development [12–14]. Using
Prox1-GFP reporter mice and immunostaining against lymphatic markers, such as Lyve-1
and Prox1, it has been shown that primary meningeal lymphatic structures are present at
the base of the skull shortly after birth at postnatal day 1 (P1) [12]. Similarly, a lymphatic
network is observed at the cribriform plate as soon as P2 [12]. Between P4 and P8, the
sprouts from the base of the skull reach the medial meningeal artery and the surroundings
of the foramen magnum and cisterna magna. By P16, the sprouts fully extend through the
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transverse sinus and the confluence of the sinus. Next from P20 to P28, the mLVs reach
the full extension of the superior sagittal sinus, medial meningeal artery, and rostral rhinal
vein [12]. Finally, by P28, the mLVs reach full functionality and extension, and surround
the main dural vessels and sinuses [12].
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Even though mLVs develop later than the lymphatics of peripheral tissues, mLV
development is similarly dependent on the VEGF-C (Vascular Endothelial Growth Factor-
C)–VEGFR-3 (Vascular Endothelial Growth Factor Receptor-3) pathway to drive lymphan-
giogenesis [12]. It has been shown that the agonism or antagonism of the VEGF-C–VEGFR-3
pathway can, respectively, stimulate or impair meningeal lymphangiogenesis during the
developmental period. It is interesting to note that the mLVs maintain their requirement
for VEGF-C-VEGFR3 signaling during adulthood [12], a feature not shared by peripheral
lymphatic vessels. Upon maturation, the meningeal lymphatics become functional and
drain to the cervical lymph nodes [3,8,13]. Using tracers administered within the CSF, it
has been shown that its lymphatic drainage is performed mainly by two routes: the nasal
mucosa lymphatics that drain to the superficial cervical lymph nodes (scLN) and by the
dural lymphatics that drain to the deep cervical lymph nodes (dcLN) [3,4,6,8,15].

What makes the initial characterization of this network so fascinating is the possibility
of mLVs acting as an avenue for trafficking immune cells and molecules out of the CNS. In-
deed, immune cells are observed within the lumen of mLVs, suggesting that the meningeal
lymphatics may play an important role in brain immune surveillance [4,8,15]. Major gaps
in knowledge still remain about how mLVs interact with and control cell trafficking in and
out the brain in either physiological or pathological conditions, and if mLVs could be used
as a route for therapeutic intervention in several neural disorders. Consequently, we will
discuss the current knowledge regarding immune cell trafficking within the CNS in both
health and disease and the role of meningeal lymphatics in this process. Hopefully this
review will help us to drive future directions for research regarding the management of
CNS diseases in the light of the meningeal lymphatics.
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3. Immune Cell Trafficking under Homeostatic Conditions

The blood–brain barrier (BBB) restricts the access of cells or molecules coming from
the periphery into the CNS parenchyma [16]. However, immune cells can access the
CNS parenchyma (predominantly during inflammation from infection) via the meningeal
spaces [17,18]. These cells can be retained within the CSF-containing meningeal spaces in
the absence of inflammation and/or infection thus acting to surveil the CNS [19,20].

Diverse types of immune cells can be found within the meninges and the meningeal
spaces, specifically in the subarachnoid space (SAS). Recent single-cell transcriptomic
studies have started to highlight the richness and unique origin of the immune cells
populating the meningeal compartment [21–24]. Multiple immune cell types, particularly
T lymphocytes (CD4), have been demonstrated to be essential for the maintenance of
higher brain function [25–29]. Therefore, despite not being directly present in the brain
parenchyma, the immune cells present within the CSF of the SAS and the meningeal spaces
can exert immune and non-immune functions that will alter neuronal behavior [27].

Homeostatic regulation of the meningeal immune compartment is only starting to
be explored. The mLVs appear to play a role in the maintenance of some meningeal
immune cells [15]. Indeed, impairment of the mLVs either systemically or locally results
in the accumulation of T lymphocytes in the meninges [15]. One explanation of these
observations is that the lack of functional lymphatics is disrupting the natural dynamics of
T cell circulation out of the meninges leading to T cell accumulation that is normally drained
under homeostatic conditions. Similar to the periphery, the chemokine receptor 7 (CCR7)-
chemokine ligand 21 (CCL21) pathway appears to be essential for drainage via the mLVs
(Figure 1). Intrathecal injection of CCR7 deficient T cells or dendritic cells results in
their accumulation in the CNS and failure to drain into the cervical lymph nodes thus
emphasizing the dependence of CCR7-CCL21 signaling in immune cell drainage [15,30].
The dynamic circulation of other immune cells such as macrophages and monocytes and
the implication of the mLVs in this process remains unaddressed at this point.

4. Immune Cells Trafficking in Pathological Conditions
4.1. Multiple Sclerosis (MS) and Autoimmunity

MS pathophysiology involves localized inflammation sites with characteristic local
demyelination, astrogliosis, and a marked infiltration of active T cells [31,32]. The origin
of the inflammation in MS is still a matter of discussion, as it is still not clear if the
inflammatory process begins inside or outside the CNS [33]. However, one of the most
accepted mechanisms for MS pathophysiology is an autoimmune process. For that reason,
one of the most used experimental models of MS is Experimental Acute Encephalomyelitis
(EAE), in which animals are peripherally exposed to the myelin antigen that leads to
a progressive demyelination and characteristics symptoms of MS [33].

Regarding immune cell trafficking in MS/EAE, it is postulated that the BBB is dysfunc-
tional, and this allows for the abnormal infiltration of encephalitogenic T cells into the brain
parenchyma through the perivascular spaces of the brain vessels [34]. An interesting study
shows that the leptomeninges play a key role as a checkpoint for T cells by determining
which ones are allowed to infiltrate the brain parenchyma [17]. Antigen-presenting cells
(APC) within the meningeal spaces present antigens that causes local T cell reactivation.
The encephalitogenic T cells then infiltrate the parenchyma and attack the myelin leading
to CNS lesions. One of the main APCs observed in this context is the B cell which is
enriched within the meningeal compartment and CSF, even forming clusters and secondary
lymphoid structures [35]. For a long time, dysfunctions in the blood–cerebrospinal fluid
barrier (BCSFB) were believed to allow the massive infiltration of lymphoid cells within
the CSF [36].

However, recent studies have shown that the meningeal lymphatics play a key role
in immune cell trafficking in the EAE context. Louveau et al. have shown that the dorsal
mLVs represent an essential route for the drainage of immune cells and molecules to the
cervical lymph nodes. In the same study, it was shown that the meningeal lymphatics are
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even a possible target for management of the disease progression because the ablation of
the mLVs decreases the encephalitogenic phenotype of antigen-specific T cells and leads to
improvement of the clinical symptoms in EAE [15]. Additionally, lymphangiogenesis is
observed in the lymphatic vessels of the cribriform plate during EAE in a VEGF-C-VEGFR3-
dependent manner [6]; furthermore, these vessels are implicated in the drainage of CNS
dendritic cells to the cervical lymph nodes in order to maintain T cell activation and anti-
gens that lead to increased proliferation of reactive T cells in the draining lymph nodes [6].
In this context of MS/EAE, the meningeal lymphatics appear to be an active modulator
of immune cell trafficking in and out the brain. Overall, these studies highlight that the
mLVs contribute to the maintenance of the immune response in the context of EAE. Un-
derstanding if it is through its draining function of CSF constituents (myelin?) or immune
cells (APC), or through an as yet undescribed mechanism, remains to be investigated.

4.2. Brain Injury

In traumatic brain injury (TBI), it is well documented that one of the main events
contributing to neural damage post-injury is the brain infiltration of immune cells, specifi-
cally T cells [37–40], and T cell infiltration is one of the main factors responsible for chronic
neurological impairments following TBI [38]. This T cell infiltration to the lesion sites has
a marked temporal activity after the injury. Generally, a robust T cell infiltration occurs
immediately after the trauma and reaches a peak within 3 days after injury [40]. One month
after the injury, there is a second wave of immune cell recruitment to the lesion site that
is characteristic of a late immune response and persists chronically [39]. Besides TBI, T
cell infiltration is also observed in the context of intracerebral hemorrhage. Zhang et al.
demonstrated a temporal pattern for this infiltration, increasing 1 day after the injury and
peaking 5 days later. Furthermore, the same study reported that the T cell infiltration in the
hemorrhage context leads to BBB injury and increasing BBB leakage [41].

However, the role of the meningeal lymphatics in immune cell dynamics remains
unknown post hemorrhagic insult. The mLVs have been shown to drain erythrocytes
produced by the brain hemorrhage [42,43]. Moreover, it has been shown that 1 h post brain
hemorrhage the mLVs increase in diameter suggesting that blood components may affect
meningeal lymphatic morphology.

In addition to the drainage of blood products after injury, a few studies have sug-
gested a potential role of the meningeal lymphatics in immune cell circulation after brain
injury. Bolte et al. (2020) demonstrated that traumatic brain injuries lead to impairment of
meningeal lymphatics up to a month post injury. They showed that pre-existing impaired
function of the meningeal lymphatics is associated with worse outcomes after TBI such
as increased neuroinflammation and worse cognitive outcomes [44], a process previously
linked to the extent of the immune response to the TBI. Yanev et al. used two different
models of brain injury: photothrombosis approach and the transient middle cerebral artery
occlusion to study the involvement of the mLVs [45]. They showed that depending on
the injury model the mLVs may or may not undergo lymphangiogenesis. Additionally,
transgenic mice with mLVs hypoplasia presented with worst stroke outcomes depending
on the injury model [45]. These studies highlight how the mLVs may respond and influ-
ence injuries differently, depending on the model and microenvironment associated with
it. Additionally, in K14-VEGFR3-deficient mice, a mouse lacking meningeal lymphatics
(among other peripheral lymphatics), the infiltration of T cells to the brain parenchyma
is reduced. This shows that the meningeal lymphatics may be an important route for
the immune cell trafficking after brain injury [46] and may be caused by a reduction of
drainage of factors stimulating T cell activation in the periphery. Like in MS, while all these
studies demonstrate that (1) a pathological CNS can be associated with change in mLVs
morphology and function and (2) modulating the mLVs can impact disease pathology,
more studies are necessary to better understand the molecular mechanisms involving the
mLVs, particularly regarding their interaction with immune cells.
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4.3. Brain Tumor

Recent data show that the meningeal lymphatics are important actors in regulating
the drainage and immune response of brain tumors. Indeed, increased functionality
of the mLVs has been shown to ameliorate the tumor response. In a mouse model of
glioblastoma, ectopic administration of VEGF-C leads to increased activation of CD8+ T-
cells in the dCLNs and improved their migration to the tumor site leading to slower tumor
growth [47]. Additionally, it has been demonstrated through RNAseq that genes associated
with lymphatic remodeling and fluid drainage, as well as inflammatory and immune
responses, are increased in the dorsal mLVs in response to tumoral activity, suggesting an
active remodeling of the mLVs by the tumor [48]. The tumor interstitial fluid and dendritic
cell drainage to the dCLNs is impaired in mice lacking dorsal MLVs, and the opposite
is observed in induced lymphangiogenesis [48]. Moreover, the integrity of the dMLVs
appears to be associated with a better response to the conventional tumor treatments in the
case of striatal tumor models [48].

An interesting study sought to evaluate the preventive versus therapeutic treatment
with VEGF-C in tumor models [49]. They found that the preventive administration of
VEGF-C inhibits tumor growth and increases survival rates in mice [49]. Additionally,
treatment administered after tumor implantation that combines VEGF-C and conventional
immunotherapy impairs tumor growth [49]. These results are proposed to be due to the
increased activation of T cells in the cervical lymph nodes that lead to an improved immune
response against the tumors [49].

Together, this evidence supports the notion that an increase in mLVs function results in
a better and durable immune response/memory against brain tumor. These studies provide
a great backbone to try to better understand how tumor immunogenicity is regulated
in vivo and how the mLVs may contribute to the immune cell response in tumor models.

4.4. Neurodegeneration

A couple of studies have sought to investigate the involvement of the meningeal
lymphatics with the pathophysiology of neurodegenerative diseases such as Alzheimer’s
disease (AD) and Parkinson’s disease (PD).

In AD, it is well accepted that the mLVs are important for the drainage of amyloid
beta (Aβ) and tau [50–53]. Da Mesquita et al. have shown that the impairment of the
mLVs leads to increased accumulation of Aβ plaques and worse cognitive performance.
On the other hand, improving meningeal lymphatics function in AD mice leads to a better
clearance of Aβ and partially rescues cognitive impairments [54]. Furthermore, it was
shown that a functional meningeal lymphatic network is essential for a better response to
passive immune therapy with anti-Aβ [52]. These data demonstrated in mice that a lack of
functional mLVs may not only be involved in the physiopathology of AD, but also may
influence therapeutic strategies. Besides the involvement of the mLVs in the clearance
of Aβ, Patel et al. (2019) demonstrated, in mice, that lacking functional mLVs impairs
tau drainage and overall shows that mLVs are involved in both types of AD pathology.
Reinforcing the essential role of the mLVs in AD, in APP/SS1 mice the ligation of the
dCLNs (which drastically reduces drainage and CSF homeostasis) increased the AD-like
phenotype in these mice with more Aβ accumulation and cognitive impairment [55].

Despite the lack of data specifically about immune cell circulation in AD brains, we
know that the aging process promotes a decrease in CCR7 on meningeal T cells that is
proposed to impair the egress of the cells from the meninges and increase the effector and
regulatory T cell profile. The deletion of CCR7 in 5xFAD (a mouse model of AD) mice
leads to accelerated cognitive decline and Aβ accumulation that is improved by anti-CD25
treatment (which depletes both activated and regulatory T cells) in old mice [51]. These
data support the idea that the aging process leads to the accumulation of regulatory T cells
that contributes to the AD pathology and may act through the modulation of immune cell
recirculation via the meningeal lymphatic system.
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Regarding PD, the literature is more scarce; however, it was recently demonstrated that
patients with idiopathic forms of PD show a decrease in mLV functionality [56]. It has been
shown that A53T (a model of PD with expression of a mutated form of human α-synuclein)
mice have impaired CSF homeostasis with increased accumulation of α-synuclein within
the perivascular spaces [57]. Interestingly, the ligation of the dCLN in these mice leads to
an even worse accumulation of α-synuclein, glial activation, inflammation, dopaminergic
neuronal loss, and motor deficits [57]. These results are similar to the ones published
by Ding et al. that demonstrate mice undergoing α-synuclein administration present
worse pathological and behavioral outcomes after ligation of the mLV. In addition, Ding
et al. showed that the mice injected with α-synuclein presented delayed mLVs drainage,
loss of tight junctions among meningeal lymphatics endothelial cells, and meningeal
inflammation [56].

To date, no studies have specifically addressed how immune cell recirculation through
the mLVs contributes to disease pathophysiology. However, in both AD and PD circum-
stantial evidence suggests that immune cell drainage will be impaired in disease conditions
and potentially influence disease progression.

5. Burning Questions about Immune Cell Trafficking through the Meningeal
Lymphatic System
5.1. Origin of Immune Cells Draining through the Meningeal Lymphatics?

While we have considerable indirect evidence that meningeal and CSF injected im-
mune cells can enter the meningeal lymphatics to reach the cervical lymph nodes, we
currently have limited information about such a path in physiological conditions. His-
tological analyses under naïve and inflamed environments demonstrated the presence
of intralymphatic immune cells [4,6,8,15], however the origin of such cells remains un-
known. Are these cells solely originating from the outer layers of the meninges? The CSF?
Or could they be coming from the brain parenchyma? Technical limitations of intracere-
bral/intrathecal injections have impeded drawing definitive conclusions; furthermore,
injections create some degree (even if limited) of physical disturbance of the fluid dynamics
in the CNS that may generate artifacts. Moreover, some recent studies have questioned
the effect of perfusion and ex vivo analysis on previously observed CSF dynamics [58],
but state-of-the-art-controlled live imaging validated the natural diffusion of CSF into the
perivascular spaces of the brain parenchyma [59]. The brain is a unique environment for
immune cells. Under physiological conditions, most immune cells (except for microglia) are
sequestered to the borders of the brain either the meninges, choroid plexus, or perivascular
spaces [60]. Is the brain repelling the infiltration of immune cells under normal conditions?
Or rather, are the borders actively retaining cells within these confined compartments? If
so, when immune cells (T cells, dendritic cells, B cells, monocytes, and neutrophils) have
infiltrated the brain under neuroinflammatory conditions, can and will they exit? Are
all types of immune cells going to display different dynamics of migration? One such
suggested path of migration out of the brain is the rostral migratory stream [61]. Dendritic
cells migrating through the rostral migratory stream could exit the brain at the level of
the olfactory bulbs and reach the lymphatics at the levels of the cribriform plate [6]. On
the other side, the brain is thought to mostly be a detrimental environment for immune
cells to survive, primarily through high levels of Fas signaling [62]. Future research on
the migration dynamics of immune cells in and out of the different compartments of
the CNS will be necessary to decipher the origin of immune cells migrating through the
meningeal lymphatics.

5.2. Accessibility of the Meningeal Lymphatics to Immune Cells?

The description of the meningeal lymphatics, whether located on the dorsal or basal
part of the skull, demonstrate that the majority of the vessels are located within the dura,
the most outer layer of the meninges [4,15]. This specific location raises the question
of accessibility of the CSF and its constituents to the meningeal lymphatics, particularly
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because the arachnoid layer has been described to be impermeable. Nonetheless, experi-
mental evidence demonstrates that intrathecal injection of tracers or immune cells results
in their uptake by the meningeal lymphatic system, but the path and mechanisms for this is
completely unknown. Studies have suggested that the meningeal lymphatics may extend
sprouts through the arachnoid layers to facilitate CSF uptake [15] or that the structure of
the dura itself is adapted to allow drainage [4]. However, none of them provide the funda-
mental evidence to demonstrate how immune cells of the CSF can migrate and enter the
lymphatic system. Can immune cells alter the tight junction architecture of the arachnoid
to facilitate their migration? Do the meningeal layers, whether arachnoid or dura, present
some regionality and lose their impermeability properties in very discrete regions to allow
drainage into the lymphatics? The very localized patterning of ovalbumin uptake in the
meninges upon intrathecal injection does suggest some localized and discrete diffusion of
the CSF into the upper meningeal layers.

5.3. Are Meningeal Lymphatic Endothelial Cells Altering Immune Cell Phenotypes?

Immune cells can be found within the meningeal lymphatics under both physiological
and inflammatory conditions. Very little is known about the interaction of these immune
cells with the lymphatic endothelial cells. Unsurprisingly, the CCR7-CCL21 pathway
appears to be necessary for drainage of immune cells into the cervical lymph nodes [15,51].
New studies are demonstrating that in the skin, interaction of immune cells with lymphatic
endothelial cells is not limited to facilitating entry, but rather continues once into the
initial lymphatics [63,64]. Does a similar phenomenon arise in the meningeal lymphatics?
How does this interaction impact the phenotype and function of the draining immune
cells? Development of in vivo imaging approaches to study the localized interaction of
immune cells with the meningeal lymphatic endothelial cells will be essential to address
these questions.

5.4. CSF Homeostasis vs. Immune Cell Trafficking, Who Is to Blame in Neurological Disorders?

The meningeal lymphatic system appears to be central for the migration and drainage
of soluble CSF constituents and immune cells. Moreover, a functioning meningeal lym-
phatic network is central for the maintenance of CSF dynamics in general [50]. Currently
available tools are manipulating the meningeal lymphatics using their main growth fac-
tor pathway, VEGF-C-VEGFR3. While extremely useful, such approaches fail to allow
the discrimination between CSF homeostasis and immune cell trafficking. Accumulating
evidence is showing the meningeal lymphatics may have both beneficial and detrimen-
tal functions depending on the neurological disorder. Therefore, completely ablating or
boosting meningeal lymphatic function may induce unwanted side effects. Deciphering
the contribution of CSF homeostasis and immune cell trafficking in different neurological
conditions may help refine the development of therapeutic strategies aimed at meningeal
lymphatic function.

5.5. Which Pathways Are Immune Cells Using to Migrate through the Meningeal Lymphatics?

The presence of immune cells within the mLVs has been observed both under normal
and pathologic conditions, whether they are T cells [4,15], B cells [21], dendritic cells [6,15],
or erythrocytes [42]. The mechanisms that allow the entry and migration of such immune
cells within the meningeal lymphatic remain poorly characterized. Unsurprisingly, the
CCR7-CCL21 pathway has been suggested to be necessary for the migration of T cells and
dendritic cells via the mLVs [15]. Yet, a formal, in vivo demonstration of the physiological
requirement of CCR7 expression by immune cells remains to be demonstrated. While
loss of CCR7 reduces the drainage of T cells and dendritic cells, it is not fully abolished,
demonstrating the requirement of other pathways. Multiple ligand:receptor pairs expressed
in lymphatic endothelial cells and immune cells have been shown to mediate trafficking
through the lymphatic vasculature including Lyve1: Hyaluronic Acid [65], ICAM1:beta
2 integrins [66–68], CXCR4:CXCL12 [69], S1P:S1PR [70–72], and CX3CL1:CX3CR1 [73],
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which are among such molecules expressed by lymphatic endothelial cells and immune
cells to allow draining [74]. More studies are required to identify if similar pathways, or
other mechanisms are controlling the migration of meningeal immune cells to and through
the mLVs.

6. Conclusions

In conclusion, despite accumulating circumstantial evidence that immune cells can
traffic through the meningeal lymphatic system under normal and pathological conditions,
we still only know very little about the mechanisms governing such trafficking and the
functional role of the meningeal lymphatics in regulating these immune cells. Further
research is necessary to characterize and harness the lymphatic immune interaction to treat
neurological disorders.
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