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Abstract: Pancreatic cancer (PC) is one of the leading causes of death and is the fourth most malignant
tumor in men. The epigenetic and genetic alterations appear to be responsible for development of
PC. Small interfering RNA (siRNA) is a powerful genetic tool that can bind to its target and reduce
expression level of a specific gene. The various critical genes involved in PC progression can be
effectively targeted using diverse siRNAs. Moreover, siRNAs can enhance efficacy of chemotherapy
and radiotherapy in inhibiting PC progression. However, siRNAs suffer from different off target
effects and their degradation by enzymes in serum can diminish their potential in gene silencing.
Loading siRNAs on nanoparticles can effectively protect them against degradation and can inhibit
off target actions by facilitating targeted delivery. This can lead to enhanced efficacy of siRNAs
in PC therapy. Moreover, different kinds of nanoparticles such as polymeric nanoparticles, lipid
nanoparticles and metal nanostructures have been applied for optimal delivery of siRNAs that are
discussed in this article. This review also reveals that how naked siRNAs and their delivery systems
can be exploited in treatment of PC and as siRNAs are currently being applied in clinical trials,
significant progress can be made by translating the current findings into the clinical settings.

Cells 2021, 10, 3348. https://doi.org/10.3390/cells10123348 https://www.mdpi.com/journal/cells

https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0003-0391-1769
https://orcid.org/0000-0002-3754-5712
https://doi.org/10.3390/cells10123348
https://doi.org/10.3390/cells10123348
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cells10123348
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells10123348?type=check_update&version=2


Cells 2021, 10, 3348 2 of 37

Keywords: pancreatic cancer; small interfering RNA (siRNA); drug resistance; co-delivery; nanoparticles

1. Introduction

Despite advances in various treatment modalities, pancreatic cancer (PC) still remains
an incurable disease. The incidence rate of PC has shown an increase and prognosis of
patients is not favorable [1,2]. Based on new estimates, PC is the fourth most leading cause
of cancer related death [3]. PC patients lack typical early symptoms and they are mainly
diagnosed in advanced stages. In fact, there are no specific markers and symptoms for
diagnosis of PC patients in early stages and that is why these patients are diagnosed in
advanced stages, when cancer cells are not completely responsive to therapy. Although
surgery is a potential strategy in PC therapy, as patients are generally diagnosed during
local progression or distant metastasis, it is impossible to eradicate PC by surgery [4]. The 5-
year survival rate for PC is less than 9%, therefore showing fatality of this cancer [5]. Despite
many efforts in providing a novel and effective therapeutic for PC, survival rate of PC
patients in last 40 years have not undergone significant improvement [6]. These statements
demonstrate that scientists have not been successful in developing an efficient therapeutic
against PC. One of the reasons for this failure is that there are a variety of signaling
networks participating in cancer progression along with a few other oncogenic pathways
that have not been identified yet [7–13]. Furthermore, currently applied therapies are not
successful in eradicating cancer. For instance, anti-tumor compounds, often suffer from
poor bioavailability [14,15]. This restricts their ability in suppressing cancer proliferation
and metastasis. Moreover, genetic tools such as CRISPR/Cas9 and small interfering RNA
(siRNA), despite their ability to facilitate gene silencing and inhibit cancer progression are
unable to completely kill cancer cells [16–19]. This is due to presence of some limitations
including their off-targeting feature, their degradation in blood circulation and other
impediments such as blood-brain barrier (BBB) and blood-tumor barrier (BTB) [20–24].
Based on these facts, scientists should direct their efforts toward cancer therapeutics
that are effective under both in vitro and in vivo conditions and then, such results can
be translated into clinical settings for the treatment of cancer patients. To overcome
aforementioned problems, there have been efforts in using methods for improving efficacy
of drugs and genetic tools for cancer suppression. One of the most beneficial and well-
known ways is using nanocarriers for cancer therapy [25]. In field of gene therapy, gene
editing tools such as siRNA and CRISPR/Cas9 systems can be loaded on nanostructures
to enhance their intracellular accumulation and prevent off-targeting feature and serum
degradation [26–30]. Different nanoarchitectures can be applied for this purpose including
carbon quantum dots [31], polymeric nanoparticles [32], lipid nanoparticles [33] and metal
nanoparticles [34].

The present review focuses on the potential applications of siRNAs in treatment of PC
based on pre-clinical studies. In vitro studies confirm the possible role of naked siRNA in
suppressing PC progression via down-regulating tumor-promoting genes such as NUF2,
Survivin, RAP80, HIF-1α and hTERT. However, efficacy of siRNA decreases markedly
in vivo, but it is still capable of reducing gene expression of key genes. Based on the
experiments, siRNAs can decrease growth and metastasis of PC cells and promote their
sensitivity to therapy. Noteworthy, various kinds of nanostructures including micelles,
liposomes, carbon-based nanomaterials and dendrimers among others have been used
for delivery of siRNAs and in promoting their potential for gene down-regulation in PC
treatment. These topics are discussed in the current review article. Furthermore, our
review also emphasizes on the different molecular pathways that have been not extensively
discussed in previous articles. Moreover, outline of our article is novel and is different from
other reviews in this field [35–41].
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2. SiRNAs: From Basic to Application in Cancer Therapy

siRNA as a key strategy of RNA interference (RNAi) is of importance in field of
cancer therapy due to its potential in down-regulating expression of oncogenes [42]. siRNA
molecules are double-stranded oligonucleotides with length of 20–25 base pairs capable
of stimulating messenger RNA (mRNA) degradation and reducing gene expression [43].
The process of mRNA degradation is a little complex [44]. Although a variety of RNA
degradation pathways have been identified, the basics of RNA degradation in bacteria,
archaea and eukeryotic cells are similar [45]. Overall, there are three categories of enzymes
capable of mediating RNA degradation including A) endonucelases with capacity of RNA
degradation internally, 5′ exonucleases that can cut RNA from 5′ end to 3′ exonucleases
that can cut RNA from 3′ end [46,47]. For the purpose of RNA degradation, siRNA is
embedded to RNA-induced silencing complex (RISC) that also contains Argonaute protein
(Ago-2) with ability of cleaving and eliminating passenger strand of siRNA duplex. RISC
complex in accompany with single stranded guide RNA can recognize targeted mRNA
via complementary base pairing [48,49]. Then, Ago-2 degrades mRNA complementary
to antisense strand to provide nucleolytic cleavage to 5′ end of antisense siRNA strand
(Figure 1) [50–54].
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Currently, siRNAs can serve as powerful tool that scientists use in cancer therapy. Fol-
lowing identification of signaling networks responsible for cancer malignancy, siRNAs can
be developed for targeting them. To date, a variety of studies have evaluated potentiality of
siRNAs in gene silencing both in vitro and in vivo. For instance, Bcl-2 is an anti-apoptotic
factor that its up-regulation is in favor of glioblastoma growth and viability. Using siRNA
significantly diminishes Bcl-2 expression to induce apoptosis in glioblastoma cells, and
promote their sensitivity to taxol chemotherapy [55]. Noteworthy, co-application of siRNA
with anti-tumor compounds can exhibit synergistic anti-cancer effects. The CD73-siRNA is
able to impair proliferation and progression of tumor cells that are of importance for enhanc-
ing doxorubicin sensitivity [56]. The Bcl-2-siRNA induces apoptotic cell death and reverses
doxorubicin resistance in hepatocellular carcinoma [57]. The same strategy has been used
for cisplatin sensitivity, such that using GPX4-siRNA and ABCC3-siRNA can induce drug
sensitivity in glioblastoma and lung tumors, respectively [58,59]. Tumor-promoting factors
such as poly (ADP-ribose) polymerase (PARP) and endothelial cell-specific molecule-1
(ESM-1) can be down-regulated by siRNA in suppressing proliferation and migration of
cancer cells, respectively [60,61].

Low toxicity and high efficiency are potential benefits of siRNA [62,63]. However,
siRNAs are associated with several limitations that should be addressed. Despite promis-
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ing results in vitro [64], it has been found that siRNAs are not quite successful in causing
gene silencing in vivo. More investigations have revealed that siRNAs could be degraded
by RNase enzymes present in the serum [65]. They cannot sufficiently penetrate cell
membrane, requiring nanocarriers for its delivery. Finally, their off-targeting feature can
be overcome by using nanostructures and providing targeted delivery. Application of
nanocarriers created a significant progress in gene silencing and cancer therapy, as intra-
cellular accumulation of siRNA is improved, it is protected against degradation and its
off-targeting effects are removed [66–71]. That is why experiments have been directed
towards using nanoparticles for delivery of siRNAs in cancer therapy [72–75]. Polymeric
nanoparticles [76], micelles [77], dendrimer [78], liposome [78], exosome [79], silicon-lipid
nanoparticles [80] and cationic nanoemulsions [81] have been applied for delivery and
controlled release of siRNA in cancer therapy. A recent experiment has used selenium
nanostructures for delivery of Derlin1-siRNA in cervical cancer treatment. For enhancing
selectivity of selenium nanoparticles toward tumor cells, its functionalization with RGDfC
peptide has been performed. The RGDfC-modified selenium nanoparticles penetrate into
cervical cancer cells via clathrin-mediated endocytosis and release siRNA in a sustained
manner. These siRNA-loaded nanoparticles can suppress cervical cancer progression via
inducing apoptosis and impairing mitochondrial function [82]. The arginine-modified
calcium phosphate nanoparticles have been used for siRNA delivery and reducing ex-
pressin levels of survivin and cyclin B1 that is of importnace in sensitizing lung cancer
cells to apoptosis [83]. Redox-responsive nanoparticles as smart nanocarriers have been
developed for EGFR- and BRD4-siRNA delivery. Redox-sensitive nanoparticles have been
modified with peptides to promote their internalization in cells and effectively suppress
breast cancer progression [84]. The encapsulation efficiency of nanoparticles seems to be up
to 95% [85] and they can mediate chemosensitivity via co-delivery of siRNA (KRAS) and
anti-tumor drugs (gemcitabine) [86]. In the following sections, a mechanistic and in-depth
discussion of using various siRNAs in PC therapy is provided. Table 1 summarizes some
of the clinical trials for applications of siRNAs in cancer therapy.

Table 1. Clinical trials using siRNAs in the treatment of cancer patients.

siRNA Cnacer Type Phase Aim Trial Number

Atu027 Advanced solid
tumors Phase I

34 participants that receive eight
treatments within 4 weeks

The aim is to determine best and
optimal dose in cancer treatment

NCT00938574

EphA2
Advanced or

recurrent solid
tumors

Phase I

The EphA2 leads to cancer
growth and progression

siRNA targeting EphA2 paves
way in cancer treatment

Determing dose and side effects

NCT01591356

CALAA-01 Solid tumors Phase I Determing pharmacokinetics
and safety profile NCT00689065

PLK1 Liver cancer Phase I

Testing a new drug, known as
TKM-080301 that is a liposomal

nanoformulation containing
siRNA-PLK1 in cancer treatment

NCT01437007

siRNA taregting im-
munoproteasome Melanoma Phase I

The aim is to improve anti-tumor
immunity and prevent immune

evasion of cancer cells
NCT00672542

MYC
Solid tumors
Lymphoma

Multiple myeloma
Phase I

Encapsulation of siRNA-MYC by
lipid nanoparticlesin cancer

therapy
NCT02110563

PD-L1/PD-L2 Heamtological
malignancies

Phase I
Phase II

Developing a new vaccine and
mediating immunotherapy NCT02528682
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3. SiRNA and Pancreatic Cancer Therapy
3.1. Proliferation and Growth

The uncontrolled growth of PC cells makes it difficult to manage this life-threatening
disease. Several different factors and pathways are responsible for rapid proliferation of PC
cells. A number of recent studies have focused on various oncogenic signaling networks
involved in the progression of PC cells. For instance, pancreatic stellate cells are able to
secrete exosomes containing miRNA-5703 to induce PI3K/Akt signaling and promote PC
growth rate [87]. For example, β-catenin is another pathway whose up-regulation by Mind
Bomb 1 leads to PC growth [88]. On the other hand, tumor-suppressor factors such as
miRNA-573 suppress PC growth via TSPAN1 down-regulation [89]. Hence, the process of
PC growth seems to be complicated and each gene can target various downstream targets
to modulate PC progression [90]. The aim of current section is to show that how siRNAs
can be applied in targeting pathways related to the aberrant growth of PC cells.

Precursor of nerve growth factor (proNGF) is a new and potential therapeutic target in
cancer therapy. ProNGF expression undergoes up-regulation in PC and mediates metastasis
of tumor cells. The lncRNA OIP5-AS1 enhances ProNGF expression via down-regulating
miRNA-186-5p expression to increase PC invasion [91]. On the other hand, anoikis is
a kind of apoptotic response stimulated by loss of adhesion to substrate. Reversing
anoikis resistance is of importance in PC therapy [92]. Furthermore, proNGF can induce
anoikis resistance [93,94]. In another study, it was found that proNGF-siRNA promotes
anoikis induction in PC cells, and significantly reduces their proliferation. Following
proNGF down-regulation by siRNA, autophagy inducers including autophagy-related gene
5 (ATG5) and Beclin-1 can undergo inhibition, thereby showing that apoptosis induction
and autophagy inhibition can occur by proNGF-siRNA [95]. This study provides new
insight about siRNA capacity in affecting interaction among programmed cell death (PCD)
pathways. The apoptosis and autophagy interaction can be considered a determining factor
in cancer. Inhibiting pro-survival autophagy can sensitize tumor cells to apoptosis [96–98].
The previous study clearly revealed that proNGF-siRNA could be beneficial in apoptosis
induction via preventing autophagy [95].

NUF2 (NUF2 Component of NDC80 Kinetochore Complex) is a linker between kine-
tochore attachment site and tubulin subunits [99]. It has been reported that NUF2 down-
regulation by RNAi leads to an impairment in attachment of kinetochore to spindle micro-
tubules and can effectively suppress cell proliferation at prometaphase [100]. In vitro and
in vivo experiments have shown that NUF2 down-regulation by siRNA leads to decreased
PC cell growth. Colony formation was stopped and cell cycle arrest at G0/G1 phase occurs
due to down-regulation of cyclin B1, Cdc2 and Cdc25A [101].

Receptor-associated protein 80 (RAP80) shows overexpression in PC and can mediate
its progression as well as proliferation [102]. RAP80 is involved in DNA repair process via
binding to BRCA1 and recruiting it to DNA damage sites [103–108]. Therefore, RAP80-
siRNA can be of significant importance in reducing PC proliferation. In this case, RAP80
down-regulation by siRNA can lead to apoptosis induction via Bax up-regulation and
Bcl-2 down-regulation. Caspase-8 as an executor of apoptosis was stimulated, while no
changes were observed in survivin levels [109]. One of the features of cancer cells is their
hypoxic microenvironment that facilitates their progression and malignancy. Hypoxia
inducible factor-1α (HIF-1α) up-regulation is responsible for immunosuppression [110],
radio-resistance [110], chemoresistance (gemcitabine) [111] and proliferation (Warburg
effect) [112] in PC. HIF-1α-siRNA leads to a decrease in mRNA and protein levels of HIF-
1α that can remarkably diminish the proliferation and induce apoptosis in PC cells [113].
Therefore, using siRNA can act as a potential strategy in suppressing PC proliferation [114].
Cell cycle arrest and apoptosis induction are major outcomes of targeting tumor-promoting
factors by siRNA in PC therapy [115].

SnoN gene is a key member of Skt family with tumor-promoting role. This gene
was first recognized due to its similarity in sequence with v-Ski and further investigation
revealed that SnoN could induce growth of chicken and quail embryo fibroblasts [116,117].
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The overexpression of SnoN occurs in human cancers that may result from gene amplifi-
cation, transcriptional activation and enhanced protein stability [118–120]. In respect to
the involvement of SnoN in cancer survival, its down-regulation can be considered to be a
promising strategy in PC therapy. Therefore, siRNA has been introduced into PC cells for
down-regulating SnoN gene expression. Upon SnoN down-regulation, PC cells undergo
apoptosis, and their proliferation was interrupted [121]. It appears that anti-apoptotic
proteins can be directly affected for triggering apoptosis in PC cells, instead of targeting
molecular pathways that can promote PC progression. For instance, in mitochondrial
pathway of apoptosis, the expression of Bcl-2 as an anti-apoptotic factor decreases. Over-
expression of Bcl-2 protects cancer cells against cell death. By introducing Bcl-2-siRNA
into PC cells, apoptosis can be induced [122]. The interesting point is that a variety of
molecular pathways can result in increased proliferation and survival of PC cells. Nek2 is a
serine-threonine kinase with potential role in both splitting centrosome and spindle forma-
tion in mammalian cells [123]. Nek2 up-regulation provides chromosome instability and
aneuploidy in cancers [124]. The Nek2 inhibition appears to be advantageous in decreasing
expression level of PD-L1 to enhance lymphocyte infiltration and promote anti-tumor
immunity in PC suppression [125]. Hence, targeting Nek2 is of importance in suppressing
cancer progression. For this reason, Nek2-siRNA has been applied for PC suppression
in vitro and in vivo. Moreover, in mouse model of PC, siRNA has been introduced via a
catheter. The Nek2-siRNA can impair the proliferation of PC cells and it promotes survival
of xenograft mouse model. Furthermore, Nek2-siRNA can prevent liver metastasis of PC
cells [126].

In addition, it has been reported that RPL1, as a ribosomal protein can be targeted in
PC therapy. Moreover, down-regulation of RPL1 by siRNA leads to apoptosis and cell cycle
arrest at G1 phase, and suppress DNA replication [127]. These studies advocated the fact
that first step in PC therapy is identifcation of the various tumor-promoting factors. Thus,
siRNAs can be designed for specific targeting of tumor cells to suppress PC proliferation
and induce apoptosis [128].

Mammalian histone deacetylases (HDAC) are grouped into four different categories
(I–IV) [129,130]. They participate in regulating biological processes including chromatin re-
modeling, gene repression, regulating cell cycle, and differentiation [129,131–133]. HDAC
dysregulation is associated with transcription repression and inhibiting expression of
tumor-suppressor genes [134,135]. HDAC1 plays a significant role in PC progression. It
has been shown that HDAC1 down-regulation can lead to cancer proliferation suppres-
sion [136]. HDAC1 and HIF-1α can produce a complex in binding to hypoxia response
elements (HRE) on the miR-548an promoter, down-regulating its expression and enhancing
carcinogenesis in PC [137]. HDAC1 recruitment can lead to PC metastasis via reducing
E-cadherin levels [138]. It has been established that HDAC1 undergoes up-regulation in PC
tissues compared to normal ones. The expression of HDAC1 in PC tissues was 56.4%, while
this expression was reduced significantly to 6.7% in the normal tissues. HDAC1-siRNA
leads to down-regulation of this tumor-promoting factor, therefore paving the way for
up-regulation of p21 and Bax in apoptosis induction in PC [139].

These studies highlighted the fact that most effective strategy for reducing proliferation
rate and viability of PC cells is to affect PCD pathway, especially apoptosis activation that
was discussed previously. Furthermore, autophagy is another important form of PCD
that can exhibit both pro-survival and pro-death functions in cancers and inhibiting pro-
survival autophagy can boost apoptosis induction in PC cells. The siRNAs have been used
for down-regulating expression levels of proNGF, NUF2, RAP80, HIF-1α and SnoN to
effectively impair the growth of PC cells and induce apoptosis. There are several other
oncogenic pathways involved in PC progression including Wnt/β-catenin, STAT3 and
NF-κB that can be focus of future studies.
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3.2. Metastasis and Angiogenesis

The previous section clearly demonstrated that growth rate of PC cells is high and re-
lated molecular pathways can be targeted by siRNAs to effectively impair PC proliferation.
Based on these previously reported studies, there are also several potential mechanisms
involved in enhancing metastasis of PC cells that their targeted modulation can be advan-
tageous in tumor treatment. The stimulation of MAPK/ERK axis by A-Raf was found to be
vital in elevating migration of PC cells [140]. Furthermore, interactions occurring in tumor
microenvironment can lead to PC metastasis. The recruitment of macrophages and their
M2 polarization can secrete IL-6 that subsequently can induce STAT3 signaling for promot-
ing PC migration and invasion via EMT induction [141]. STAT3 signaling can stimulate
the growth and proliferation of cancer cells [142–144]. Both Akt and ERK1/2 molecular
pathways can participate in PC metastasis and their stimulation occurs by FGF19 [145]. The
metformin administration, as anti-tumor agent, substantially can reduce HNF4G expres-
sion via AMPK up-regulation to impair metastasis of PC cells [146]. Hence, PC migration
is an increasing challenge and can significantly promotes aggressiveness of PC cells [147].
This section has been allocated to discuss application of siRNAs in disrupting PC invasion.

Cyclooxygenase-2 (COX-2) is an enzyme involved in the metabolic process of arachi-
donic acid that can actively participate in carcinogenesis [148–150]. COX-2 induces an-
giogenesis in PC through up-regulating epidermal growth factor receptor (EGFR) [151].
COX-2 overexpression demonstrates poor prognosis in PC patients [152]. COX-2 inhibitors
have been applied in PC therapy due to their efficacy in angiogenesis inhibition via vascu-
lar endothelial growth factor (VEGF) down-regulation and suppressing growth [153,154].
COX-2-siRNA can trigger apoptosis and cell cycle arrest in PC cells. In tumor xenografts,
COX-2-siRNA can significantly attenuate volume and weight of tumors, thus showing the
efficiency of gene silencing in vivo [155].

One of the potential therapeutic targets in cancer therapy is c-Src, an important non-
receptor protein tyrosine kinase. Increasing evidence demonstrates tumor-promoting role
of c-Src in cancer [156–158]. It can promote carcinogenesis via glycolysis induction [159].
Cell adhesion molecule 1 (CADM1) as a tumor-suppressor, can down-regulate expression
of c-Src in suppressing colon tumorigenesis [160]. The self-renewal capacity of breast
cancer cells is also regulated by c-Src [161]. These studies highlight the role of c-Src,
as a tumor-promoting factor. It seems that c-Src down-regulation by siRNA impairs
progression of PC cells via inhibiting angiogenesis. The activation of angiogenesis can
occur by EGFR up-regulation, a process involved in cancer metastasis and migration to
the distant sites [162–164]. The transfection efficiency of siRNA in PC cells was more than
90% and expression of c-Src was reduced by 86.1%. Following c-Src down-regulation by
siRNA, the expression of VEGF was inhibited, thus suppressing angiogenesis and cancer
progression [165].

Although there have been efforts in using siRNA for reducing migration of PC cells
and various factors such as COX-2 and c-Src have been affected, there is still a long way
before naked siRNAs can be applied for regulating PC progression. There are several other
factors such as EMT and matrix metalloproteinases (MMPs) that can also lead to metastasis
of PC cells. However, there are no studies reported about using siRNAs for modulating
their upstream regulators such as ZEB1/2, TGF-β and Snail, among others.

3.3. Immune Regulation

Transforming growth factor-β (TGF-β) is considered as a novel target in cancer ther-
apy [166,167]. Under physiological conditions, TGF-β regulates proliferation, differenti-
ation, survival and cell adhesion to preserve tissue homeostasis. In cancer cells, TGF-β
acts as a positive factor for metastasis via EMT induction [168–170]. On the other hand,
retinoic acid-inducible gene I (RIG-I) is affected in cancer immunotherapy by enhanc-
ing the levels of interferon and apoptosis induction [171–173]. A bifunctional siRNA for
down-regulating TGF-β and enhancing RIG-I expression has also been designed. This
improvement in function can be obtained by introducing triphosphate group at the 5′
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end of siRNA. Following TGF-β down-regulation, an increase occurs in survival time
of xenograft models and metastasis and invasion of PC cells undergo down-regulation.
Due to RIG-I activation, immune system can be activated that can promote the levels of
interferon and RIG-I and induce apoptosis [174]. In addition, TGF-β down-regulation
and RIG-I up-regulation increase potential of cancer immunotherapy [175]. However, an
experiment has only investigated role of siRNA in cancer immunotherapy and as immune
evasion is a common phenomenon in PC [176], more studies are required to show how
such genetic tools can be employed in PC treatment and activating anti-tumor immunity.
Although only TGF-β signaling has been targeted in improving anti-tumor immunity in
PC, there is another well-known molecular pathway, known as PD-L1/PD-1 axis that is
involved in triggering immune evasion [177]. Hence, further experiments can focus on
using siRNA for down-regulating PD-1 expression and promoting anti-tumor immunity
against PC cells.

3.4. Therapy Response and Synergistic Therapy

Another potential of siRNAs lies in improving potential of chemotherapeutic agents
in suppressing tumor progression [178,179]. Therefore, combination cancer therapy with
siRNA-anticancer drug could be designed. For instance, L-ascorbate is not capable of
preventing PC migration. Co-application of siRNA-HIF-1α and L-ascorbate resulted in
ansynergistic effect in suppressing PC invasion [180]. This study demonstrated that siRNA
could serve as a potential adjuvant for promoting anti-tumor activity of compounds in PC
therapy. Surgery is not considered a successful option in PC therapy due to diagnosis of
PC at advanced stages. Therefore, chemotherapy has been primarily used for the treatment
of PC patients. However, drug resistance emerges in PC and different molecular pathways
including long non-coding RNAs [181], SRPX2 [182] and USP7 [183], among others can
participate in the resistance of PC cells to chemotherapy. Furthermore, drug resistant-
tumor cells, especially PC cells, demonstrate high growth and invasion rates and based on
previous discussions, siRNAs can be potentially beneficial in impairing tumor proliferation
as well as metastasis and causing subsequent increase in chemosensitivity of PC cells.

Ribonucleotide reductase (RR) is a rate-limiting enzyme vital for DNA synthesis and
replication [184]. Celastrol can suppress progression of PC cells via down-regulating RRM2
expression, showing tumor-promoting function of this pathway [185]. Exposing PC cells
to RRM2-siRNA leads to an increase in apoptosis and cell growth inhibition. Notewor-
thy, co-administration of RRM2-siRNA and doxorubicin (DOX) can lead to synergistic
effect and a four-fold increase in anti-tumor activity [186]. Gemcitabine (GEM) is another
chemotherapeutic agent that its potential in PC treatment has been reduced due to emer-
gence of drug resistance [187]. The hTERT-siRNA can increase the number of PC cells
undergoing apoptosis. The hTERT down-regulation induces cell cycle arrest at G0/G1
phase and enhances number of PC cells in S and G2/M phases [188]. Following hTERT
down-regulation by siRNA, expressions of Bcl-2 and COX-2, as tumor-promoting factors
undergo inhibition that is of importance for inducing apoptosis in PC cells [189], and
enhancing their sensitivity to chemotherapy.

Now, it is obvious that when cancer cells demonstrate malignant behavior in terms of
proliferation and migration, they can obtain chemoresistance [190–196]. Therefore, in order
to provide effective cancer chemotherapy, it is vital to suppress the various pathways that
lead to cancer migration and growth [193,197]. It appears that an overexpression of hetero-
geneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) is in favor of PC growth [102].
As RNA-binding proteins, hnRNP A2/B1 participates in mRNA processing and telomere
biogenesis [198]. Clinical study evaluating 42 patients with PC has shown role of hnRNP
A2/B1 in PC and its association with E-cadherin, an important epithelial marker [199]. The
exposure of PC cells to hnRNP A2/B1 can lead to apoptosis induction. A combination
of hnRNP A2/B1 and chemotherapeutic agents such as 5-fluorouracil (5-FU), oxaliplatin
and GEM can stimulate synergistic effect against PC cells. In fact, by suppressing PC
growth, hnRNA A2/B1-siRNA enhances sensitivity of PC cells to chemotherapy. This com-
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bination leads to Bcl-2 down-regulation and Bax up-regulation, providing apoptotic cell
death. Moreover, expression of P-glycoprotein, as a drug transporter that induces chemore-
sistance [200], decreases following this combination that is of importance in enhancing
chemosensitivity [201].

Increasing evidence demonstrates that RR and thymidylate synthase (TS) can induce
chemoresistance in cancer cells [202,203]. It has been reported that RRM2-siRNA, as a
subunit of RR can promote GEM sensitivity, in vitro and in vivo [203,204]. A combination
of GEM and RR- and TS-siRNA can stimulate apoptosis in PC cells and reduces their
proliferation. This combination inhibits NF-κB activation following GEM administration
and enhances TNF-related apoptosis-inducing ligand (TRAIL)-mediated cell death in PC
cells [205]. In the previous section, it was mentioned that HIF-1α is a desirable factor
for progression of PC cells. Moreover, HIF-1α down-regulation by siRNA leads to an
increase in chemosensitivity of PC cells [206]. A set of tumor-promoting factors such
as HIF-1α, ARNT, PFKFB4, and RBKS can be down-regulated by siRNA in inducing
apoptosis and enhancing their sensitivity to chemotherapeutic agents including DOX
and GEM (Figures 2 and 3) [207]. The interesting point of this section is that prior studies
have considered role of both molecular pathways and drug transporters in triggering
drug resistance in PC and these molecular pathways and mechanisms can be markedly
suppressed using siRNAs as an effective tool. Table 2 summarizes application of siRNAs
in down-regulating tumor-promoting factors in PC therapy.
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Table 2. Interference with PC progression via application of siRNAs.

In Vitro/In Vivo Cell Line/Animal Model SiRNA Outcomes Refs

In vitro
In vivo

PANC-1 and Sw1990 cell
lines Xenograft nude mice NUF2

Cell cycle arrest at G0/G1 phase
Down-regulation of Cdc2, Cyclin B1 and Cdc25A

Suppressing carcinogenesis
[101]

In vitro AsPC-1, SUIT-2, and
Panc-1 cells Survivin

Reducing promoter activity and mRNA expression
of survivin

Inducing caspase-3 expression and DNA
fragmentation

Enhancing radiosensitivity

[208]

In vitro SW1990 and Capan-2 cells RAP80

Down-regulating Bcl-2 and up-regulating Bax
Inducing apoptotic cell death

Increasing TRAIL-mediated apoptosis
Promoting GEM sensitivity

[109]

In vitro Panc-1 and BxPC3 cells Survivin
Decreasing mRNA and protein levels of survivin

Suppressing cell proliferation
Triggering cell cycle arrest at G0/G1 phase

[209]

In vitro BxPC3 cells S100A4

Reducing gene expression by 17%
Down-regulating MMP-2

Enhancing levels of E-cadherin and TSP-1
Suppressing cancer invasion and metastasis

[210]

In vitro PANC-1, MIA-PaCa-2 and
ASPC-1 cells TrKA

TrKA down-regulation is associated with GEM
sensitivity

Inducing apoptotic cell death
Inhibiting PI3K/Akt signaling pathway

[211]

Table 2. Cont.

In Vitro/In Vivo Cell Line/Animal Model SiRNA Outcomes Refs

In vitro BxPC3 cells hTERT
Apoptosis stimulation

Cell cycle arrest at G0/G1 phase
Enhancing GEM sensitivity

[188]

In vitro MiaPaCa2 cells HIF-1α
Interfering with cancer proliferation

Apoptosis induction
Disrupting cancer growth under hypoxic conditions

[113]

In vitro PaTu8988 cells DNMT1

Apoptosis induction and inhibiting tumor growth
by cell cycle arrest (S phase)

DNMT1 down-regulation and subsequent
activation of hMLH1 as a tumor-suppressor factor

[115]

In vitro PANC-1 cells RRM2 Exerting synergistic effect with doxorubicin and
enhancing cytotoxicity against cancer cells by 4-fold [186]

In vitro MiaPaCa-2 cells K-Ras Down-regulating K-Ras expression
Triggering apoptosis [212]

In vitro SW1990 cells SnoN
Down-regulating SnoN expression and reducing

cancer cell proliferation
Apoptosis induction

[121]

In vitro SW1990 and BxPC-3 cells hnRNP A2/B1

Stimulating apoptosis via Bcl-2 down-regulation
and Bax up-regulation

Mediating TRAIL-induced apoptosis
P-glycoprotein down-regulation

Suppressing cancer metastasis via enhancing
E-cadherin levels

[201]

In vitro
In vivo

Capan-2 cells
Nude mice COX-2 Cell cycle arrestApoptosis induction

Decreasing cancer cell proliferation [155]

In vitro PaTu8988 cells HDAC-1
Disrupting cancer growth and survival

Inducing cell cycle arrest (S phase) and apoptosis
Enhancing Bax and p21 expressions

[139]

In vitro
In vivo PANC-1 and BxPC-3 cells RPL21

Cell cycle arrest at G1 phase
Apoptosis induction via mitochondrial pathway

Caspase-8 activation
[127]
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4. Chemical Modification of siRNAs

In addition to nanoscale delivery systems, stability and potential of siRNA in gene
silencing can be improved by chemical modification. The RNAi activity of siRNA mainly
depends on the length and structure of siRNA. The 5′-OH of siRNA possesses a phosphate
group that seems to be essential for loading into RISC complex and mediating its optimal
functions [213,214]. Moreover, double-stranded siRNA should have A-type duplex to
provide RNAi activity [213–215]. The guide strand RNA-Ago2 complex has two regions
including seed region and central region. The seed region has 2–8 nucleotides and is
responsible for forming duplex with mRNA, while central region has 10–11 nucleotides
and cleaving site of mRNA is complementary to the central region. These regions are
vital for identification of target mRNA and helping RISC complex enzymes in RNA sep-
aration [216]. However, as was mentioned previously, application of siRNA as a drug
has problems and chemical modification of siRNA should be performed in improving
its binding affinity with mRNA, preventing enzyme degradation, providing site-specific
delivery and decreasing off-targeting [217]. The sugar ring, phosphate backbones and
nucleobase sites are ideal candidates for chemical modification of siRNA and improving
its potential in gene expression regulation [218]. The 2′ sugar modifications of siRNA
including 2′-O-methyl, 2′-fluoro (2′-F) and 2′-O-(2-methoxyethyl) (2′-MOE) are beneficial
in improving biocompatibility of siRNA, decreasing its immunogenicity and providing
resistance to enzyme degradation [219,220]. Furthermore, siRNA uptake by cells can be
improved via conjugation of siRNAs to lipophilic agents such as N-acetylglactosamine and
cholesterol [221]. A new study has synthesized 2′-caged siRNA for targeting GFP gene in
HEK293T cells. These 2′-caged-tethered-siRNAs were light-responsive and their activity
was low in dark conditions, whereas exposing these siRNAs to light significantly elevated
their RNAi activity and their potential in gene regulation [222].

It is worth mentioning that chemical modifications may negatively affect potential of
siRNA in gene silencing. A recent experiment showed that KL4 peptide is optimal for in-
creasing cellular uptake of siRNAs. Then, KL4 peptide was modified, so that hydrophobic
leucine was replaced by alanine or valine. The modified peptide has cationic charge that
was proper for interacting with negatively charged siRNA. However, this modification
changed structure of KL4 peptide from α-helix to β-sheet that reduced potential of this
peptide in enhancing siRNA efficacy [223]. Therefore, siRNA modification or changes in
its conjugations should be appropriately performed to prevent unsuccessful results. For
instance, conjugation of ODAGal4 to siRNA can significantly elevate the stability of siRNA
and protect it against degradation by serum enzymes [224]. Another experiment high-
lighted the impact of chemical modification on siRNA efficacy. This study modified guide
strand of siRNA by 3′ terminal modifications (2′-O-methyl versus 2′-fluoro). For siRNAs
with guide strand with 20 nucleotides, such modification reduced its activity, while this
is not true for guide strands with 19 or 21 nucleotides, modulating length of siRNAs can
serve as determining factor and facilitate their chemical modifications. To improve efficacy
of siRNAs by altering 3′ terminal 2′-O-methyl modification, another study introduced an
extra 2′-fluoro modification in the seed region at guide strand position 5, but not 7 [225].
One of the primary positions that can be modified for improving potential of siRNAs to
regulate gene expression is 5′ nucleobase that is responsible for the interaction between
siRNA and Ago2. For instance, another study has used an adenine-derived analog, known
as 6-mCEPh-pourine to modify 5′ end of siRNA that significantly improved potential of
siRNA in reducing gene expression in vitro and in vivo [226]. Another experiment also
revealed that 5′ end modification of siRNA by 6-mCEPh-pourine can be advantageous
in promoting the generation of mature RICS by enhancing RISC stability and fixing load-
ing orientation of siRNA duplexes [227]. Therefore, targeted chemical modifications of
siRNA can be beneficial in improving its efficacy in gene silencing [228]. However, there
are no prior studies reported about chemical modifications of siRNA and their possible
applications in pancreatic cancer therapy. Therefore, future experiments can focus on how
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chemical modifications of siRNA can improve its efficacy in pancreatic cancer suppression
via affecting and modulating genes as well as molecular pathways.

5. Co-Delivery Systems
5.1. Lipid-Based Nanoparticles

Although previous sections have obviously demonstrated the potential application
of siRNA in PC therapy, and its efficiency in suppressing cancer proliferation and inva-
sion, it seems that more progress can be made in effective PC therapy by loading siRNA
on nanoparticles to promote its intracellular accumulation and protect against degrada-
tion [229–235]. In this section, different kinds of nanostructures applied for siRNA delivery
in PC are discussed.

Liposomes are one of the well-known carriers for drug and gene delivery due to
their great properties including long blood circulation, high stability, high drug loading
and controlled release [236–239]. To enhance targeted delivery of liposomes, they can be
functionalized by ligands that target overexpressed receptors on surface of cancer cells that
EGFR is among them with up-regulation in PC cells [240,241]. Anti-EGFR antibodies are
extensively applied in nanocarrier modification due to their low size, biocompatibility, low
immunogenicity and easy conjugation on surface of nanoparticles. GE11 is a peptide that
has been applied for targeting EGFR on the surface of cancer cells [242,243]. Recently, GE11
peptide antibody-targeted liposomes have been applied for co-delivery of GEM and HIF-1α-
siRNA. HIF-1α up-regulation occurs in hypoxic conditions. The overexpression of HIF-1α is
in favor of PC progression [244] and can mediate drug resistance [245]. Co-delivery of HIF-
1α siRNA and GEM leads to a four-fold decrease in tumor growth. Apoptosis induction,
DNA fragmentation and chromatin condensation can occur following administration of
liposomes. It seems that using siRNA can effectively promote anti-tumor activity by two-
fold [246]. This study demonstrated that how liposomes can enhance anti-tumor activity,
and how siRNA can promote apoptosis induction in cancer cells by down-regulating
tumor-promoting signaling pathways. Interestingly, liposomes can provide a platform
for co-delivery of siRNA with other anti-tumor agents. Recently, GEM and myeloid cell
leukemia 1 (Mcl-1)-siRNA have been loaded on liposomes for PC therapy (Figure 3).
Liposomes demonstrated high cellular uptake, resulting in Mcl-1 down-regulation as a
tumor-promoting factor for PC cells. Thus, sensitivity of PC cells toward GEM increased
and an increase occurred in the number of PC cells undergoing apoptosis [247].

Overall, two major categories of nanocarriers have been applied for siRNA delivery
including liposomes and polymeric nanoparticles [248–251]. The liposomes used for siRNA
delivery are cationic in nature. Positively charged lipids can encapsulate a high amount of
siRNA via electrostatic interaction. However, toxicity, immunostimulatory and activating
inflammation are drawbacks of cationic liposomes [249,252]. Similarly, polymers applied
for siRNA delivery possess positive charge and severe toxicity is still a major challenge for
these kinds of nanostructures. To promote efficiency of polymeric nanoparticles in siRNA
delivery, they are designed with high charge densities that can be modulated based on
their toxicities.

It has also been reported that lipid-polymer hybrid nanoparticles are potential carriers
in siRNA delivery. The structure of lipid-polymer hybrid nanoparticles includes a poly-
meric core surrounded by a single layer or bilayer lipid shell, combining benefits of both
liposomes and polymeric nanoparticles. The cationic core is responsible for encapsulation
of siRNA, and can provide protection, biocompatibility as well as in vivo stability [253,254].
Lipid-polymer hybrid nanoparticles have been designed for co-delivery of GEM and HIF-
1α-siRNA in PC therapy. The negatively charged HIF-1α-siRNA is encapsulated on the
surface, while GEM is embedded into hydrophilic core. Then, they are encapsulated by
PEGylated lipid bilayer that can prevent siRNA degradation and aggregation as well as
GEM leakage. These nanocarriers can enhance lifetime in bloodstream and increase tyhe
drug release via penetrating into tumor vasculature. In vivo and in vitro experiments
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demonstrated down-regulation of HIF-1α and effective delivery of GEM in suppressing
PC progression [255].

The different kinds of nanocarriers applied for siRNA delivery not only prevent
siRNA degradation, but also inhibit renal clearance following systemic administration [42].
Moreover, nanostructures possess a size lower than 100 nm that is of importance in ac-
cumulating in tumor site via defective neovasculature surrounding tumor, known as
enhanced permeability and retention (EPR) effect [256,257]. PEG-based block catiomers
can spontaneously assemble siRNA into micelles, providing a biocompatible PEG shell for
siRNA delivery [258]. Chemical cross-linking and hydrophobic interactions derived from
hydrophobic moieties can enhance stability of micelles [42,259]. Furthermore, targeted
delivery of micelles can be improved via using ligands specifically targeting overexpressed
receptors on surface of cancer cells [260]. For this reason, Min and colleagues have designed
antibody fragment (Fab’)-installed polyion complex (PIC) micelles for enhancing siRNA
delivery in PC cells. The prepared micelles demonstrated diameter as low as 40 nm. PIC
micelles demonstrated high affinity to PC cells overexpressing tissue factor (TF). This led to
high internalization and penetration into PC cells. Subsequently, highest decrease occurred
in expression of polo-like kinase 1 mRNA, after using PIC micelles containing siRNA [261].

5.2. Polymeric Nanoparticles

Polymeric nanoparticles are considered to be ideal candidates in siRNA delivery
because of their biodegradability [238,239,262]. Biodegradable charged polyester-based
vectors (BCPVs) can be degraded under the physiological conditions and have been suc-
cessfully applied for siRNA delivery [263]. On the other hand, K-Ras family proteins are
guanine nucleotide binding proteins capable of regulating activity of pancreatic cells and
are involved in modulating proliferation, apoptosis and migration [264–266]. Following
K-Ras mutation, several downstream signaling networks were activated that imparted
cancer malignancy [267].

The role of K-Ras in PC growth was confirmed when the cancer cells were exposed
to K-Ras-siRNA and the number of PC cells undergoing apoptosis demonstrated an in-
crease [212]. K-Ras-siRNA-loaded BCPVs have been designed for PC therapy. After 72 h,
BCVPs demonstrate good accumulation in cancer cells and they can diminish mRNA and
protein expression up to 50%. These siRNA-loaded nanostructures effectively penetrate into
PC cells to induce apoptosis, and growth inhibition [268]. Efficacy of polymeric nanocarri-
ers in siRNA delivery can be boosted via their surface modifications. The internalizing RGD
peptide (iRGD) functions by binding to integrins overexpressed on tumor vasculature [269].
Using iRGD also significantly elevated tumor-penetrating capability [270,271]. Surface
modification by iRGD is associated with an increase in siRNA delivery to cancer cells, and
subsequent enhance in gene silencing and reducing tumor growth [272]. In fact, RGD can
bind to αvβ3/5 integrins on surface of cancer cells, leading to an increased transfection
efficiency [273]. One of the achievements of using polymeric nanoparticles for siRNA in
PC therapy is EPR effect. However, in PC cells, due to hypovascularity and dense desmo-
plastic stroma, intravenous administration (IV) can decrease efficiency of nanostructures in
siRNA delivery and cancer elimination, Hence, intraperitoneal administration has been
suggested [274].

It has been established that hypoxia is in favor of cancer growth by activation of
HIF-1α signaling and its downstream targets [275]. Interestingly, it was reported that en-
dothelial PAS domain protein 1 (EPAS1) is also activated under hypoxic conditions. EPAS1
overexpression is an obvious finding in cancer and can enhance cancer metastasis via EMT
induction [276,277]. The polyethylenimine-poly(lactide-coglycolide) (PLGA)/poloxamer
nanoparticles loaded with EPAS1 siRNA have been applied for PC therapy. In vitro and
in vivo experiments demonstrated that EPAS1 down-regulation in PC cells due to targeted
delivery, resulted in a reduction in cancer proliferation and the number of microves-
sels [278]. G protein-coupled receptor (GPCR) 87 located on chromosome 3q24 is involved
in encoding protein that has an extracellular N terminus, seven helices, three intracellular
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loops, three extracellular loops and an intracellular C terminus [279,280]. GPCRs are located
on the surface of cells and their overexpression can lead to the cancer survival [281,282].

The up-regulation of GRP78 occurs in PC that can mediate chemoresistance via in-
ducing activity of ATP-binding cassette (ABC) drug transporters [283]. GRP78 can in-
duce Yes-associated protein (YAP) in providing radio-resistance [284]. Recently, PLGA
nanoparticles containing GRP78-siRNA have been prepared for PC therapy. To prevent
polydispersity and large size of nanoparticles, mild agitation was used for encapsulating
siRNA in PLGA nanoparticles. The synthesized PLGA nanoparticles demonstrate low size
of 92 nm. The expression of GRP8 decreased up to 83.9% that showed high cytotoxicity
of these nanocarriers against PC cells [285]. The advantages of using nanoparticles is
that the capability of siRNAs in gene silencing increases due to enhanced intracellular
accumulation. That is why experiments have focused on using nanostructures for siRNA
delivery in cancer therapy [286]. Local drug EluteR (LODER) is a biodegradable polymeric
matrix applied for siRNA in PC therapy. It can protect siRNA against degradation and
has high biocompatibility, appropriate for siRNA delivery [287]. Moreover, polymeric
nanoparticles can provide endosomal escape of siRNA that is of importance in enhancing
its efficacy in gene silencing and suppressing PC progression [288]. An experiment has
revealed that using polymeric nanoparticles can provide transfection efficiency as much
as 90% [289]. It appears that these two factors are important in designing smart siRNA
polymeric carriers including low pKa amines and hydrophobic moieties inside chain [290].

5.3. Carbon-Based Nanoparticles

Two-dimensional (2D) nanomaterials are extensively applied in the field of medicine
due to their great electronic, optical and chemical characteristics [291,292]. Graphene
is a well-known 2D nanomaterial capable of gene delivery in cancer [293]. To improve
biocompatibility of graphene nanomaterials, their surface can be functionalized by com-
patible polymers such as polyethylene glycol (PEG) [294]. The PEGylated graphene oxide
nanosheets have been designed for delivery of siRNA in PC therapy. These biocompatible
nanomaterials can successfully down-regulate HDAC1 and K-Ras in suppressing prolif-
eration and triggering apoptosis and cell cycle arrest. In vivo experiment demonstrated
an inhibition of cancer growth as much as 80% following delivery of siRNA by graphene
nanosheets [295].

5.4. Dendrimers

As it was mentioned, naked siRNAs can poorly penetrate into the cells due to their
high molecular weights and high density of negative charge [248]. Moreover, nucleases
can easily degrade siRNA in plasma, thus remarkably reducing its efficiency in gene silenc-
ing [278]. Dendrimers are a class of materials applied for gene and drug delivery due to
their highly branched and precise molecular structures [296,297]. Dendrimers can provide
endosomal release and intracellular uptake of siRNA in cancer cells [298]. Furthermore,
dendrimers can be applied for co-delivery of chemotherapeutic agents and siRNA in effec-
tive cancer chemotherapy by down-regulating the tumor-promoting molecular pathways
and enhancing cytotoxicity of anti-tumor agents [299]. On the other hand, targeted delivery
of dendrimers can be improved using plectin-1 targeted peptide (PTP), as a biomarker of
PC. PTP peptide modified dendrimers have been designed for co-delivery of paclitaxel
(PTX) and TR3-siRNA in PC therapy. These smart nanostructures are redox-responsive and
can induce endosomal escape and provide siRNA against degradation. Enhanced intra-
cellular accumulation of TR3-siRNA and PTX resulted in an increase in their cytotoxicity
against PC (in vitro and in vivo) [300].

5.5. Metal-Based Nanoparticles

Superparamagnetic iron oxide nanoparticles (SPIONs) are a novel kind of nanocarriers
being used in field of cancer therapy. They have been used for gene and drug delivery
in cancer eradication. SPIONs can enhance intracellular accumulation of DOX in breast
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cancer cells to promote apoptosis induction [301]. They can also be considered to be acting
as radiosensitizer in cancer therapy [302]. SPIONs are biocompatible with low size. They
can carry siRNA in down-regulating oncogene signaling pathways (HIF-1α/CD73) in
disrupting cancer progression [303]. On the other hand, polo-like kinase 1 (PLK1) is a
tumor-promoting factor and its overexpression is correlated with an increase in PC growth
and induction of chemoresistance [304,305]. Tumor-suppressor factors such as miRNA-
23a diminish PLK1 expression in inhibiting PC proliferation and invasion [306]. In an
experiment, SPION have been designed for delivery of PLK1-siRNA in PC therapy. To
promote specificity of SPIONs in targeting PC cells, their surface has been modified with a
tumor-selective peptide (EPPT1). Remarkable accumulation of SPIONs carrying siRNA
occurs in cancer cells, thus causing PLK1 down-regulation. This can induce apoptosis and
suppress proliferation and growth of PC cells. The interesting point is that in vivo and
in vitro experiments have confirmed the potential role of siRNA-loaded SPIONs in PC
therapy [307]. Clinical studies will shed more light on efficacy of SPIONs in gene delivery
for cancer therapy.

Gold nanostructures are promising candidates for nucleic acid delivery due to their
adjustable size, multiple functional capabilities and surface properties [308–313]. Gold
nanoparticles can be applied for nucleic acid delivery with minimum toxicity and off-
targeting [314–316]. On the other hand, nerve growth factor (NGF) is considered to be
an inducer of cancer proliferation and its inhibition can be correlated with apoptosis
induction [317]. NGF can promote proliferation of PC cells via inducing phosphoinositide
3-kinase (PI3K)/protein kinase B (Akt) axis [318]. Gold nanoclusters have been designed
for delivery of NGF-siRNA in PC therapy. Moreover, using gold nanoparticles for delivery
both stability and intracellular accumulation of siRNAs can be increased effectively. NGF-
siRNA-loaded gold nanoparticles can markedly suppress cancer growth by causing NGF
down-regulation without exhibiting any major side effects [319].

Mesoporous silica nanoparticles (MSNPs) are considered to be efficient drug delivery
platforms due to their characteristics including that of large surface area and ordered
porous channels [320,321]. In addition, MSNPs have been found to be safe, biocompat-
ible and biodegradable [322,323]. Recently, much attention has been directed towards
using MSNPs for siRNA delivery in cancer therapy. MSPNs can be administered through
intravenous route in mouse models of breast cancer, while their potential in siRNA de-
livery is maintained [324]. MSNPs can provide a platform for co-delivery of siRNA with
anti-tumor agents [325]. Their efficacy in siRNA delivery can be improved via surface
modification by chloroquine [326]. An experiment has designed MSNP for siRNA delivery
in PC therapy. To enhance intracellular uptake of MSNPs, their surface has been coated
with polyethyleneimine (PEI). In addition to increasing cell internalization, PEI can provide
a cationic charge that is in favor of encapsulating negatively charged siRNA. The drawback
of PEI is negatively affecting biocompatibility profile of MSNPs, but these effects have been
found to be only partial. Moreover, to reduce the cytotoxicity against normal cells, 10 kD
PEI can be used instead of 25 kD PEI. They can effectively deliver siRNA and PTX to PC
cells, as was shown by fluorescence technique (70% transfection efficiency) [327].

5.6. Viral Vectors

Although previous sections were allocated to application of nanomaterials as non-
viral vectors for siRNA delivery in cancer therapy, it seems that viral vectors are also
capable of effective delivery of siRNA to PC cells that has been discussed in this section.
Increasing evidence demonstrates potential of viral vectors for siRNA delivery in cancer
therapy [328–330]. Retroviral vectors are applied for siRNA generation induced by either
U6- or H1-RNA promoter to provide stable knock-down of targeted gene [328,329]. How-
ever, retroviral vectors have a narrower spectrum of cell types compared to adenovirus
due to integrating into genome [331,332]. Recombinant adenoviruses are considered to
be ideal candidates for cancer gene therapy. For generating recombinant adenoviruses, a
simple approach known as AdEssay has been used [333]. Recombinant adenoviruses can be
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applied for inducing persistent loss of functional phenotypes. In PC therapy, K-Ras-siRNA
can be delivered by adenoviruses in silencing its expression and suppressing PC progres-
sion [334]. Another study has used adenovirus vector for delivery of Mcl-1 in PC therapy.
Mcl-1 can regulate mitochondrial activation and undergoes up-regulation in several can-
cers [335–337]. Following introduction of Mcl-1-siRNA-loding adenovirus, a significant
decrease occurs in PC cells that can induce apoptosis via caspase-3 up-regulation. It seems
that Mcl-1-down-regulation by adenovirus is in favor of promoting radiosensitivity of
PC cells [338]. These studies demonstrated efficiency of adenoviruses in down-regulating
tumor-promoting factors such as Gli1 in inhibiting PC proliferation and viability [339].
Figure 4 and Table 3 describe the role of different co-delivery systems for application of
siRNAs in PC therapy. Figure 5 illustrates the potential of siRNA-loaded nanoparticles in
affecting different molecular pathways in PC therapy.
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Table 3. Co-delivery systems for siRNA in PC therapy.

Vehicle SiRNA In Vitro/In Vivo Cell Line Surface
Modification

Particle Size (nm)
Zeta Potential (mV)

Encapsulation
Efficiency (%)

Remarks Refs

Polymeric
nanoparticles K-Ras In vitro

In vivo

KPC-derived cell
lines and MIA
PaCa-2 cells

RGD Not reported

Gene down-regulation efficiency more
than 95%

High cellular uptake
Great internalization

Suppressing PC progression

[272]

Polymer hybrid
nanoparticles VEGF In vitro

In vivo BxPC3 cells N/A 120–140 nm
35 mV

100 nm in size, spherical shape and
narrow dispersion

High gene silencing efficiency
Reducing tumor growth

[290]

Lipid-polymer
hybrid nanoparticles HIF-1α In vitro

In vivo PANC-1 cells N/A 120–140 nm
−34 mV

Co-delivery of GEM and siRNA in
exerting synergistic effect

Prolonged lifetime in bloodstream and
improved drug release via the enhanced

tumor vasculature effect in tumor
tissues

Suppressing tumor growth and
metastasis

Down-regulating HIF-1α
Enhancing GEM sensitivity

[255]

Polymeric
nanoparticles KRAS In vivo KPC8060 cells N/A Not reported

Intraperitoneal injection enhances
intracellular accumulation of
nanoparticles to intravenous

administration (15-fold higher)
Enhancing infiltration of T cytotoxic

cells
Inducing delay in tumor growth

Suppressing metastasis
Increasing survival

[274]
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Table 3. Cont.

Vehicle SiRNA In Vitro/In Vivo Cell Line Surface
Modification

Particle Size (nm)
Zeta Potential (mV)

Encapsulation
Efficiency (%)

Remarks Refs

Polymeric
nanoparticles EPAS1 In vitro

In vivo BxPC3 cells N/A
160–220 nm
−0.41 mV

40%

Prolonged-release behavior
Suppressing cancer growthTriggering

apoptotic cell death
Down-regulating EPAS1

Reducing tumor vessels and VEGF
inhibition

[278]

Polymeric
nanoparticles GPR87 In vitro HEK293T cells N/A

Average size of
100–200 nm

Up to −15 mV
Up to 31.14%

Reducing gene expression up to 87%
High efficiency and cytotoxicity against

cancer growth
[285]

Polymeric
nanoparticles K-Ras In vivo MiaPaCa-2 cells N/A 97.99 nm

39.71 mV

High biocompatibility
Potentiality in siRNA delivery and gene

silencing in suppressing cancer
progression

[268]

Polymeric
nanoparticles K-Ras In vitro

In vivo
PANC-1 and BxPC3

cells N/A Not reported
Apoptosis stimulationCell cycle arrest

at G0/G1 phase
Enhanced efficiency in gene silencing

[286]

Gold nanocluster NGF In vitro
In vivo

Panc-1 cells
Tumor models N/A Not reported

High cellular uptake and intracellular
accumulation

NGF down-regulation
Inhibiting PC proliferation and viability

[319]

Liposome HIF-1α In vitro
In vivo Panc-1 cells GE11 166.4 nm

22.5 mV
Enhancing GEM sensitivity of cancer

cells via HIF-1αdown-regulation [246]

Liposome Mcl-1 In vitro PANC-1 and BxPC3
cells N/A N/A

Increased efficiency in down-regulating
Mcl-1

Suppressing GEM resistance
[247]

Peptide nanoparticles KRAS In vitro
In vivo

KPC-1 murine PDAC
cells N/A Not reported

Precision delivery to tumor site
High cellular uptake

Potentiality in gene silencing
[229]
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Table 3. Cont.

Vehicle SiRNA In Vitro/In Vivo Cell Line Surface
Modification

Particle Size (nm)
Zeta Potential (mV)

Encapsulation
Efficiency (%)

Remarks Refs

Single wall carbon
nanotubes K-Ras In vitro PANC-1 cells N/A 110–150 nm

+40 mV

High transfection efficiency and cellular
internalization

Down-regulation of target gene
[340]

Graphene
oxide nanosheet

HDAC1
K-Ras

In vitro
In vivo MIA PaCa-2 cells N/A 550–637 nm

+32 to +29 mV

Synergistic effect by combining two
siRNAs

Simultaneous phototherapy and gene
therapy

Apoptosis induction
Cell cycle arrest and inhibiting cancer

growth
Reducing tumor growth by more than

80%

[295]
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6. SiRNA and Pancreatic Cancer: Clinical Applications

With respect to the various challenges associated with PC treatment in clinical courses,
introducing novel therapeutics is of great importance. Based on the previous sections, siR-
NAs have shown high potential in PC treatment by targeting tumor-promoting molecular
pathways and sensitizing these malignant cells to death. A search on clinicaltrials.gov
demonstrates that clinical studies are currently ongoing about potential applications of
siRNAs in PC therapy. The mutation in KrasG12D is responsible for PC progression and
spread into various regions of the body. A phase I clinical trial by MD Anderson Cancer
Center is going on to evaluate role of exosomes derived from mesenchymal stem cells for
delivery of KrasG12D-siRNA in PC treatment. This clinical experiment aims at determining
the optimal dose and adverse effects of exosomes containing KrasdG12D-siRNA in PC
treatment (NCT03608631). When PC cells undergo metastasis and spread in body, it is im-
possible to treat PC with surgery or tumor resection. Therefore, use of novel strategies has
been recommended and siRNAs can also be among them. Immune evasion is a common
phenomenon in PC and there are several factors found in immune cells that can hamper
their capacity in PC cell eradication. A clinical experiment performed by Wake Forest Uni-
versity Health Sciences aims to develop siRNA-transfected peripheral blood mononuclear
cells APN401 in treatment of PC patients (NCT02166255). The major aim of these clinical
trials is to show safety profile and toleration of siRNA in PC patients (NCT01188785).
One of the limitations of these clinical trials is the limited number of participants. For
instance, there clinical trials have been performed for using siRNA and the numbers of
participants are 44 (NCT03819387), 29 (NCT01808638) and 24 (NCT00689065). Noteworthy,
a phase II clinical trial has been recruited and is going to evaluate siRNA-G12D LODER
in combination with gemcitabine and nab-paclitaxel in treatment of PC patients. This
clinical trial has 80 participants that is slightly better as compared to the previous ones
(NCT01676259). However, patient population is still limited and additional clinical studies
are needed with greater number of PC patients. Furthermore, there are no clinical trials
reported that have used siRNA-loaded nanoparticles for treatment of PC patients and these
can also be the focus of future studies.

7. Conclusions and Remarks

In the current review, different aspects of using siRNAs and their delivery systems
in PC therapy were discussed. Activation of tumor-promoting factors has been found
to responsible for increase in proliferation and metastasis of PC cells. To suppress PC
growth and viability, siRNAs have been developed for down-regulating the various tumor-
promoting factors including proNGF, RAP80, NUF2, SnoN, HIF-1α, COX-2 and Nek2.
Following down-regulation of aforementioned factors, a significant decrease occurs in
PC progression, thus showing potential benefits of application of siRNAs in PC therapy.
Noteworthy, a variety of factors are also involved in PC migration and invasion. Thus,
siRNAs have been designed for inhibiting tumor-promoting factors including TGF-β, c-Src,
and HIF-1α to disrupt PC progression and metastasis. The interesting point is that when
an increase in the proliferation and migration of PC occurs, they can also obtain resistance
to chemotherapy and radiotherapy, which can also be targeted using specific siRNAs.

Despite achieving promising results following siRNA application, it appears that more
advancement can be made in suppressing PC progression using optimal delivery systems
to prevent siRNA degradation, inhibit off-targeting and enhance targeted delivery. To
date, a wide variety of nanocarriers including carbon nanomaterials, micelles, liposomes,
polymeric nanoparticles, metal nanoparticles, dendrimers and silica nanoparticles have
been developed for enhancing delivery of siRNAs for PC therapy. Using these nanoar-
chitectures can significantly enhance efficacy of siRNA in gene silencing and promote
their intracellular accumulation. It is worth mentioning that viral vectors have also been
developed for siRNA delivery in PC therapy. Overall, the studies conducted so far have
revealed that siRNAs along with their associated delivery systems can serve as powerful
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tools in PC therapy. Hence, future studies can focus on developing novel carriers for
targeting the various tumor-promoting factors in PC therapy.
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Abbreviations

PC Pancreatic cancer
siRNA Small interfering RNA
BBB Blood-brain barrier
BTB Blood-tumor barrier
RNAi RNA interference
mRNA Messenger RNA
RISC RNA-induced silencing
Ago Argonaute
HSP27 Heat shock protein 27
PARP Poly (ADP-ribose) polymerase
ESM-1 Endothelial cell-specific molecule-1
proNGF Precursor of nerve growth factor
ATG5 Autophagy-related gene 5
RAP80 Receptor-associated protein 80
HIF-1α Hypoxia inducible factor-1α
NF-κB Nuclear factor-kappaB
COX-2 Cyclooxygenase-2
EGFR Epidermal growth factor receptor
VEGF Vascular endothelial growth factor
HDAC Histone deacetylase
HRE Hypoxia response element
HPA Heparinase
FGF2 Fibroblast growth factor 2
SDC1 Syndecan-1
EMT Epithelial-to-mesenchymal transition
NELFE Negative elongation factor E
NDRG2 N-Myc downstream-regulated gene 2
lncRNA long non-coding RNA
miRNA microRNA
MMP Matrix metalloproteinase
TGF-β Transforming growth factor-beta
RIG-I Retinoic acid-inducible gene I
CADM1 Cell adhesion molecule 1
RR Ribonucleotide reductase
DOX Doxorubicin
GEM Gemcitabine



Cells 2021, 10, 3348 23 of 37

hTERT Human telomerase reverse transcriptase
hnRNP Heterogenous nuclear ribonucleotide protein A2/B1
TS Thymidylate synthase
TRAIL TNF-related apoptosis-inducing ligand
Mcl-1 Myeloid cell leukemia 1
EPR Enhanced permeability and retention
Fab Fragment
PIC Polyion complex
TF Tissue factor
BCPVs Biodegradable charged polyester-based vectors
iRGD Internalizing RGD peptide
IV Intravenous
EPAS1 Endothelial PAS domain protein 1
PLGA Polyethylenimine-poly (lactic-coglycolide)
GPCR G protein-coupled receptor
ABC ATP-binding cassette
YAP Yes-associated protein
LODER Local drug EluteR
2D Two-dimensional
PEG Polyethylene glycol
PTX Paclitaxel
PTP Plectin-1 targeted peptide
SPIONs Superparamagnetic iron oxide nanoparticles
PLK1 Polo-like kinase 1
NGF Nerve growth factor
PI3K Phosphoinositide 3-kinase
Akt Protein kinase-B
MSNPs Mesoporous silica nanoparticles
PEI Polyethyleneimine
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