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Abstract: Neuronal apoptosis and survival are regulated at the transcriptional level. To identify
key genes and upstream regulators primarily responsible for these processes, we overlayed the
temporal transcriptome of cerebellar granule neurons following induction of apoptosis and their
rescue by three different neurotrophic factors. We identified a core set of 175 genes showing opposite
expression trends at the intersection of apoptosis and survival. Their functional annotations and
expression signatures significantly correlated to neurological, psychiatric and oncological disorders.
Transcription regulatory network analysis revealed the action of nine upstream transcription factors,
converging pro-apoptosis and pro-survival-inducing signals in a highly interconnected functionally
and temporally ordered manner. Five of these transcription factors are potential drug targets.
Transcriptome-based computational drug repurposing produced a list of drug candidates that may
revert the apoptotic core set signature. Besides elucidating early drivers of neuronal apoptosis and
survival, our systems biology-based perspective paves the way to innovative pharmacology focused
on upstream targets and regulatory networks.

Keywords: apoptosis; neurotrophic factors; survival; transcriptional analysis; drug targets; drug
repurposing; functional enrichment; regulatory network; disease

1. Introduction

Neuronal apoptosis and survival are regulated by cell fate decision processes that
ensure the correct development of the central nervous system and its homeostasis through-
out adulthood. The ability of neuronal cells to promote or evade apoptotic cell death
is regulated by different and interrelated transcriptional, post-transcriptional and post-
translational layers [1–3]. A shift in the fine balance between opposite pro-apoptotic and
pro-survival signals can have drastic consequences for the fate of a neuron and contribute
to acute and chronic neurological disorders [4–7]. Thus, characterizing the key molecular
events underlying neuronal apoptosis and survival may help to devise strategies aimed at
counteracting neurodegeneration.

In recent years, remarkable progress has been made to reveal the systems biology of
neuronal survival and death. The advent of high-throughput technologies and powerful
bioinformatic analysis is unveiling the signaling networks underlying neuronal apoptosis
and survival in numerous in vitro and in vivo paradigms [8–15]. Among these, cerebellar

Cells 2021, 10, 3238. https://doi.org/10.3390/cells10113238 https://www.mdpi.com/journal/cells

https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0001-9194-5509
https://orcid.org/0000-0003-0180-3481
https://orcid.org/0000-0003-1114-8265
https://orcid.org/0000-0002-6932-704X
https://orcid.org/0000-0001-7590-1792
https://doi.org/10.3390/cells10113238
https://doi.org/10.3390/cells10113238
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cells10113238
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells10113238?type=check_update&version=3


Cells 2021, 10, 3238 2 of 23

granule neurons (CGNs) represent a model of election for examining the signal transduc-
tion mechanisms underlying neuronal apoptosis. In vitro, CGNs undergo rapid apoptotic
cell death within 24 h after removal of serum and lowering of extracellular K+ concen-
tration from 25 to 5 mM [16,17]. Apoptosis of CGNs requires transcription and protein
synthesis, becoming irreversible after the first 6 h following its induction. Before this
commitment point, apoptosis of CGNs can be rescued by the activation of specific signal
transduction pathways or by the treatment with specific growth factors (GFs) [16–18]. We
have previously detailed the transcriptional changes associated with CGNs apoptosis and
its rescue by different GFs [19–24]. These studies, performed at the end of the commitment
phase, were the first to investigate the transcriptional program underlying neuronal apop-
tosis and, lately, proposed the existence of a common transcriptional program governing
neuronal survival. Indeed, although mediated by specific receptors and intracellular sec-
ond messengers, the survival effects of Pituitary adenylate cyclase-activating polypeptide
(Pacap) and insulin-like growth factor-1 (Igf1) were propagated by common transcrip-
tional cascades [21]. Although these findings represent the first glimpse of how a neuron
orchestrates its destruction/survival, the dynamic spectrum of physical and biological
elements (hardware) that execute these processes is mostly unknown. Most important, the
instruction set (software) that tells the hardware how to implement neuronal apoptosis or
survival is still unexplored.

In this work, we provide a systems biology-based perspective of the earliest molec-
ular events controlling neuronal fate decisions. Overlaying the temporal transcriptional
profiles of CGNs during the early commitment phase of apoptosis or their rescue by three
different GFs (Pacap, Igf1 and substance P, SP), we identified a core set of genes at the
intersection of apoptosis and survival. Their subsequent promoter motif analysis revealed
the upstream regulators, converging neuronal apoptosis and survival-inducing signals in a
highly interconnected and temporally ordered manner. Genes in the apoptosis/survival
core set are significantly correlated to neurological, psychiatric and oncological disorders,
and encode for therapeutical targets whose modulation might exert anti-apoptotic or
pro-survival effects.

2. Materials and Methods
2.1. Experimental Design

Animals were subjected to experimental protocols approved by the Local Animal
Welfare Committee and the Veterinary Department of the Italian Ministry of Health
(Aut. 527/2017-PR), and experiments were conducted according to the ethical and safety
rules and guidelines for the use of animals in biomedical research provided by the rele-
vant Italian laws and European Union’s directives (Italian Legislative Decree 26/2014 and
2010/63/EU). Primary cultures of CGNs were prepared from 8-day-old Wistar rats (Charles
River, Calco, Italy) and were cultured as previously described [25]. In brief, cerebella were
sliced, and tissue was dissociated through trypsinization in 0.025% trypsin solution (15 min
at 37 ◦C) and trituration in presence of DNase (0.01%) and trypsin inhibitor (0.05%).
Dissociated cells were collected through centrifugation and resuspended in basal Eagle’s
medium (BME) supplemented with 10% fetal calf serum, 25 mm KCl, 2 mm glutamine
and 100 µg/mL gentamycin. Cytosine arabinofuranoside (10 µM) was added after 18 h of
culture to inhibit the growth of non-neuronal cells. After 6 days in vitro, extracellular KCl
was shifted from 25 to 5 mm for neuronal apoptotic death induction. After two washes with
serum-free BME containing 5 mm KCl, neurons were incubated with the same medium to
induce apoptosis (K5), whereas control neurons were incubated with a serum-free medium
supplemented with 25 mm KCl (K25). To investigate the rescue effects of GFs, K5 neu-
rons were treated with a maximal effective dose of SP (200 nM), Pacap (100 nM) or Igf1
(3.26 pM). As previously demonstrated [18,20,21], CGNs undergo apoptotic cell death after
the removal of serum and lowering of extracellular potassium from 25 to 5 mM, and can be
rescued by treatment with SP, Pacap or Igf1 (Figure S1) [18,20,21]. All the substances were
obtained from Sigma-Aldrich (Milano, Italy), unless otherwise specified.
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2.2. RNA Isolation and Microarray Hybridization

Microarray experiments were performed in CGNs following incubation for differ-
ent times (0.5, 1 and 3 h) with 25 mM KCl (K25), or 5 mM KCl (K5) in the absence or
presence of a maximal effective dose of SP (200 nM), Pacap (100 nM) or Igf1 (3.26 pM).
Total RNA was extracted with Trizol (Life Technologies, Monza, Italy) from a total of
60 samples, including four biological replicates for each experimental condition (K25, K5,
K5 + SP, K5 + Pacap, K5 + Igf1) and time (0.5, 1 and 3 h). RNA quantity and quality were
assessed using a NanoDrop 1000 Spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA) and a 2100 Bioanalyzer microfluidic electrophoresis platform (Agilent Tech-
nologies, Palo Alto, CA, USA), respectively, according to the manufacturer’s instructions.
Complementary RNAs (cRNAs) labeled with Cy3-CTP were synthesized from 1 µg of
total RNA of each sample using the Low RNA Input Fluorescent Linear Amplification Kit
(Agilent Technologies, Palo Alto, CA, USA), following the manufacturer’s protocol.

Aliquots (750 ng) of Cy3-labeled cRNA targets were hybridized on arrays using the
SurePrint G3 Rat Gene Expression 8 × 60 K microarray kit (Agilent Technologies, Palo Alto,
CA, USA). Microarray hybridization and washing were performed using reagents and
instruments (hybridization chambers and rotating oven) as indicated by the manufacturer
(Agilent Technologies, Palo Alto, CA, USA). Arrays were then scanned at 3 µm resolution
using an Agilent G4900DA SureScan Microarray Scanner System (Agilent Technologies,
Palo Alto, CA, USA). Raw microarray data were acquired and analyzed using Agilent’s
Feature Extraction v.12.1 software to assess the array spot quality, as well as to check
signal and background intensity statistics in the default setting. Raw signal values were
thresholded to 1, log2 transformed, normalized to the 75th percentile and baselined to the
median of all samples using GeneSpringGX v.14.9 (Agilent Technologies, Palo Alto, CA,
USA). Microarray data were deposited in NCBI’s Gene Expression Omnibus (GEO) with
the accession number GSE179383.

2.3. Time-Point Differential Gene Expression Analysis

To identify genes with significant temporal expression changes and evaluate trend
differences in CGNs induced to apoptosis (K5 vs. K25) or rescued by GFs (SP, Pacap or
Igf1 treatment vs. K5), pre-processed normalized array data were analyzed by using the R
package maSigPro (microarray Significant Profiles) [26]. MasigPro is a statistical procedure
specifically designed for the analysis of transcriptomic time-course that provides informa-
tion on genes that change over time and with respect to the control. This method is based
on a two-step regression approach where experimental groups are defined by dummy vari-
ables: the first step uses a generic polynomial model to identify DEGs, whereas the second
applies stepwise regression to study differences between groups and reveals the patterns of
significant differential time profiles. Genes whose expression levels varied in a statistically
significant way along time were detected using the linear step-up Benjamini-Hochberg
false discovery rate (FDR) procedure, setting a corrected p-value ≤ 0.05. This analysis
was performed for each GF individually. Intersecting probes (genes) were then selected
through Venn diagrams and genes with opposite expression trends between apoptosis and
GF-mediated rescue were selected for each time point for subsequent analyses.

2.4. Protein–Protein Interaction (PPI) Network Functional Enrichment Analysis

In order to investigate the biological significance for gene expression dynamics of
GF-induced rescue from apoptosis over time, integrated networks of gene-encoded proteins
were analyzed by STRING (version 11.0, http://string-db.org, accessed on 7 April 2021) [27].
The list of genes with opposite expression trend between apoptosis and GF-mediated rescue
at each of the time points were used as input gene set, and protein–protein interactions
(PPIs) were analyzed for experimentally validated interactions with a reliability threshold
of a combined score of >0.4 as the setting for significant interaction pair. The interaction
network was visualized by Cytoscape (version 3.8.2, http://www.cytoscape.org, accessed
on 7 April 2021), and Cytoscape’s Network Analyzer plug-in was used to analyze the

http://string-db.org
http://www.cytoscape.org
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topological properties of nodes in the PPI network [28]. In particular, we generated
a general PPI network including the 175 core set genes and, to characterize their time-
dependent changes, the temporal PPI networks for core set genes differentially expressed at
each time point (0.5, 1 and 3 h) were constructed. PPI networks in Cytoscape are visualized
as graphs with “circles/nodes” indicating genes/proteins and “edges” depicting associated
interactions between them. The number of edges that are connected to a node is the degree.
Proteins with degree connectivity >50 were identified as hub proteins and represent the
most significant nodes in the PPI network. To facilitate the visual identification of network
hubs, node size and color were set based on their connectivity degree, where size and color
of each node (in PPI network) were proportional to its node degree: larger circles indicate a
higher degree, and as the circles become bigger and their color changes from light to dark,
the value of the connectivity degree of the gene node increases.

Subsequently, biologically relevant subsets of network-related genes were selected
from the entire set of genes by using the Molecular Complex Detection Algorithm (MCODE)
plugin in Cytoscape, which is an app for Cytoscape that is used to cluster a given network
to a densely connected area based on topology. The following cutoff parameters were used:
Degree cutoff = 2, node score cutoff = 0.2, Haircut = true, Fluff = false, k-core = 2 and max
depth = 100. Clustering modules having high node scores and connectivity degrees were
considered as biologically significant clusters and were analyzed for functional enrichment
with Gene Ontology (GO) terms and KEGG or Reactome pathways using the STRING
app on Cytoscape. All genes in the genome were used as enrichment background. The
significance of enriched pathways and P values was calculated based on the cumulative
hypergeometric t-test, and false discovery rate (FDR) was used for multiple correction
testing. Only terms with a corrected p-value < 0.05 were selected.

2.5. Upstream Transcriptional Regulator Analysis

To investigate common transcriptional regulators that can explain the observed gene
expression changes in the core set genes, the iRegulon plugin (version 1.3) in Cytoscape, was
used to predict potential upstream TFs regulating gene expression of core set genes [29]. The
goal of iRegulon is to reverse engineer the transcriptional regulatory network underlying
a co-expressed gene set using cis-regulatory sequence analysis. iRegulon implements a
genome-wide ranking-and-recovery approach to detect enriched transcription factor motifs
and their optimal sets of direct targets using the position weight matrix method. iRegulon
uses >9000 known position weight matrices from various sources and different species and
links them to candidate binding TFs using a “motif2TF” procedure. In particular, iRegulon
detects the TFs and their targets by scanning known TF-binding promoter motifs as well
as the predicted motifs discovered from the integrated databases TRANSFAC, JASPAR,
the Encyclopedia of DNA Elements (ENCODE) Project chromatin immunoprecipitation-
sequencing data (https://genome.ucsc.edu/ENCODE, accessed on 12 May 2021), Swis-
sRegulon (http://swissregulon.unibas.ch/sr/, accessed on 12 May 2021), and HOMER
(http://homer.ucsd.edu/homer/motif/motifDatabase.html, accessed on 12 May 2021).
Motif enrichment analysis used several position weight matrices to sort and score for each
motif. The preferred motif was used for predicting final TFs. The criteria set for TF binding
motifs enrichment analysis were as follows: identity between orthologous genes ≥ 0, FDR
on motif similarity ≤ 0.001, and TF motifs with a normalized enrichment score (NES) > 3.
Predicted upstream TFs were rated and grouped according to the NES, and TFs with the
highest NES were selected to construct TF-target networks. The ranking option for motif
collection was set to 10K (9713 PWMs), and a putative regulatory search space of 20 kb cen-
tered around the Transcription Start Site (TSS, 7 species) was selected for the analysis. We
executed iRegulon and looked for TFs for down- and upregulated core set genes, separately.
Finally, the obtained transcription regulation relationships were merged into the TF-core
set regulatory network, and the integrated network was visualized by Cytoscape software.
Network analysis on significant differentially expressed core set genes (at each time point)

https://genome.ucsc.edu/ENCODE
http://swissregulon.unibas.ch/sr/
http://homer.ucsd.edu/homer/motif/motifDatabase.html
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was performed on the Cytoscape platform, integrating multiple apps/plug-ins such as
Network Analyzer and STRING enrichment, using the default parameters described above.

2.6. Disease Biomarker Enrichment and Selection of Potential Drug Targets

To investigate the potential clinical implication of the core set genes, we firstly per-
formed a gene/biomarker-disease association analysis by using DAVID online tool
(version 6.8, https://david.ncifcrf.gov, accessed on 2 July 2021). The disease-associated
genes were obtained from multiple databases, including the Genetic Association Database
(GAD), Online Mendelian Inheritance in Man (OMIM), and Clinvar. DAVID calculates
the p-value by hypergeometric distribution to evaluate the statistical significance of the
enriched diseases (biomarkers) and uses FDR adjustment for multiple test correction.
Statistically significant overrepresented disease (biomarker) terms were selected with a
significance level p < 0.05.

Then, we searched for disease-specific gene expression signatures showing a pos-
itive correlation with our apoptotic-related gene set using the integrative NIH Library
of Integrated Network-Based Cellular Signatures (iLINCS, http://ilincs.org, accessed on
12 July 2021), an integrative web-based platform for analysis of omics data and signatures
of cellular perturbations [30]. This platform performs analysis of user-submitted omics
signatures of diseases and cellular perturbations in the context of a large compendium
of pre-computed signatures (>200,000), allowing data mining and re-analysis of a large
collection of omics datasets (>12,000), pre-computed signatures and their connections [30].
Using iLINCS, users can search for signatures specific to pharmacological action, mecha-
nism of action, or genetic or proteomic target. Users can also search available datasets for
specific signatures of interest. Connected signatures can be further analyzed in terms of
changes in gene/protein expression patterns that underlie the connectivity with the query
signature, or through the analysis of gene/protein targets of connected perturbagens. In
particular, the “Disease-Related Signatures” consisted of 9000 transcriptional signatures
constructed by comparing sample groups within the collection of curated public domain
transcriptional dataset (i.e., GEO42, EBI Expression Atlas). Each signature consists of
differential expressions and associated p-values for all genes calculated using the Empirical
Bayes linear model implemented in the limma package.

The iLINCS cloud was also used to identify repurposing drugs that could potentially
reverse apoptosis, based on the extracted gene expression signatures. iLINCS provides
over 40,000 transcriptomic profiles (signatures) of cell lines following treatment with
chemical perturbagens such as FDA-approved drugs, chemical probes and screening
library compounds including those with clinical utility and known mechanisms of action.
To identify small drug-like molecules with inverse signatures of our core gene signatures,
we probed iLINCS for small molecule perturbagens that result in L1000 transcriptomic
signatures being highly discordant (anti-correlated as denoted by negative concordance
values) with the expression of our apoptotic core gene set [30]. Only drug candidates
with a negative connectivity value ≤ −0.321 (from at least one data source) between the
reference gene sets and the small-molecule signature are displayed, excluding non-drug
small molecules. For cmap candidates, we only included those with a p-value < 0.05. Drugs
were statistically associated with the disease using the hypergeometric probability test
and the top 50 signatures were considered. Finally, the ClinVar, Orphanet, DrugBank
and Therapeutic Target Database (TTD) online tools were used to investigate if previously
identified TFs targeting core set genes encode for drug targets whose modulation might exert
anti-apoptotic or pro-survival effects. In particular, we focused on the encoded proteins
that are primary targets of drugs approved by the US Food and Drug Administration (FDA)
or in preclinical/clinical trials for the treatment of neurological disorders.

https://david.ncifcrf.gov
http://ilincs.org
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3. Results
3.1. Identification of a Converging Set of Apoptosis and Survival-Related Genes

We performed a time-series whole-genome microarray analysis to investigate dynamic
transcriptomic changes and capture temporal molecular events during the early commit-
ment phase (0.5 h, 1 h and 3 h) of CGN apoptosis and its rescue by a maximal effective dose
of Igf1(3.26 pM), Pacap (100 nM) and SP (200 nM) (Figure S1). Differentially expressed
genes (DEGs) were identified using the R package MasigPro according to details described
in Section 2. The numbers of temporal DEGs and related pairwise comparisons of different
experimental conditions (apoptosis vs. control, GF-rescued vs. apoptosis) are summarized
in Figure 1. The full gene lists with statistics and fold-change data at each time point are
available in Tables S1–S4. In particular, when temporal gene expression profiles of control
CGNs (cultured in 25 mM KCl) were compared with those induced to apoptosis (cultured
in 5 mM KCl), 2054 genes referred to as “apoptotic related genes” (ARGs) showed significant
temporal expression changes (Table S1). By comparing gene expression profiles in CGNs
after the induction of apoptosis with those rescued by Pacap, Igf1 and SP treatment, we
found 1185, 1261 and 820 deregulated genes (here referred to as “survival-related genes”,
SRGs), respectively (Tables S2–S4). A total of 262 genes were found at the intersection of
the four experimental conditions (ARGs and SRGs, Figure 1; Table S5). Of these, 175 genes,
here defined as the “core set”, showed opposite expression trends between apoptosis and
GF-mediated rescue in at least one-time point (Table S6). A comprehensive picture of
their expression pattern at different time points is shown in Figure 2. In particular, the
expression of 117 core set genes was significantly deregulated at 0.5 h, 78 genes at 1 h and
67 genes at 3 h (Figure 2).
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Figure 2. Heat maps showing the 175 core set genes, which were deregulated in CGNs during
apoptosis or rescue by GFs and showed opposite expression in at least one-time point. Among them,
117 genes showed an opposite expression pattern at 0.5 h, 78 genes at 1 h and 67 genes at 3 h. Fold
changes are shown by colors.
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3.2. Temporal PPI Network Analysis Identified Distinct Functional Clusters of Proteins Promoting
Neuronal Survival

To explore the relationships among the core set genes and provide a global view of
the network architecture that models the neuronal apoptotic/survival process, a PPI net-
work analysis was conducted by using the STRING online database. The global molecular
network constructed for the 175 core set genes had 187 nodes and 2668 interactions, at a com-
bined score > 0.4 (Figure 3). The top five proteins with relatively high connectivity degrees
within the network were: Cebpb (degree = 92), Vegfa (degree = 88), Ntsr1 (degree = 87),
Ctgf (degree = 82) and Thbs2 (degree = 80) (Figure 3).
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Figure 3. PPI network analysis. The PPI network for the 175 core set genes containing 187 nodes and 2668 interactions was
constructed using the STRING website and visualized by Cytoscape version: 3.8.2, by mapping the “degree parameter”
to node size. As the node size increased, the value of the connectivity degree of node genes increased. Proteins with a
degree connectivity of >50 represent the most significant nodes in the PPI network and are colored from orange to red based
on their node degree. Cebpb is the most interconnected node (hub) in the network and is colored in yellow. Differently
colored “edges” indicate the type of evidence supporting each interaction: dark purple, co-expression; light purple, physical
interaction; light blue, co-localization; light green, shared protein domain; orange, predicted; grey, other.
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To better characterize the time-dependent correlations between core set genes and as-
sess their dynamic functional changes at various stages of the neuronal apoptotic/survival
program, we constructed three interactome maps for up- or downregulated core set genes
at each time point (0.5, 1 and 3 h) (Figure 4). Network analysis revealed Vegfa as the most
highly interacting (hub) protein encoded by downregulated transcripts after 0.5 and 3 h
following GFs treatment, whereas Cebpb was the most interacting protein encoded by
up-regulated transcripts at 1 h (Figure 4). As expected, the number of nodes within each
temporal PPI network and their physical interactions decreases over time, suggesting that
the transcriptional activation of the majority of core set genes during the first hour after
the induction of apoptosis and its rescue by GFs is required for the execution of these
processes (Figure 4). Of note, in accordance with the assumption that many early response
genes are dynamically regulated during neuronal activity or following neuronal insults,
we found that the most interconnected core set genes activated during the early phases of
the apoptotic/survival process encode transcription factors that in turn may coordinately
regulate the transcriptional activation/repression of secondary response genes (Figure 4).
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Figure 4. Temporal specific core set genes-related PPI networks. The three time-point (0.5, 1 and 3 h) specific core set
genes-related PPI networks were constructed using the STRING website and visualized by Cytoscape version: 3.8.2, by
mapping the “degree parameter” to node size. As the node size increased, the value of the connectivity degree of node
genes increased. Light blue/red nodes indicate, respectively, down-/upregulated genes following treatment with all GFs
compared with apoptotic CGNs (K5). Differently colored “edges” indicate the type of evidence supporting each interaction:
dark purple, co-expression; light purple, physical interaction; light blue, co-localization; light green, shared protein domain;
orange, predicted; grey, other.

To further prioritize the leading candidate genes involved in CGNs apoptosis and
survival we performed a subnetwork analysis of the general PPI network to identify sig-
nificant modules/clusters. Cluster analysis of the PPI network resulted in 11 clusters that
included 72 nodes and 276 edges (Figure 5a). The top 3 clusters are shown in Figure 5b.
Cluster 1 exhibited the highest score and comprised 26 genes, among which are Cebpb,
Vegfa, Id2, Maf, Ntrk1, Ahr, Traf4, Twist2, Thbs2 and Ntsr1 (Figure 5b). Biological processes
enriched in Cluster 1 genes were associated with developmental processes, cell differenti-
ation and regulation of cell death (Figure 5b). Genes in cluster 2 included Nr4a1, Nr4a3,
Hdac5, Sphk1, Nrip1 and Rbp4, whereas genes in cluster 3 comprised Dusp9 and C1galt1.
The main terms enriched for genes in both these modules were response to stimulus and
metabolic process (Figure 5b). Given these clusters originated from the overlapping core
set genes following the action of three GFs, genes involved in these clusters/biological
processes may represent key mediators of a common neuronal survival program.
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Figure 5. PPI network cluster analysis. (a) Sub-network analysis in the PPI network using MCODE identified 11 significant
modules/clusters Cluster analysis in the PPI network resulted in 7 clusters, which include 72 nodes and 276 edges, and are
enriched for several biological process GO terms. (b) Cluster 1, Cluster 2 and Cluster 3 of the top three network clusters in
the sub-network analysis of PPI networks of core set genes. These clusters had the highest scores among the clusters. The
cluster networks were visualized by Cytoscape by mapping the “degree parameter” to node size.

3.3. Transcription Regulatory Network Analysis Identified a Restricted Number of Master
Regulators of Neuronal Apoptosis and Survival

To identify candidate upstream regulators potentially involved in the time-dependent
transcriptional regulation of neuronal apoptosis and survival, we performed an in silico
analysis to predict transcription factors (TFs) whose binding sites are enriched in the
promoter regions of core set genes using the iRegulon software. Our analysis yielded
118 significantly enriched motifs (66 for upregulated and 52 for downregulated genes)
that clustered into 14 groups by similarity, with more than 100 transcription factors pre-
dicted to potentially bind the motifs present in the core set genes (Tables S7 and S8). We
then filtered the list of enriched TFs, by including only those present in the core set gene.
This led to the identification of the following nine transcription factors: Homeobox D9
(Hoxd9), Musculoaponeurotic fibrosarcoma (Maf), Nuclear receptor 4A1 (Nr4a1), CCAAT
Enhancer Binding Protein Beta (Cebpb), Oligodendrocyte transcription factor2 (Olig2), One
Cut Homeobox 2 (Onecut2), SAM Pointed Domain Containing ETS Transcription Factor
(Spdef), Twist Family BHLH Transcription Factor 2 (Twist2) and Nuclear Transcription
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Factor Y Subunit Beta (Nfyb) (Figure 6). These nine transcription factors are predicted to
directly regulate 66% (115/175) of the core set genes, with the majority of these predicted
to be co-regulated by two or more of the transcription factors (Figure 6). In particular,
the transcription factor Hoxd9 potentially targets the vast majority of the core set genes
(degree = 142), as identified in the regulatory network analysis, and also represents the
TF with the highest NES score for up-regulated genes (NES score = 4.269) (Figure 6a–c).
On the other hand, the TF with the highest NES score for downregulated genes is Nr4a1
(NES score = 4.812) (Figure 6b). In addition, the “regulator-target genes analysis” identi-
fied Hoxd9, Maf, Nr4a1 and Cebpb as the most significantly overrepresented TFs in the
promoters of both upregulated and downregulated core set genes (Figure 6a,b). Olig2 and
Onecut2 were selectively enriched for upregulated core set genes, whereas Twist2, Nfyb
and Spdef were predicted to potentially bind the motifs present only in downregulated
core set genes (Figure 6a,b).
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Figure 6. The upstream regulatory network is predicted to regulate the expression of the survival-related gene signatures in
CGNs. (a) Result summary of the regulatory analysis with iRegulon on up-regulated core set genes. (b) Result summary of
the regulatory analysis with iRegulon on downregulated core set genes. In particular, the top transcription binding motifs
and their associated transcription factors (filtered for TF differentially expressed in our analysis) are shown. (c) The whole
overview of the regulatory network of 9 key TFs together with their core set candidate targets. The network was visualized
by Cytoscape. Targets are in white circle nodes with purple borders and TF in green hexagon nodes. Regulons for each TF
are represented by different edge colors.

By using different online tools (i.e., ClinVar, Orphanet, DrugBank, TTD) we inves-
tigated the possibility to obtain a direct and selective hampering or enhancement of the
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expression of apoptotic/survival-related genes by rational targeting their regulatory tran-
scription factors. Our analysis revealed that 5/9 TFs (Olig2, Twist2, Nr4a1, Cebpb, Onecut2)
targeting core set genes are potential drug targets. Since the majority of these increase at
0.5 and 1 h during GF rescue, their pharmacological modulation might exert early anti-
apoptotic or pro-survival effects.

Transcription regulatory network analysis of core set genes generated at each time
point emphasizes how temporally distinct functional subprograms are orchestrated by
interconnected TFs (Figure 7). This analysis predicted a high degree of cross-regulation
among the nine transcription factors themselves and showed a common early (0.5 and 1 h)
and transient peak of transcription for the majority of TFs, with the exception of Onecut2
that was activated 3 h after GF treatment (Figure 7). Consistent with their recognized role
of immediate early genes, the rapid induction/inhibition of these transcription factors
generate a coordinated transcriptional response in which core set genes and associated
gene ontology functional groups are dynamically activated throughout the entire time
course (Figure 7). For example, core set genes involved in apoptosis, cell differentiation
and development exhibited rapid but transient transcriptional activation, suggesting their
primary role in the immediate response to GF treatment, whereas the dynamic and constant
regulation of genes associated with cytoskeleton organization, response to DNA damage,
cell adhesion and metabolic processes supports their role as secondary effectors of the
transcriptional program governing neuronal fate decisions (Figure 7).
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3.4. Disease Enrichment Analysis Revealed a Strong Association of Core Set Genes with
Neurological and Psychiatric Disorders

To investigate the potential clinical relevance of core set genes implicated in apop-
tosis and survival of CGNs, we performed a Disease Enrichment analysis with DAVID
bioinformatics resources, including OMIM, KEGG DISEASE, and GAD catalogs. This
analysis (Table 1) revealed that 70% of the core set genes (121/175) are associated with
human diseases, including multiple disorders affecting the central nervous system.
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Table 1. Disease-based functional annotation enrichment results of core set genes. The table shows
disease enrichment results for all diseases significantly enriched with an adjusted p-value < 0.05.

Disease Class p Value Genes Number

Vision (Glaucoma, Macular retinal edema, . . . ) 4.9 × 10−3 15

Psychiatric disorders 1.4 × 10−2 29
Hematological disease 4.4 × 10−2 22
Cardiovascular disease 4.7 × 10−2 50

Immune disease 5.0 × 10−2 37

Of particular interest was the significant association of 29 core set genes with cog-
nitive/mental diseases (bipolar disorder, anxiety, depressive syndrome, schizophrenia,
attention deficit and disruptive behavior disorders) (Table 2).

Table 2. Disease genes from the “psychiatric disease” family and related disorders.

Gene Symbol Gene Name Disease

ATP4B ATPase H+/K+ transporting beta subunit Bipolar Disorder

FAT4 FAT atypical cadherin 4 Bipolar Disorder

FKBP5 FK506 binding protein 5 Depression, affective psychoses, post-traumatic
stress disorder, bipolar disorders

RASIP1 Ras interacting protein 1 Bipolar Disorder
ADRA1D Adrenoceptor alpha 1D Several psychiatric disorders

AHR Aryl hydrocarbon receptor Dementia

C1GALT1
Core 1 synthase,

glycoprotein-N-acetylgalactosamine
3-beta-galactosyltransferase 1

Bipolar Disorder

CBS Cystathionine-beta-synthase Dementia (AD), migraine disorders, schizophrenia
DAP Death-associated protein Schizophrenia

GABRA6 Gamma-aminobutyric acid type A receptor
alpha-6-subunit Schizophrenia, anxiety disorder

ID2 Inhibitor of DNA binding 2, HLH protein Attention-deficit hyperactivity disorder
INSIG2 Insulin-induced gene 2 Schizophrenia
MASP2 Mannan binding lectin serine peptidase 2 Dementia
NTSR1 Neurotensin receptor 1 Schizophrenia, several psychiatric disorders
NTRK1 Neurotrophic receptor tyrosine kinase 1 Several psychiatric disorders, autism, dementia
NR4A1 Nuclear receptor subfamily 4 group A member 1 Schizophrenia, bipolar disorder
NR4A3 Nuclear receptor subfamily 4 group A member 3 Schizophrenia, bipolar disorder
NUDT6 Nudix hydrolase 6 Schizophrenia, bipolar disorder

OLIG2 Oligodendrocyte lineage transcription factor 2 Schizophrenia, obsessive compulsive disorder,
Tourette syndrome, dementia

PDE9A Phosphodiesterase 9A Depression
PLCD4 Phospholipase C delta 4 Several psychiatric disorders
PAQR5 Progestin and adipoQ receptor family member 5 Mental Disorders
SSTR2 Somatostatin receptor 2 Several psychiatric disorders
SSTR3 Somatostatin receptor 3 Several psychiatric disorders
SPRY4 Sprouty RTK signaling antagonist 4 Schizophrenia
SYT6 Synaptotagmin 6 Mental Disorders

TRPV1 Transient receptor potential cation channel
subfamily V member 1 Autism

VEGFA Vascular endothelial growth factor A Major depressive disorder, autism, dementia
ZBED4 Zinc finger BED-type containing 4 Schizophrenia, bipolar disorder

To further define the potential clinical implication of the core set genes, we also com-
pared their gene expression changes with disease transcriptional signatures included in the
integrative Library of Integrated Network-Based Cellular Signatures (iLINCS) web plat-
form. A significant correlation was found with cancers and neuromuscular degenerative
diseases (Amyotrophic Lateral Sclerosis and Duchenne muscular dystrophy, Table 3).
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Table 3. The top 10 disease transcriptional signatures from iLINCS positively correlated with
apoptotic CGN-related temporal expression changes.

Disease State Concordance p Value No. of Genes

Lean 0.64 1.50 × 10−3 21

Adenocarcinoma 0.58 1.17 × 10−6 159

Hypernephroma 0.50 1.23 × 10−2 159

Carcinosarcoma 0.49 3.01 × 10−2 159

Renal_cell_carcinoma 0.49 4.11 × 10−2 159

Amyotrophic_lateral_sclerosis_ 0.48 4.95 × 10−5 65

No_atrial_fibrillation 0.47 5.53 × 10−5 65

Duchenne_muscular_dystrophy 0.46 5.58 × 10−5 87

Carcinoma 0.42 1.22 × 10−4 80

B-cell acute lymphoblastic
leukemia 0.42 3.19 × 10−2 26

3.5. Identification of Repurposing Drugs That Could Revert the Transcriptional Regulation of the
Core Set Genes during Neuronal Apoptosis

The integrative web platform iLINCS was also used to explore drugs that could
revert the transcriptional regulation of the core set genes during the induction of apopto-
sis and, thus, represent putatively therapeutically useful candidates. The top 50 chem-
ical compounds with high negative connectivity scores are listed in Table 4. Overall,
almost all the LINCS perturbagens are established neuroprotective entities and were al-
ready found to be effective against neuronal cell death. Of particular interest, 15 out of
50 compounds are antipsychotic or antidepressant drugs (Table 4), further supporting a
relationship between apoptosis and psychiatric disorders [31–38] and the potential use of
neuroprotective agents [39–45].

Table 4. List of the top 50 repurposable drug candidates with a potential to reverse apoptotic CGNs transcriptomic signature.

Rank Perturbation p-Value Correlation
Score Mechanism of Action Pharmacological Class

(Current Indication)

1 Tozasertib 2.08 × 10−5 −0.98 Aurora A/B/C kinases inhibitor Chemotherapeutic
2 Necrostatin 5.29 × 10−5 −0.97 RIP1 kinase inhibitor Inhibitor of necroptosis
3 Tianeptine 8.71 × 10−5 −0.97 Mu-type opioid receptor agonist Tricyclic antidepressant
4 L-Sulforaphane 1.00 × 10−4 −0.97 N/A Anticancer
5 Pentoxifylline 1.77 × 10−4 −0.96 Phosphodiesterase inhibitor Hemorheological agent
6 Purmorphamine 1.80 × 10−4 −0.96 Sonic Hedgehog agonist -

7 Nicergoline 1.91 × 10−4 −0.96 Alpha-1A adrenergic receptor
antagonist Vasodilator Agent

8 Pifithrin 2.95 × 10−30 −0.95 p53 inhibitor -
9 5-Nonyloxytryptamine 2.72 × 10−4 −0.95 Serotonin Receptor Agonist -

10 Nifedipine 2.79 × 10−4 −0.95 Specific blocker of L-type calcium
channels Antihypertensive, Antianginal

11 Tyrphostin 1.54 × 10−15 −0.92 EGFR inhibitor Antineoplastic
12 Parthenolide 4.11 × 10−15 −0.92 NFKB inhibitor -

13 Atorvastatin 1.03 × 10−6 −0.90 HMG-CoA inhibitor
Statin (used to lower lipid levels

and reduce the risk of
cardiovascular disease)

14 Tanespimycin 7.69 × 10−5 −0.86 HSP inhibitor Anticancer
15 Monorden/Radicicol 6.94 × 10−3 −0.85 HSP inhibitor -
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Table 4. Cont.

Rank Perturbation p-Value Correlation
Score Mechanism of Action Pharmacological Class

(Current Indication)

16 Azacyclonol 1.55 × 10−2 −0.81 N/A Antipsychotic

17 Rapamycin 1.66 × 10−6 −0.54 mTOR inhibitor Immunosuppressive

18 Amitriptyline 7.97 × 10−6 −0.50 Norepinephrine and serotonin
reuptake inhibitor Tricyclic antidepressant

19 Allopurinol 8.01 × 10−6 −0.50 Xanthine dehydrogenase/oxidase
inhibitor

Xanthine Oxidase Inhibitors; Antigout
Agents

20 Nortriptyline 8.62 × 10−6 −0.50 Multiple Tricyclic antidepressant

21 Bupropion 1.57 × 10−5 −0.49
Norepinephrine/dopamine-

reuptake
inhibitor

Antidepressant

22 Roflumilast 1.84 × 10−5 −0.48 Phosphodiesterase-4 inhibitor Tricyclic antidepressant

23 Tranilast 3.41 × 10−5 −0.47 Hematopoietic prostaglandin D
synthase inhibitor Antiallergic

24 Indomethacin 3.10 × 10−5 −0.47 COX inhibitor Non-steroidal anti-inflammatory drug
25 Nystatin 3.24 × 10−5 −0.47 Channel-forming ionophore Antifungal
26 Theophylline 3.80 × 10−5 −0.47 Adenosine receptor antagonist Bronchodilator
27 Citalopram 3.85 × 10−5 −0.47 Reuptake of serotonin inhibitor Antidepressant
28 Piracetam 4.11 × 10−5 −0.47 Acetylcholine receptor agonist Antipsychotic

29 Tacrolimus 5.22 × 10−5 −0.46 Peptidyl-prolyl cis-trans isomerase
FKBP1A, inhibitor Immunosuppressive

30 Diazepam 8.10 × 10−5 −0.45 GABA(A) Receptor positive
allosteric modulator Anxiolytic, sedative

31 Iproniazid 7.33 × 10−5 −0.45 MAO inhibitor Antidepressant
32 Promazine hydrochloride 5.32 × 10−4 −0.45 Dopamine receptor antagonist Antipsychotic
33 Cyproheptadine 1.62 × 10−2 −0.45 Histamine receptor antagonist Antiallergic
34 Dipyrone 1.07 × 10−4 −0.44 N/A Non-steroidal anti-inflammatory drug

35 Ethosuximide 1.0 × 10−4 −0.44 T-type voltage sensitive calcium
channels inhibitor Anticonvulsants

36 Phenotiazine 1.09 × 10−4 −0.44 N/A Antipsychotic
37 Sulfanilamide 1.12 × 10−4 −0.44 Dihydropteroate synthase inhibitor Antibiotic
38 Clozapine 1.35 × 10−4 −0.44 Dopamine/Serotonin antagonist Antipsychotic
39 Lamotrigine 1.68 × 10−4 −0.43 Multiple Antiepileptic

40 Doxepin 1.94 × 10−4 −0.43 Selective histamine H1 receptor
blocker Tricyclic antidepressant

41 Moclobemide 2.22 × 10−4 −0.43 MAO inhibitor Antidepressant

42 Rifabutin 2.34 × 10−4 −0.43 DNA-dependent RNA polymerase
inhibitor Antibiotic

43 Rolipram 2.15 × 10−4 −0.43 N/A Antidepressant
44 Enaplapril 2.75 × 10−4 −0.42 ACE inhibitor Antihypertensive
45 Geldanamycin 1.62 × 10−6 −0.42 N/A Anticancer

46 Sibutramine 3.77 × 10−4 −0.41 Dopamine, norepinephrine,
serotonin transporter inhibitor Antiobesity

47 Phenelzine 9.79 × 10−4 −0.38 MAO inhibitor Antidepressant
48 Thioridazine 4.51 × 10−5 −0.36 Dopamine receptor antagonist Antipsychotic
49 Artemisinin 1.09 × 10−5 −0.36 N/A Antimalarials
50 Withaferin A 9.48 × 10−5 −0.35 N/A Anticancer

4. Discussion

The ability of a neuron to undergo or evade apoptosis depends on the activity of
an integrated network of genes and their encoded proteins. Here, for the first time, we
overlayed transcriptome changes occurring in CGNs during the early stages (0.5, 1 and 3 h)
of the pre-commitment phase of apoptosis and their rescue by three neurotrophic factors
(Igf1, Pacap and SP) acting on different receptors/intracellular second messengers. Our
analysis identified a core set of 175 genes deregulated with opposing trends during neuronal
apoptosis and GF-mediated rescue (Figure 2), As expected, we identified both rapid and
delayed transcriptional changes in response to GF rescue. In particular, 117 genes showed
significant changes within 30 min of GF stimulation, as expected for immediate early genes,
whereas 145 genes showed transcriptional changes after 1–3 h (Figure 2). The immediate
early genes included a variety of elements involved in apoptosis, developmental process,
transcriptional regulation and response to growth factor stimulus, supporting their poten-
tial role as transcriptional effectors in the induction of secondary response genes (Figure 4).
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On the other hand, delayed early response genes were enriched in functions related to
many cellular processes, including cytoskeleton organization, response to DNA damage,
cell adhesion and metabolic processes, suggesting their regulation may function as effectors
of the transcriptional program governing neuronal fate decision (Figure 4). Interestingly,
among these latter is Ahsa2, a gene encoding a co-chaperone that stimulates HSP90, an
inducible molecular chaperone protecting neurons in neurodegenerative diseases, such as
Alzheimer’s disease [46–48]. We found Ahsa2 dynamically activated by GFs at 1 and 3 h
following apoptotic induction. This supports the role of molecular chaperones as regulators
in neuronal fate decision and indicators of cellular response to excessive protein damage
(Figures 2–4, Supplementary Table S6) [49–53].

According to the important role played by early response genes in response to neuronal
activity and neuronal insults, functional analysis of the PPI network and its corresponding
module screening, identified an important cluster of immediate early genes (i.e., Ahr,
Ntrk1, Id2, Cebpb, Twist2, Runx1t1, Maf, Runx2) significantly associated with transcriptional
regulation, cell differentiation and regulation of cell death (Figures 3–5). Among these
genes, Cebpb had the highest connectivity degree (degree = 92) in the general PPI network,
and it was activated by all GFs tested at 1h following apoptotic induction (Figure 3). Cebpb
encodes an important transcription factor regulating the expression of genes involved
in immune and inflammatory responses as well as in synaptic plasticity, neurogenesis,
neuronal proliferation and differentiation [54–58]. Previous studies demonstrated that
upregulation of C/EBP β expression in rat primary cortical and cerebellar neuronal cultures
plays neuroprotective and antiapoptotic effects, whereas reduced neuronal levels of this
factor is associated with Parkinson’s disease and other synucleinopathies, suggesting it
as a potential pharmacological target [59–63]. Another important gene belonging to this
functional network module is Ntrk1 (also known as TrkA), a gene activated by all three
GFs in the first 0.5 h following apoptotic induction and encoding the high-affinity Nerve
Growth Factor receptor exerting clinically relevant biological effects on neuronal cells, and
promoting neuronal survival, proliferation and differentiation [64–66] (Figures 4 and 5). On
the other hand, decreased expression of the immediate early response gene Id2, encoding a
transcriptional modulator critical for cell growth/differentiation and neural development,
corroborates previous findings demonstrating that its suppression protects CGNs from
apoptosis, whereas its overexpression induces neuronal death [67,68] (Figures 4 and 5).

The dynamic of early state transcriptional changes underlying neuronal death/survival
offered us the possibility to analyze for the first time the regulatory mechanisms underlying
these processes. Our analysis revealed that temporally distinct modules of core set genes are
regulated by the coordinated action of nine transcription factors (Hoxd9, Maf, Nr4a1, Cebpb,
Olig2, Onecut2, Spdef, Twist2, Nfyb) (Figures 6 and 7). The resulting TF-target gene regula-
tory network driving the neuronal shift between apoptosis and survival-inducing signals
is highly interconnected. The temporal organization of this program reflects the intercon-
nections of this network, and the activities of interconnected TFs are highly synchronous
(Figures 6c and 7). In particular, the extended analysis of regulatory networks suggests
Hoxd9 as a master regulator of neuronal apoptosis and survival, as this TF is involved in
the transcriptional regulation of both the vast majority of core set genes and other upstream
regulators and is highly integrated with its targets through a plethora of interacting loops
(Figures 6 and 7). Hoxd9 belongs to a highly conserved family of homeobox-containing
transcription factors that plays an important role during development of the central ner-
vous system by regulating numerous processes, including cell proliferation, apoptosis,
differentiation and angiogenesis [69,70] (Figure 7). We observed downregulation of Hoxd9
during apoptosis, whereas treatment with all three GFs increased its expression since the
early stages (0.5 and 1 h) (Figure 2). Our results are in accordance with previous studies
demonstrating that Hoxd9 regulates the expression of several genes involved in apoptosis,
whereas its loss of function causes defects in axonal targeting and reduction in neural cell
numbers [71]. Among the enriched TFs in upregulated core set genes, we identified Olig2,
whose expression levels remain constantly increased throughout the entire time course,
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pointing to the essential role of this TF during different stages of GF rescue from neuronal
apoptosis (Figures 6a and 7). Olig2 has a critical function in regulating the appearance
and development of different types of neurons in the developing central nervous system,
directing neuronal fate choices and promoting cell proliferation through multiple cellular
pathways [72–74]. Of note are previous studies showing activation of Olig2 in response to
different GFs (including FGF, GDNF and PDGF) elicits neuroprotective and pro-survival
effects in different neuronal types [75–78]. Reduced expression of Olig2 in neuronal cells
switches cell fate from differentiation to death, contributing to acute/chronic diseases,
including psychiatric disorders, Alzheimer’s disease and Amyotrophic Lateral Sclerosis
(ALS), and thus proposing this factor as a potential therapeutic target for treatment of
these conditions [79–84]. On the contrary, downregulated core set genes are commonly
regulated by Nr4a1, a key component of the Nr4a orphan nuclear receptor family of tran-
scription factors that are rapidly and strongly upregulated in response to a diverse range
of signals, including growth factors, cytokines, membrane depolarization, excitotoxic and
stressful insults to the central nervous system (Figures 6b and 7). Among the 43 candidate
core set genes that are targets of Nr4a1, there are a number of genes already involved in
the regulation of apoptosis and RNA metabolic process, including other enriched TFs
(Maf, Nfyb and Spdef) known to promote neuronal apoptosis and whose expression levels
were reduced in response to GF-induced rescue effects [85–87] (Figure 6b). Nr4a sub-
family members are categorized as early response genes with pleiotropic physiological
roles, including maintaining neuronal integrity, regulating the density and distribution
of spines and synapses, suppressing apoptosis and inducing pro-survival genes [88–91].
Interestingly, a marked decrease in Nr4a1 was associated with a variety of neurological
conditions, including Alzheimer’s and Parkinson’s diseases, schizophrenia and bipolar
disorders, and various activators and modulators of this TF have been investigated as
probable therapeutic drugs in neuroinflammatory and neuronal cell death models [92–101].

Our promoter motif analysis provides a detailed portrait of the dynamic regulatory
cascade underlying trophic factor-induced neuronal survival and highlights how dysfunc-
tions in this very intricate regulatory program may play a key role in the development of
different neurological and neuropsychiatric disorders, sustaining the existence of a uni-
versal transcriptional software regulating apoptosis and survival in different neurons, cell
types and species. This aspect is further confirmed by our disease and drug repositioning
analysis that demonstrated the clinical implication of the core set genes in cancer as well as
in multiple disorders affecting the central nervous system, including ALS, Duchenne mus-
cular dystrophy, schizophrenia and other neuropsychiatric conditions, supporting their role
as potential targets of new or already existent drugs for the treatment of these severe condi-
tions (Tables 1–4). Indeed, among the top list of drugs that could reverse the transcriptional
regulation of the core set genes during the induction of apoptosis, are several compounds
that protect neurons from apoptosis by exerting antioxidative, anti-inflammatory or neuro-
protective effects. The list also included antidepressant and antipsychotic medications, as
well as a variety of other compound classes or specific drugs (i.e., tozasertib, pentoxifylline)
used in different clinical settings that may be further investigated in the context of neuronal
apoptosis and related brain disorders [39–45] (Table 4).

5. Conclusions

Our analysis offers for the first time a systems biology-based perspective of the com-
plex and coordinated temporal transcriptional programs underlying apoptosis and its
rescue by neurotrophic factors, further sustaining that, although acting through different
upstream signaling pathways, the GF-mediated survival effects were propagated by com-
mon transcriptional regulatory cascades. Besides elucidating the common mechanism and
key genes by which neurotrophic factors elicit neuronal survival, we identify potential
transcription factors that act as master regulatory switches to control neuronal apopto-
sis and survival in a temporally ordered manner. Finally, the functional exploitation of
survival-related mediators allowed us to unravel their potential contribution in the patho-
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genesis of neurological and neuropsychiatric diseases, suggesting their role as targets for
the development of therapies for these severe brain disorders. Future studies are needed to
confirm these findings and to explore the role of other regulatory mechanisms, including
microRNA-mediated transcriptional and post-transcriptional regulation [102–108].

Overall, the results presented here provide the foundation for further work to fully
examine the universality of the transcriptional program governing neuronal life or death
and what are the effects of its perturbation in human pathology. Similar to computers,
where faults often arise from malfunctioning software, neuronal fate may critically depend
on its transcription software. Thus, cracking the code of neuronal life or death may help in
finding a patch for neurodegeneration through an innovative pharmacology focused on
upstream targets and regulatory networks.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/
cells10113238/s1: Figure S1: Induction of apoptosis in CGNs and rescue by GFs treatment; (a) After 6 days
in vitro, extracellular KCl was shifted from 25 to 5mm for inducing apoptotic death in CGNs, whereas control
neurons were incubated with a serum-free medium supplemented with 25mm KCl (K25). To investigate
the rescue effects of GFs, K5 neurons were treated with a maximal effective dose of SP, Pacap or
Igf1. 48 h after apoptosis induction or rescue by GFs, neuronal viability was assessed and values
shown represent the mean ±S.E.M. of four to eight determinations in two different experiments;
(b) Representative fluorescence microscopy images of Hoechst 33342 staining of CGCs in control
conditions (K25), 72 h after induction of apoptosis (K5) or its rescue by SP treatment. Apoptotic
CGNs show chromatin condensation; Table S1: Lists of genes with significant temporal expression
changes in apoptotic CGNs (K5 vs. K25); Table S2. Lists of genes with significant temporal expression
changes in CGNs during rescue by Pacap (K5 + Pacap vs. K5); Table S3: Lists of genes with
significant temporal expression changes in CGNs during rescue by Igf1 (K5 + Igf1 vs. K5); Table
S4: Lists of genes with significant temporal expression changes in CGNs during rescue by SP (K5
+ SP vs. K5); Table S5: Lists of genes with significant temporal expression changes in CGNs at the
intersection of the four experimental conditions (K5 vs. K25, K5 + SP vs. K5, K5 + Pacap vs. K5,
K5 + Igf1 vs. K5); Table S6: Lists of core set genes at the intersection of apoptosis (K5 vs. K25) and
GF-mediated neuronal rescue (K5 + SP vs. K5, K5 + Pacap vs. K5, K5 + Igf1 vs. K5); Table S7:
The results of upstream regulator analysis from up-regulated core set genes based on iRegulon;
Table S8: The results of upstream regulator analysis from downregulated core set genes based
on iRegulon.
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36. Karlović, D. Apoptosis—The potential pathophysiological mechanism in mood disorders modifiable by lithium salts. Biochem.
Med. 2008, 18, 291–310. [CrossRef]

37. Semon, B.A. Dietary cyclic dipeptides, apoptosis and psychiatric disorders: A hypothesis. Med. Hypotheses 2014, 82, 740–743. [CrossRef]
38. Beyazyüz, M.; Küfeciler, T.; Bulut, L.; Ünsal, C.; Albayrak, Y.; Akyol, E.S.; Baykal, S.; Kuloglu, M.; Hashimoto, K. Increased

serum levels of apoptosis in deficit syndrome schizophrenia patients: A preliminary study. Neuropsychiatr. Dis. Treat. 2016,
12, 1261–1268. [CrossRef]

39. Yin, C.; Huang, G.F.; Sun, X.C.; Guo, Z.; Zhang, J.H. Tozasertib attenuates neuronal apoptosis via DLK/JIP3/MA2K7/JNK
pathway in early brain injury after SAH in rats. Neuropharmacology 2016, 108, 316–323. [CrossRef]

40. Wu, J.R.; Wang, J.; Zhou, S.K.; Yang, L.; Yin, J.L.; Cao, J.P.; Cheng, Y.B. Necrostatin-1 protection of dopaminergic neurons. Neural
Regen. Res. 2015, 10, 1120–1124. [CrossRef]

41. Wu, X.; Zhao, J.; Yu, S.; Chen, Y.; Wu, J.; Zhao, Y. Sulforaphane protects primary cultures of cortical neurons against injury
induced by oxygen-glucose deprivation/reoxygenation via antiapoptosis. Neurosci. Bull. 2012, 28, 509–516. [CrossRef]

42. Kolla, N.; Wei, Z.; Richardson, J.S.; Li, X.M. Amitriptyline and fluoxetine protect PC12 cells from cell death induced by hydrogen
peroxide. J. Psychiatry Neurosci. 2005, 30, 196–201.

43. Jantas, D.; Krawczyk, S.; Lason, W. The predominant protective effect of tianeptine over other antidepressants in models
of neuronal apoptosis: The effect blocked by inhibitors of MAPK/ERK1/2 and PI3-K/Akt pathways. Neurotox. Res. 2014,
25, 208–225. [CrossRef]

44. Lin, K.C.; Wang, C.C.; Wang, S.J. Bupropion attenuates kainic acid-induced seizures and neuronal cell death in rat hippocampus.
Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2013, 45, 207–214. [CrossRef] [PubMed]

45. Pan, X.D.; Chen, X.L.; Ding, S.F.; Kou, D.; Hu, H.L.; Li, L. Promethazine inhibits neuronal apoptosis via PI3K/Akt signaling
pathway in rats with cerebral infarction. Eur. Rev. Med. Pharmacol. Sci. 2021, 23, 126–134. [CrossRef]

46. Lackie, R.E.; Maciejewski, A.; Ostapchenko, V.G.; Marques-Lopes, J.; Choy, W.-Y.; Duennwald, M.L.; Prado, V.F.; Prado, M.A.M.
The Hsp70/Hsp90 Chaperone Machinery in Neurodegenerative Diseases. Front. Neurosci. 2017, 11, 254. [CrossRef]

47. Gupta, A.; Bansal, A.; Hashimoto-Torii, K. HSP70 and HSP90 in neurodegenerative diseases. Neurosci. Lett. 2020, 716, 134678.
[CrossRef] [PubMed]

48. Bohush, A.; Bieganowski, P.; Filipek, A. Hsp90 and Its Co-Chaperones in Neurodegenerative Diseases. Int. J. Mol. Sci. 2019,
20, 4976. [CrossRef] [PubMed]

49. Lyon, M.S.; Milligan, C. Extracellular heat shock proteins in neurodegenerative diseases: New perspectives. Neurosci. Lett. 2019,
711, 134462. [CrossRef] [PubMed]

50. Miller, D.J.; Fort, P.E. Heat Shock Proteins Regulatory Role in Neurodevelopment. Front. Neurosci. 2018, 12, 821. [CrossRef]
51. Kennedy, D.; Jäger, R.; Mosser, D.D.; Samali, A. Regulation of apoptosis by heat shock proteins. IUBMB Life 2014, 66, 327–338. [CrossRef]
52. Beere, H.M. Death versus survival: Functional interaction between the apoptotic and stress-inducible heat shock protein pathways.

J. Clin. Investig. 2005, 115, 2633. [CrossRef] [PubMed]

http://doi.org/10.1093/bioinformatics/btl056
http://doi.org/10.1093/nar/gki005
http://www.ncbi.nlm.nih.gov/pubmed/15608232
http://doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658
http://doi.org/10.1371/journal.pcbi.1003731
http://www.ncbi.nlm.nih.gov/pubmed/25058159
http://doi.org/10.1093/nar/gkz1023
http://www.ncbi.nlm.nih.gov/pubmed/31701147
http://doi.org/10.1016/j.pnpbp.2005.03.010
http://www.ncbi.nlm.nih.gov/pubmed/15908096
http://doi.org/10.1176/appi.ajp.161.1.109
http://www.ncbi.nlm.nih.gov/pubmed/14702258
https://journals.lww.com/co-psychiatry/Citation/2004/05000/The_role_of_apoptosis_in_neuronal_pathology_in.6.aspx
http://doi.org/10.1016/j.rpsm.2011.11.005
http://www.ncbi.nlm.nih.gov/pubmed/22854584
http://doi.org/10.1038/tp.2017.83
http://www.ncbi.nlm.nih.gov/pubmed/28463235
http://doi.org/10.11613/BM.2008.026
http://doi.org/10.1016/j.mehy.2014.03.016
http://doi.org/10.2147/NDT.S106993
http://doi.org/10.1016/j.neuropharm.2016.04.013
http://doi.org/10.4103/1673-5374.160108
http://doi.org/10.1007/s12264-012-1273-z
http://doi.org/10.1007/s12640-013-9430-3
http://doi.org/10.1016/j.pnpbp.2013.05.016
http://www.ncbi.nlm.nih.gov/pubmed/23770308
http://doi.org/10.26355/eurrev_201908_18639
http://doi.org/10.3389/fnins.2017.00254
http://doi.org/10.1016/j.neulet.2019.134678
http://www.ncbi.nlm.nih.gov/pubmed/31816334
http://doi.org/10.3390/ijms20204976
http://www.ncbi.nlm.nih.gov/pubmed/31600883
http://doi.org/10.1016/j.neulet.2019.134462
http://www.ncbi.nlm.nih.gov/pubmed/31476356
http://doi.org/10.3389/fnins.2018.00821
http://doi.org/10.1002/iub.1274
http://doi.org/10.1172/JCI26471
http://www.ncbi.nlm.nih.gov/pubmed/16200196


Cells 2021, 10, 3238 21 of 23

53. Scott, H.; Howarth, J.; Lee, Y.B.; Wong, L.F.; Bantounas, I.; Phylactou, L.; Verkade, P.; Uney, J.B. MiR-3120 Is a Mirror MicroRNA
That Targets Heat Shock Cognate Protein 70 and Auxilin Messenger RNAs and Regulates Clathrin Vesicle Uncoating. J. Biol.
Chem. 2012, 287, 14726–14733. [CrossRef]

54. Pulido-Salgado, M.; Vidal-Taboada, J.M.; Saura, J. C/EBPβ and C/EBPδ transcription factors: Basic biology and roles in the CNS.
Prog. Neurobiol. 2015, 132, 1–33. [CrossRef]

55. Moore, F.; Santin, I.; Nogueira, T.C.; Gurzov, E.N.; Marselli, L.; Marchetti, P.; Eizirik, D.L. The transcription factor C/EBP delta
has anti-apoptotic and anti-inflammatory roles in pancreatic beta cells. PLoS ONE 2012, 7, e31062. [CrossRef] [PubMed]

56. Meir, O.; Dvash, E.; Werman, A.; Rubinstein, M. C/EBP-β regulates endoplasmic reticulum stress-triggered cell death in mouse
and human models. PLoS ONE 2010, 5, e9516. [CrossRef]

57. Cortes-Canteli, M.; Aguilar-Morante, D.; Sanz-SanCristobal, M.; Megias, D.; Santos, A.; Perez-Castillo, A. Role of C/EBPβ
transcription factor in adult hippocampal neurogenesis. PLoS ONE 2011, 6, e24842. [CrossRef] [PubMed]

58. Kfoury, N.; Kapatos, G. Identification of neuronal target genes for CCAAT/Enhancer Binding Proteins. Mol. Cell. Neurosci. 2009,
40, 313–327. [CrossRef] [PubMed]

59. Valente, T.; Dentesano, G.; Ezquerra, M.; Fernandez-Santiago, R.; Martinez-Martin, J.; Gallastegui, E.; Domuro, C.; Compta, Y.;
Martí, M.J.; Bachs, O.; et al. CCAAT/enhancer binding protein δ is a transcriptional repressor of α-synuclein. Cell Death Differ.
2020, 27, 509–524. [CrossRef]

60. Peña-Altamira, E.; Polazzi, E.; Moretto, E.; Lauriola, M.; Monti, B. The transcription factor CCAAT enhancer-binding protein β

protects rat cerebellar granule neurons from apoptosis through its transcription-activating isoforms. Eur. J. Neurosci. 2014, 39,
176–185. [CrossRef]

61. Calella, A.M.; Nerlov, C.; Lopez, R.G.; Sciarretta, C.; Von Bohlen Und Halbach, O.; Bereshchenko, O.; Minichiello, L. Neu-
rotrophin/Trk receptor signaling mediates C/EBPα, -β and NeuroD recruitment to immediate-early gene promoters in neuronal
cells and requires C/EBPs to induce immediate-early gene transcription. Neural Dev. 2007, 2, 1–22. [CrossRef]

62. Pan, H.C.; Yang, C.N.; Hung, Y.W.; Lee, W.J.; Tien, H.R.; Shen, C.C.; Sheehan, J.; Chou, C.T.; Sheu, M.L. Reciprocal modulation of
C/EBP-α and C/EBP-β by IL-13 in activated microglia prevents neuronal death. Eur. J. Immunol. 2013, 43, 2854–2865. [CrossRef]

63. Wang, Z.H.; Xiang, J.; Liu, X.; Yu, S.P.; Manfredsson, F.P.; Sandoval, I.M.; Wu, S.; Wang, J.Z.; Ye, K. Deficiency in
BDNF/TrkB Neurotrophic Activity Stimulates δ-Secretase by Upregulating C/EBPβ in Alzheimer’s Disease. Cell Rep.
2019, 28, 655–669.e5. [CrossRef]

64. Turovskaya, M.V.; Gaidin, S.G.; Vedunova, M.V.; Babaev, A.A.; Turovsky, E.A. BDNF Overexpression Enhances the Preconditioning
Effect of Brief Episodes of Hypoxia, Promoting Survival of GABAergic Neurons. Neurosci. Bull. 2020, 36, 733–760. [CrossRef]

65. Minichiello, L.; Klein, R. TrkB and TrkC neurotrophin receptors cooperate in promoting survival of hippocampal and cerebellar
granule neurons. Genes Dev. 1996, 10, 2849–2858. [CrossRef]

66. Wang, L.; He, F.; Zhong, Z.; Lv, R.; Xiao, S.; Liu, Z. Overexpression of NTRK1 Promotes Differentiation of Neural Stem Cells into
Cholinergic Neurons. BioMed Res. Int. 2015, 2015, 857202. [CrossRef]

67. Chen, S.D.; Yang, J.L.; Lin, Y.C.; Chao, A.C.; Yang, D.I. Emerging Roles of Inhibitor of Differentiation-1 in Alzheimer’s Disease:
Cell Cycle Reentry and Beyond. Cells 2020, 9, 1746. [CrossRef]

68. Gleichmann, M.; Buchheim, G.; El-Bizri, H.; Yokota, Y.; Klockgether, T.; Kügler, S.; Bähr, M.; Weller, M.; Schulz, J.B. Identification
of inhibitor-of-differentiation 2 (Id2) as a modulator of neuronal apoptosis. J. Neurochem. 2002, 80, 755–762. [CrossRef]

69. Briscoe, J.; Wilkinson, D.G. Establishing neuronal circuitry: Hox genes make the connection. Genes Dev. 2004, 18,
1643–1648. [CrossRef] [PubMed]

70. Bhatlekar, S.; Fields, J.Z.; Boman, B.M. Role of HOX genes in stem cell differentiation and cancer. Stem Cells Int. 2018,
2018, 3569493. [CrossRef]

71. Kuert, P.A.; Hartenstein, V.; Bello, B.C.; Lovick, J.K.; Reichert, H. Neuroblast lineage identification and lineage-specific Hox gene
action during postembryonic development of the subesophageal ganglion in the Drosophila central brain. Dev. Biol. 2014, 390,
102–115. [CrossRef]

72. Seto, Y.; Ishiwata, S.; Hoshino, M. Characterization of Olig2 expression during cerebellar development. Gene Expr. Patterns 2014,
15, 1–7. [CrossRef]

73. Liu, H.; Weng, W.; Guo, R.; Zhou, J.; Xue, J.; Zhong, S.; Cheng, J.; Zhu, M.X.; Pan, S.J.; Li, Y. Olig2 SUMOylation protects against
genotoxic damage response by antagonizing p53 gene targeting. Cell Death Differ. 2020, 27, 3146–3161. [CrossRef]

74. Gaber, Z.B.; Novitch, B.G. Previews All the Embryo’s a Stage, and Olig2 in Its Time Plays Many Parts. Neuron 2011,
69, 833–835. [CrossRef]

75. Furusho, M.; Kaga, Y.; Ishii, A.; Hébert, J.M.; Bansal, R. Fibroblast growth factor signaling is required for the generation of
oligodendrocyte progenitors from the embryonic forebrain. J. Neurosci. 2011, 31, 5055–5066. [CrossRef]

76. Allahdadi, K.J.; De Santana, T.A.; Santos, G.C.; Azevedo, C.M.H.; Mota, R.A.; Nonaka, C.K.; Silva, D.N.; Valim, C.X.R.;
Figueira, C.P.; Dos Santos, W.L.C.; et al. IGF-1 overexpression improves mesenchymal stem cell survival and promotes neurologi-
cal recovery after spinal cord injury. Stem Cell Res. Ther. 2019, 10, 146. [CrossRef]

77. Cui, Q.L.; Fragoso, G.; Miron, V.E.; Darlington, P.J.; Mushynski, W.E.; Antel, J.; Almazan, G. Response of human oligodendrocyte
progenitors to growth factors and axon signals. J. Neuropathol. Exp. Neurol. 2010, 69, 930–944. [CrossRef]

78. Cortés, D.; Carballo-Molina, O.A.; Castellanos-Montiel, M.J.; Velasco, I. The non-survival effects of Glial cell line-derived
neurotrophic factor on neural cells. Front. Mol. Neurosci. 2017, 10, 258. [CrossRef]

http://doi.org/10.1074/jbc.M111.326041
http://doi.org/10.1016/j.pneurobio.2015.06.003
http://doi.org/10.1371/journal.pone.0031062
http://www.ncbi.nlm.nih.gov/pubmed/22347430
http://doi.org/10.1371/annotation/af6dfc34-7211-4e27-be19-298f08ec33f6
http://doi.org/10.1371/journal.pone.0024842
http://www.ncbi.nlm.nih.gov/pubmed/22003384
http://doi.org/10.1016/j.mcn.2008.11.004
http://www.ncbi.nlm.nih.gov/pubmed/19103292
http://doi.org/10.1038/s41418-019-0368-8
http://doi.org/10.1111/ejn.12407
http://doi.org/10.1186/1749-8104-2-4
http://doi.org/10.1002/eji.201343301
http://doi.org/10.1016/j.celrep.2019.06.054
http://doi.org/10.1007/s12264-020-00480-z
http://doi.org/10.1101/gad.10.22.2849
http://doi.org/10.1155/2015/857202
http://doi.org/10.3390/cells9071746
http://doi.org/10.1046/j.0022-3042.2002.00760.x
http://doi.org/10.1101/gad.1227004
http://www.ncbi.nlm.nih.gov/pubmed/15256497
http://doi.org/10.1155/2018/3569493
http://doi.org/10.1016/j.ydbio.2014.03.021
http://doi.org/10.1016/j.gep.2014.02.001
http://doi.org/10.1038/s41418-020-0569-1
http://doi.org/10.1016/j.neuron.2011.02.037
http://doi.org/10.1523/JNEUROSCI.4800-10.2011
http://doi.org/10.1186/s13287-019-1223-z
http://doi.org/10.1097/NEN.0b013e3181ef3be4
http://doi.org/10.3389/fnmol.2017.00258


Cells 2021, 10, 3238 22 of 23

79. Stewart, S.E.; Platko, J.; Fagerness, J.; Birns, J.; Jenike, E.; Smoller, J.W.; Perlis, R.; Leboyer, M.; Delorme, R.; Chabane, N.; et al. A
genetic family-based association study of OLIG2 in obsessive-compulsive disorder. Arch. Gen. Psychiatry 2007, 64, 209–215. [CrossRef]

80. Chen, X.; Wang, F.; Gan, J.; Zhang, Z.; Liang, X.; Li, T.; Huang, N.; Zhao, X.; Mei, F.; Xiao, L. Myelin Deficits Caused by Olig2
Deficiency Lead to Cognitive Dysfunction and Increase Vulnerability to Social Withdrawal in Adult Mice. Neurosci. Bull. 2020,
36, 419–426. [CrossRef]

81. Komatsu, H.; Takeuchi, H.; Kikuchi, Y.; Ono, C.; Yu, Z.; Iizuka, K.; Takano, Y.; Kakuto, Y.; Funakoshi, S.; Ono, T.; et al. Ethnicity-
Dependent Effects of Schizophrenia Risk Variants of the OLIG2 Gene on OLIG2 Transcription and White Matter Integrity.
Schizophr. Bull. 2020, 46, 1619–1628. [CrossRef]

82. Sims, R.; Hollingworth, P.; Moskvina, V.; Dowzell, K.; O’Donovan, M.C.; Powell, J.; Lovestone, S.; Brayne, C.; Rubinsztein, D.;
Owen, M.J.; et al. Evidence that variation in the oligodendrocyte lineage transcription factor 2 (OLIG2) gene is associated with
psychosis in Alzheimer’s disease. Neurosci. Lett. 2009, 461, 54–59. [CrossRef]

83. Tan, B.T.; Yu, J.; Yin, Y.; Jia, G.W.; Jiang, W.; Yu, L.H. The Olig family affects central nervous system development and disease.
Neural Regen. Res. 2014, 9, 329–336.

84. Satoh, J.-I.; Asahina, N.; Kitano, S.; Kino, Y. A Comprehensive Profile of ChIP-Seq-Based Olig2 Target Genes in Motor Neuron
Progenitor Cells Suggests the Possible Involvement of Olig2 in the Pathogenesis of Amyotrophic Lateral Sclerosis. J. Cent. Nerv.
Syst. Dis. 2015, 7, JCNSD-S23210. [CrossRef]

85. Benatti, P.; Basile, V.; Merico, D.; Fantoni, L.I.; Tagliafico, E.; Imbriano, C. A balance between NF-Y and p53 governs the pro- and
anti-apoptotic transcriptional response. Nucleic Acids Res. 2008, 36, 1415–1428. [CrossRef]

86. Ly, L.L.; Yoshida, H.; Yamaguchi, M. Nuclear transcription factor Y and its roles in cellular processes related to human disease.
Am. J. Cancer Res. 2013, 3, 339–346.

87. Hale, T.K.; Myers, C.; Maitra, R.; Kolzau, T.; Nishizawa, M.; Braithwaite, A.W. Maf transcriptionally activates the mouse p53
promoter and causes a p53-dependent cell death. J. Biol. Chem. 2000, 275, 17991–17999. [CrossRef]

88. Herring, J.A.; Elison, W.S.; Tessem, J.S. Function of Nr4a Orphan Nuclear Receptors in Proliferation, Apoptosis and Fuel
Utilization across Tissues. Cells 2019, 8, 1373. [CrossRef]

89. Chen, Y.; Wang, Y.; Ertürk, A.; Kallop, D.; Jiang, Z.; Weimer, R.M.; Kaminker, J.; Sheng, M. Activity-induced Nr4a1 regulates spine
density and distribution pattern of excitatory synapses in pyramidal neurons. Neuron 2014, 83, 431–443. [CrossRef]

90. Maxwell, M.A.; Muscat, G.E.O. The NR4A Subgroup: Immediate Early Response Genes with Pleiotropic Physiological Roles.
Nucl. Recept. Signal. 2006, 4, nrs-04002. [CrossRef]

91. Volakakis, N.; Kadkhodaei, B.; Joodmardi, E.; Wallis, K.; Panman, L.; Silvaggi, J.; Spiegelman, B.M.; Perlmann, T. NR4A orphan
nuclear receptors as mediators of CREB-dependent neuroprotection. Proc. Natl. Acad. Sci. USA 2010, 107, 12317–12322. [CrossRef]

92. Chatterjee, S.; Walsh, E.N.; Yan, A.L.; Giese, K.P.; Safe, S.; Abel, T. Pharmacological activation of Nr4a rescues age-associated
memory decline. Neurobiol. Aging 2020, 85, 140–144. [CrossRef]

93. Munoz-Tello, P.; Lin, H.; Khan, P.; de Vera, I.M.; Kamenecka, T.; Kojetin, D. Assessment of NR4A Ligands that Directly Bind and
Modulate the Orphan Nuclear Receptor Nurr1. J. Med. Chem. 2020, 63, 15639–15654. [CrossRef]

94. Bridi, M.S.; Hawk, J.D.; Chatterjee, S.; Safe, S.; Abel, T. Pharmacological Activators of the NR4A Nuclear Receptors Enhance LTP
in a CREB/CBP-Dependent Manner. Neuropsychopharmacology 2016, 42, 1243–1253. [CrossRef]

95. Jakaria, M.; Haque, M.E.; Cho, D.-Y.; Azam, S.; Kim, I.-S.; Choi, D.-K. Molecular Insights into NR4A2(Nurr1): An Emerg-
ing Target for Neuroprotective Therapy against Neuroinflammation and Neuronal Cell Death. Mol. Neurobiol. 2019,
56, 5799–5814. [CrossRef]

96. Corley, S.M.; Tsai, S.Y.; Wilkins, M.R.; Weickert, C.S. Transcriptomic analysis shows decreased cortical expression of nr4a1, nr4a2
and rxrb in schizophrenia and provides evidence for nuclear receptor dysregulation. PLoS ONE 2016, 11, e0166944. [CrossRef]

97. Tsai, S.-Y.; Catts, V.S.; Fullerton, J.M.; Corley, S.M.; Fillman, S.G.; Weickert, C.S. Nuclear Receptors and Neuroinflammation in
Schizophrenia. Mol. Neuropsychiatry 2017, 3, 181–191. [CrossRef]

98. Jeanneteau, F.; Barrè, C.; Vos, M.; De Vries, C.J.M.; Rouillard, X.; Levesque, D.; Dromard, Y.; Moisan, M.-P.; Duric, V.;
Franklin, T.C.; et al. The Stress-Induced Transcription Factor NR4A1 Adjusts Mitochondrial Function and Synapse Number in
Prefrontal Cortex. J. Neurosci. 2018, 38, 1335–1350. [CrossRef]

99. Rouillard, C.; Baillargeon, J.; Paquet, B.; St-Hilaire, M.; Maheux, J.; Lévesque, C.; Darlix, N.; Majeur, S.; Lévesque, D. Genetic
disruption of the nuclear receptor Nur77 (Nr4a1) in rat reduces dopamine cell loss and L-Dopa-induced dyskinesia in experimental
Parkinson’s disease. Exp. Neurol. 2018, 304, 143–153. [CrossRef]

100. Zhao, L.G.; Tang, Y.; Tan, J.Z.; Wang, J.W.; Chen, G.J.; Zhu, B.L. The effect of NR4A1 on APP metabolism and tau phosphorylation.
Genes Dis. 2018, 5, 342–348. [CrossRef]

101. Bao, X.J.; Wang, G.C.; Zuo, F.X.; Li, X.Y.; Wu, J.; Chen, G.; Dou, W.C.; Guo, Y.; Shen, Q.; Wang, R.Z. Transcriptome profiling of the
subventricular zone and dentate gyrus in an animal model of Parkinson’s disease. Int. J. Mol. Med. 2017, 40, 771–783. [CrossRef]

102. Yang, B.-F.; Lu, Y.-J.; Wang, Z.-G. MicroRNAs and apoptosis: Implications in the molecular therapy of human disease. Clin. Exp.
Pharmacol. Physiol. 2009, 36, 951–960. [CrossRef]

103. Marson, A.; Levine, S.S.; Cole, M.F.; Frampton, G.M.; Brambrink, T.; Johnstone, S.; Guenther, M.G.; Johnston, W.K.; Wernig, M.;
Newman, J.; et al. Connecting microRNA Genes to the Core Transcriptional Regulatory Circuitry of Embryonic Stem Cells. Cell
2008, 134, 521–533. [CrossRef]

http://doi.org/10.1001/archpsyc.64.2.209
http://doi.org/10.1007/s12264-019-00449-7
http://doi.org/10.1093/schbul/sbaa049
http://doi.org/10.1016/j.neulet.2009.05.051
http://doi.org/10.4137/JCNSD.S23210
http://doi.org/10.1093/nar/gkm1046
http://doi.org/10.1074/jbc.M000921200
http://doi.org/10.3390/cells8111373
http://doi.org/10.1016/j.neuron.2014.05.027
http://doi.org/10.1621/nrs.04002
http://doi.org/10.1073/pnas.1007088107
http://doi.org/10.1016/j.neurobiolaging.2019.10.001
http://doi.org/10.1021/acs.jmedchem.0c00894
http://doi.org/10.1038/npp.2016.253
http://doi.org/10.1007/s12035-019-1487-4
http://doi.org/10.1371/journal.pone.0166944
http://doi.org/10.1159/000485565
http://doi.org/10.1523/JNEUROSCI.2793-17.2017
http://doi.org/10.1016/j.expneurol.2018.03.008
http://doi.org/10.1016/j.gendis.2018.04.008
http://doi.org/10.3892/ijmm.2017.3052
http://doi.org/10.1111/j.1440-1681.2009.05245.x
http://doi.org/10.1016/j.cell.2008.07.020


Cells 2021, 10, 3238 23 of 23

104. Zolboot, N.; Du, J.X.; Zampa, F.; Lippi, G. MicroRNAs Instruct and Maintain Cell Type Diversity in the Nervous System. Front.
Mol. Neurosci. 2021, 14, 69. [CrossRef]

105. Gagliardi, D.; Comi, G.P.; Bresolin, N.; Corti, S. MicroRNAs as regulators of cell death mechanisms in amyotrophic lateral
sclerosis. J. Cell. Mol. Med. 2019, 23, 1647. [CrossRef]

106. Lang, M.-F.; Shi, Y. Dynamic Roles of microRNAs in Neurogenesis. Front. Neurosci. 2012, 6, 71. [CrossRef]
107. Jung, H.J.; Suh, Y. Regulation of IGF -1 signaling by microRNAs. Front. Genet. 2015, 5, 472. [CrossRef]
108. Zhang, T.; Ni, S.; Luo, Z.; Lang, Y.; Hu, J.; Lu, H. The protective effect of microRNA-21 in neurons after spinal cord injury. Spinal

Cord 2018, 57, 141–149. [CrossRef]

http://doi.org/10.3389/fnmol.2021.646072
http://doi.org/10.1111/jcmm.13976
http://doi.org/10.3389/fnins.2012.00071
http://doi.org/10.3389/fgene.2014.00472
http://doi.org/10.1038/s41393-018-0180-1

	Introduction 
	Materials and Methods 
	Experimental Design 
	RNA Isolation and Microarray Hybridization 
	Time-Point Differential Gene Expression Analysis 
	Protein–Protein Interaction (PPI) Network Functional Enrichment Analysis 
	Upstream Transcriptional Regulator Analysis 
	Disease Biomarker Enrichment and Selection of Potential Drug Targets 

	Results 
	Identification of a Converging Set of Apoptosis and Survival-Related Genes 
	Temporal PPI Network Analysis Identified Distinct Functional Clusters of Proteins Promoting Neuronal Survival 
	Transcription Regulatory Network Analysis Identified a Restricted Number of Master Regulators of Neuronal Apoptosis and Survival 
	Disease Enrichment Analysis Revealed a Strong Association of Core Set Genes with Neurological and Psychiatric Disorders 
	Identification of Repurposing Drugs That Could Revert the Transcriptional Regulation of the Core Set Genes during Neuronal Apoptosis 

	Discussion 
	Conclusions 
	References

