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Abstract: Inflammatory bowel diseases (IBD) are chronic disorders of the gastrointestinal tract that
have been linked to microbiome dysbiosis and immune system dysregulation. We investigated the
longitudinal effect of anti-TNF therapy on gut microbiota composition and specific immune response
to commensals in IBD patients. The study included 52 patients tracked over 38 weeks of therapy
and 37 healthy controls (HC). To characterize the diversity and composition of the gut microbiota,
we used amplicon sequencing of the V3V4 region of 16S rRNA for the bacterial community and of
the ITS1 region for the fungal community. We measured total antibody levels as well as specific
antibodies against assorted gut commensals by ELISA. We found diversity differences between HC,
Crohn’s disease, and ulcerative colitis patients. The bacterial community of patients with IBD was
more similar to HC at the study endpoint, suggesting a beneficial shift in the microbiome in response
to treatment. We identified factors such as disease severity, localization, and surgical intervention
that significantly contribute to the observed changes in the gut bacteriome. Furthermore, we revealed
increased IgM levels against specific gut commensals after anti-TNF treatment. In summary, this
study, with its longitudinal design, brings insights into the course of anti-TNF therapy in patients
with IBD and correlates the bacterial diversity with disease severity in patients with ulcerative
colitis (UC).

Keywords: inflammatory bowel disease; biological therapy; tumor necrosis factor-α; microbiome;
mycobiome

1. Introduction

Inflammatory bowel diseases (IBD) such as Crohn’s disease (CD) and ulcerative colitis
(UC) are chronic disorders with an unknown etiology and mechanism of progression.
However, several associated risk factors have been identified and extensively studied,
ranging from genetic predisposition and environmental factors to immune system dysreg-
ulation [1]. Biological therapy is a standard part of the treatment regimen for IBD in the
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Czech Republic and worldwide. Specifically, two of the currently available monoclonal
antibodies for IBD treatment include antibodies against tumor necrosis factor-α (TNF-α),
infliximab (IFX), a chimeric monoclonal antibody, and adalimumab (ADA), a fully human
monoclonal antibody IBD [2].

TNF-α is a proinflammatory cytokine, which is typically increased in patients with
IBD [3,4]. It can induce gut epithelial cell damage by mediating apoptosis [5], affecting
tight junction proteins [6], and promoting the secretion of other inflammatory cytokines,
further exacerbating the pathological processes [7].

The human gut is populated by a vast number of microorganisms dominated by bac-
teria. Multiple bacterial phyla are commonly found in the human gut, such as Firmicutes,
Bacteroides, Proteobacteria, Actinobacteria, and Verrucomicrobia, with the first two being
the most prevalent. Changes in the relative abundance of taxa within these groups as
well as in overall community diversity are commonly reported in studies on patients with
IBD. Associations of healthy and diseased states with taxa on various taxonomical levels
have been shown with somewhat conflicting results, but dysbiosis has been documented
consistently in IBD individuals [8,9].

Since responsiveness to anti-TNF treatment varies among patients with IBD, there
have been substantial efforts to identify microbial biomarkers, which could have predic-
tive value. One of the early studies identified that lower abundance of Faecalibacterium
prausnitzii and Clostridium coccoides could predict clinical relapse within one year after IFX
treatment discontinuation [10]. A similar study found that Escherichia coli was significantly
decreased in patients with CD after ADA treatment [11]. Both these pioneering studies
used qPCR quantification limited to a handful of bacterial taxa. Another study tracked
a panel of predefined bacteria in patients with UC following anti-TNF therapy, of which
only Faecalibacterium prausnitzii was identified as a discriminatory marker between therapy
responders and non-responders [12]. Studies using more robust methods such as amplicon
sequencing followed. The presence of several genera, including Bifidobacterium, Collinsella,
Lachnospira, Roseburia, Eggerthella, [13] and phylum Lachnospiraceaae [14] was associated
with successful anti-TNF treatment outcomes. In addition, a co-occurrence analysis re-
vealed a cluster of bacterial taxa, whose disruption is associated with disease severity,
therapy failure, unhealthy lifestyle, and probability of relapse. It appears that the common
denominator of bacteria in this cluster is short-chain fatty acid (SCFA) synthesis [13]. A
different study also using amplicon sequencing showed that after thirty weeks of anti-TNF
treatment, the gut microbiome composition in a group of patients with IBD shifted towards
that of healthy controls. Coproccocus and Roseburia, both SCFA producers, were significantly
reduced in patients with IBD at baseline [15]. A recent study revealed the order Actino-
mycetales to be differentially abundant in patients with IBD pre- and post-IFX treatment,
regardless of the degree of their response to the therapy [16].

Fungi in the gastrointestinal tract are much more scarce compared to bacteria; it is
estimated that less than 0.1% of gut microbial genes are of eukaryotic origin [17]. The
most prevalent genera commonly found in the human gut include Aspergillus, Candida,
Debaryomyces, Malassezia, Penicillium, and Saccharomyces [18–21]. Contrary to bacterial
diversity, which is usually decreased in patients with IBD, fungal abundance and diversity
tend to be increased [19,22,23], but one study also reported a reduced diversity [20].

Dysbiosis in patients with IBD is quite well documented across many studies [10,15,24,25].
However, studies linking fluctuations in diversity and specific microbial phylotypes with
disease advancement after anti-TNF therapy do not provide consistent results. Therefore,
the aim of this study was to track changes in the bacterial and fungal microbiome over the
course of anti-TNF therapy and link it to disease severity. Moreover, we studied various
immune factors related to the clinical status of patients with IBD that might contribute to
the observed microbial diversity changes.
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2. Materials and Methods
2.1. Patients and Sample Collection

Patients were recruited at the ISCARE Clinical and Research Centre for Inflammatory
Bowel Disease in the Czech Republic from November 2018 to December 2020. This study
included patients diagnosed with IBD according to the guidelines of the European Crohn’s
and Colitis Organization (ECCO) [26], who had started to receive anti-TNF therapy. Fecal
and blood (serum, peripheral blood mononuclear cell isolation) samples were collected
before the beginning of therapy (baseline, week 0) and at each patient visit (weeks 2, 8, 14,
20, 26, 32, and 38) as described previously [27]. All samples were stored at −80 ◦C until
processing. At each visit, we recorded medical history, disease severity, responsiveness to
treatment, and various clinical parameters: Harvey–Bradshaw index (HBI) in patients with
CD and partial Mayo score (pMayo) in patients with UC; C-reactive protein (CRP); fecal
calprotectin (FC); ferritin; hemoglobin (Hb); platelet count (PLT); white blood cells (WBC).
HBI and pMayo were calculated by a specialized gastroenterologist during patient visits at
the outpatient clinic according to disease activity reflected by patient outcomes and physi-
cian’s assessment [28,29]. Healthy control subjects were recruited at the Institute of Clinical
and Experimental Medicine (IKEM) in the Czech Republic and comprised 37 individuals.
The exclusion criteria for healthy subjects were a gastrointestinal or dermatologic diagnosis
and use of antibiotics within 3 months prior to sampling. All study participants signed
informed consent forms. This study was approved by the Ethics Committees of ISCARE
(Nr2015/Ia) and IKEM (Nr2015/Ia).

2.2. DNA Extraction, PCR Amplification, Sequencing, and Data Analysis

DNA was isolated from the stool specimen using the ZymoBIOMICS DNA Miniprep
Kit (Zymo Research, Irvine, CA, USA) according to the manufacturer’s protocol. The V3V4
region of 16S rRNA gene and the fungal ITS1 region covered by specific primers with
barcodes (341F GTCCTACGGGNGGCWGCAG and 806R GGACTACHVGGGTWTCTAAT)
and (F GTAAAAGTCGTAACAAGGTTTC and R AAGTTCAAAGAYTCGATGATTCAC),
respectively, were chosen as representative sequences for taxonomic identification. The
amplification reaction was performed with the KAPA HiFi HotStart Ready Mix (Roche,
Penzberg, Germany), as follows: initial denaturation step 3 min at 95 ◦C followed by
25 cycles at 95 ◦C for 30 s, 55 ◦C for 30 s, 72 ◦C for 30 s with a final elongation step at
72 ◦C for 5 min using 5 ng/µL DNA. PCR products were checked using QIAxcel advanced
capillary electrophoresis (QIAgen, Hilden, Germany). Triplicates of the amplicons were
pooled and normalized with the SequalPrep™ Normalization Plate Kit (ThermoFisher
Scientific, Waltham, MA, USA), concentrated (Eppendorf centrifugal vacuum concentrator),
and purified with DNA Clean & Concentrator Kit (Zymo Research, Irvine, CA, USA).
Subsequently, the amplicon libraries were ligated with sequencing adapters using the
KAPA HyperPlus Kit (Roche, Penzberg, Germany), pooled in equimolar concentrations,
and sequenced. Amplicon sequencing was performed using the Miseq platform (Illumina,
San Diego, CA, USA).

Reads were quality filtered with Cutadapt (version 1.15), joined with Fastq-join (ver-
sion 1.3), and demultiplexed using a custom R script. The sequences were trimmed and
denoised, and amplicon sequence variants (ASVs) were generated with the Qiime2 plugin
DADA2. Qiime2 (version 2021.2) [30] pipeline was used to calculate alpha and beta diversi-
ties. Bacterial taxonomy was assigned with VSEARCH classifier against the SILVA database
(release 138) with 99% similarity. Only forward reads were used with the ITS sequences and
fungal taxonomy was assigned with blast against the Unite database (version 8) with 97%
similarity. The MetaCyc metabolic pathways were predicted from the 16S-based taxonomic
profiles with the aid of the Qiime2 plugin Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt2) [31].
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2.3. Preparation of Bacterial Lysates

The bacteria were obtained from DSMZ (Deutsche Sammlung von Mikroorganis-
men und Zellkulturen GmbH, Braunschweig, Germany) and cultured as recommended.
Specifically, Lactobacillus plantarum CCDM 182 (ATCC Medium No. 416); Bifidobacterium
adolescentis CCUG 18363 (DSMZ medium No. 58.); Blautia coccoides (ATCC Medium No.
1490); Roseburia intestinalis L1-82 (ATCC Medium No. 2695); Eubacterium rectale ATCC 3365
(ATCC Medium No 1703); Faecalibacterium prausnitzii A2-165 (DSMZ medium No. 1611);
Ruminococcus flavefaciens (ATCC Medium No. 1365 E); Bacteroides thetaiotaomicron VPI 5482
(ATCC Medium No. 1490); Prevotella ruminicola M384 (ATCC Medium No 1703); Escherichia
coli K6 (Merck, Kenilworth, NJ, USA, L3022). All bacteria except Escherichia coli K6 were
grown under anaerobic conditions. Bacterial lysates were prepared as previously described
and used for either PBMCs stimulation or for antigen coating in an indirect ELISA [32,33].

2.4. Indirect Enzyme-Linked Immunosorbent Assays (ELISAs)

Serum concentrations of total immunoglobulin G (IgG), immunoglobulin A (IgA), and
immunoglobulin M (IgM) were determined using commercially available kits according to
manufacturers’ instructions (Invitrogen, Waltham, MA, USA). The serum concentrations
of anti-bacterial antibodies of IgM, IgG, and IgA isotypes were analyzed by an in-house
developed indirect ELISA as described previously [27]. All serum samples were diluted
at 1:200. Antibody levels are reported in arbitrary units (AU), where a reference serum
sample was applied on each ELISA plate and its mean value of OD (450–650 nm) was used
as thousand arbitrary unit (1000 AU).

2.5. Peripheral Blood Mononuclear Cells (PBMCs)

PBMCs were isolated and cultivated as previously described [27]. Interleukin-17A
(IL-17A) in supernatants of PBMCs stimulated by bacterial antigens was quantified by a
commercially available ELISA kit (R&D Systems, Minneapolis, MN, USA).

2.6. Statistical Analysis

Differences in alpha diversity were evaluated using non-parametric tests, specifically
the Mann–Whitney-U test or Kruskal–Wallis test for multiple group comparison and
Wilcoxon signed-rank test for paired comparisons. A Benjamini and Hochberg procedure
was applied to control the false discovery rate. The relationship between alpha diversity
and disease severity was assessed using the Spearman correlation. Beta diversity variance
was determined by the qiime2 plugin ADONIS [30]. For beta diversity comparisons,
permutation tests including PERMANOVA and PERMDISP (with 999 permutations) were
used. Beta diversity similarities of HC and patients with IBD at baseline and at the
endpoint of the study were assessed by a restricted permutational design implemented
in the ADONIS function from the R package Vegan (version 4.0). Differential abundance
analysis was performed with the aid of ANCOM v2.1, a modified version of the original
ANCOM [34], which allows paired design and adjustment for covariates. For diversity
analysis, reads were rarefied to the minimum sample depth. For taxonomic analysis,
unrarefied sequences were used. Antibody and cytokine levels were log-transformed and
compared with one-way ANOVA or Student’s t-test along with Tukey multiple comparison
test. Graphs were generated using python 3.9. with the packages Matplotlib, Seaborn, and
Sklego and in GraphPad Prism (version 9.1.2).

3. Results
3.1. Cohort Characteristics

In the microbiome study, 52 patients suffering from IBD (34 CD, 18 UC) and 37 healthy
controls were observed longitudinally. A total of 352 samples from 89 individuals at several
time points were collected. Out of the 52 patients who brought their fecal sample at baseline
(week 0), only 27 (17 patients with CD and 10 patients with UC) reached the endpoint at
week 38. The clinical data for patients who participated in the study until week 38 and
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healthy controls are summarized in Table 1. The mean age at diagnosis was very similar
in patients with CD and UC. The sex ratio was skewed towards females in both HC and
patients with IBD (Table 1). Basic clinical parameters, such as CRP, WBC, PLT, ferritin, Hb,
and FC were measured (Table 1) and the elevated levels point to an ongoing inflammation
in the patients with IBD. At baseline (week 0) 65% (22/34) of patients with CD were in
clinical remission but no patient from the patient group with UC was in remission (0/18).

Table 1. Comparison of anthropometric and clinical parameters in healthy controls and patients with IBD included in the
gut microbiome analysis at baseline (week 0) and at the endpoint (week 38). Multiple comparisons between groups were
evaluated by the Kruskal–Wallis test followed by Dunn’s multiple comparison test. Changes during anti-TNF therapy
(week 0 vs. week 38) were evaluated by Wilcoxon matched pairs signed-rank test. Medians are reported with the first and
third quartiles in parentheses. Abbreviations: CD, Crohn’s disease; UC, ulcerative colitis; HC, healthy control; BMI, body
mass index; HBI, Harvey–Bradshaw index; pMayo, partial Mayo score; CRP, C-reactive protein; FC, fecal calprotectin; Hb,
hemoglobin; PLT, platelet count; WBC, white blood cells; n, number of participants.

HC (n = 37) CD (n = 17)
Week 0

CD (n = 17)
Week 38

∆ CD
(p-Value)

CD vs. HC
(p-Value)

UC (n = 10)
Week 0

UC (n = 10)
Week 38

∆ UC
(p-Value)

UC vs.
HC (p-
Value)

Male:
female 15:22 5:12 0.8042 2:8 - 0.8684

Age 36.5 (28.8, 41.3) 35.0 (26.5, 44.0) - 0.7800 31.0 (26.0, 41.3) - 0.4228
BMI 21.8 (20.5, 26.2) 22.2 (20.8, 26.9) - 0.8274 21.3 (19.2, 24.4) - 0.1901

Disease
duration
in years

- 4.0 (2.0, 13.5) - - 2.5 (1.0, 7.5) - -

Age at
diagnosis - 26 (22.5, 35) - - 27 (21.5, 31) - -

Remitters - 11/17 13/17 - - 0/10 5/10 - -
HBI/pMayo - 3 (0, 6) 1 (0.5, 5) 0.3931 - 7 (3.8, 8.3) 2.5 (0, 4.3) 0.0039 -

CRP
(mg/L) 0.9 (0.4, 1.9) 4.2 (1.0, 8.9) 1.3 (0.5, 5) 0.0225 0.0037 4.1 (0.9, 22.3) 0.95 (0.6, 2.8) 0.1641 0.0124

WBC 5.9 (4.9, 6.9) 8.0 (6.2, 11.0) 5.9 (5, 7.8) 0.0089 0.0135 10.4 (6.1, 12.3) 5.9 (4.4, 7.3) 0.0371 0.0071
PLT 247 (218, 272) 328 (269, 416) 283 (220, 388) 0.0697 0.0007 276 (251, 387) 278 (222, 310) 0.4160 0.1136

Ferritin
(µg/L) NA 48.1 (19.8, 80.0) 30.9 (12.3, 56.8) 0.3778 NA 28.0 (11.7, 52.2) 41.0 (9.5, 78.6) 0.9219 NA

Hb (g/L) 141 (134, 158) 130 (123, 150) 134 (127, 144) 0.4411 0.0495 128 (109, 1367) 134 (121, 146) 0.0918 0.0067
FC (µg/g) NA 407 (148, 1028) 162 (38, 284) 0.0181 NA 661 (424, 2838) 229 (59, 828) 0.0039 NA

3.2. Individual and Baseline Differences in Gut Bacteriome of Healthy Controls and Patients
with IBD

Healthy controls comprised 37 individuals, 12 of them subjected to repeated sampling.
The bacterial alpha diversity represented by Shannon entropy was significantly different
(p < 0.001) among healthy individuals (Figure S1A). The high interindividual variability
was also evident in beta diversity dissimilarities represented by the Bray–Curtis metric
(Figure 1). Forty-three percent of the overall variance can be attributed to the individual,
whereas only 2% to the time of sampling (visit). The residual variance of 26% includes
the variance of each individual in time, sequencing variance, or variance not explained by
our metadata categories. Importantly, in the healthy controls group, there is no significant
temporal variation in bacterial diversity (Figure S2).

Similarly to healthy controls, patients with IBD differed in both alpha (Figure S1B,C)
and beta diversity. The individual factor explained almost half of the bacterial beta diversity
variance (46%). The time factor (visit) explained only 1% of the variance, diagnosis 2%,
localization of the disease 7%, and 33% of the observed variance could not be explained by
our metadata categories (Figure 1).

The bacterial diversity at baseline (week 0) differed between patients with CD and UC
and healthy controls (Figure 2). Bacterial alpha diversity represented by Shannon entropy
was highest in the HC group and lowest in the UC group (Figure 2A). Bacterial beta diver-
sity represented by Bray–Curtis distance is illustrated by PCoA (Figure 2B). Statistically
significant differences between the cluster centroids are supported by PERMANOVA and
PERMDISP tests, but the contribution of diagnosis to the overall beta diversity variation is
quite small.
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Figure 2. Baseline bacterial alpha and beta diversity for the two IBD groups and healthy controls. (A) baseline (week 0)
bacterial alpha diversity represented by Shannon entropy plotted for Crohn’s disease and ulcerative colitis as well as healthy
controls. In the violin plots, the middle dashed line represents the median and the outer dashed lines represent the first and
third quartiles. (B) PCoA plot shows the bacterial beta diversity represented by the Bray–Curtis metric for the three groups
(Crohn’s disease, ulcerative colitis, and healthy controls) at baseline (week 0). The dots represent samples at baseline and
the lines are connecting individual samples with cluster centroids. The box in the lower right corner shows the results of the
PERMANOVA test with 999 permutations. Abbreviations: CD, Crohn’s disease; HC, healthy controls; UC, ulcerative colitis;
n, number of samples.

3.3. Factors Influencing Bacterial Diversity

Both patients with CD and UC experienced changes in bacterial alpha diversity and
disease severity during the study. These changes were more pronounced in the patient
group with UC (Figure S3). In patients with UC, we observed a negative association
between the clinical score and Shannon entropy with bacterial diversity more compromised
in more severe cases (Figure 3A), whereas in patients with CD, the diversity was more
evenly distributed across the clinical scores (Figure 3B).
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pMayo, partial Mayo score; HBI, Harvey–Bradshaw index.

We examined the impact of disease localization on bacterial alpha diversity. Patients
with CD with ileal involvement (L1) had significantly lower clinical scores at baseline than
patients with ileocolonic involvement (L3), but Shannon entropy at baseline was similar in
both groups (Figure 4A). Patients with UC with rectal localization (E1) showed the highest
alpha diversity at baseline, which remained high throughout the whole course of the study
(Figure 4B). This was also reflected in disease severity, with lower scores in patients with
E1 localization. However, the differences were not significant. We found no significant
differences in alpha diversity between baseline and endpoint for single localizations.

Our results confirmed that the drug choice was not random and that patients with
UC with more severe disease were treated preferentially with IFX. Figure S4 illustrates the
differences in clinical scores and bacterial diversity at baseline and during the therapy in
both drug groups.
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Figure 4. Differences in clinical scores and alpha diversity over time stratified by disease localization. In patients with
Crohn’s disease (A) and ulcerative colitis (B). The violin plots show clinical scores and bacterial alpha diversity at baseline
(week 0); the groups represent specific disease localizations. The line charts show changes in clinical scores and bacterial
Shannon entropy over time and are color-coded by disease localization. Each line represents one individual; the bold
lines represent locally weighted regression with a confidence interval fill. Abbreviations: HBI, Harvey–Bradshaw index;
pMayo, partial Mayo score; L1, ileal Crohn’s disease; L2, colonic Crohn’s disease; L3, ileocolonic Crohn’s disease; E1, rectal
ulcerative colitis; E2, ulcerative colitis distal to the splenic flexure; E3, ulcerative colitis affecting the whole large intestine
and rectum; n, number of samples.

We also found that patients with CD who had undergone intestinal surgery (drainage,
ileocecal resection) in the past showed a different beta diversity (Figure 5A), and their alpha
diversity was diminished both at baseline (Figure 5B) and during the whole observation
period (Figure 5C). No patients with UC had undergone surgery.
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Figure 5. Alpha and beta diversity differences due to surgical procedure. (A) The PCoA plot shows beta diversity
represented by the Bray–Curtis metric for patients with IBD with and without surgery, and healthy controls at various
time points during the treatment including the baseline. Each dot represents a sample at a single time point and a line
connects it to the cluster centroid. (B) Alpha diversity represented by Shannon entropy in Crohn’s disease patients at
baseline categorized by intestinal surgery and in healthy controls. (C) Alpha diversity represented by Shannon entropy
in the whole patients with IBD at various time points including baseline categorized by intestinal surgery and in healthy
controls. Abbreviations: HC, healthy controls.

3.4. Changes of the Gut Bacteriome during Anti-TNF Therapy

Twenty-seven stool samples (17 CD, 10 UC) were obtained from patients at the end-
point of the study (week 38). We did not detect any changes in bacterial alpha diversity
between week 0 (baseline) and week 38 in either patients with CD (Wilcoxon signed-rank
test: p = 0.353) or patients with UC (Wilcoxon signed-rank test: p = 0.064) patients. In
patients with UC, the difference between the baseline and the endpoint was larger than in
patients with CD, but it was statistically insignificant (Figure S5). Thirteen taxa turned out
to be differentially abundant between baseline and endpoint in patients with CD and 10
in patients with UC. Nevertheless, all of the differentially abundant taxa turned out to be
structural zeros except for Ruminococcus, which was increased in patients with UC at the
study endpoint (Table S1). The relative abundances of Ruminococcus during the observation
period are shown in Figure S6.

To evaluate changes in the gut bacteriome during anti-TNF therapy, we assessed the
degree of beta diversity similarity to healthy controls (Figure 6). We calculated a Bray–
Curtis distance matrix between all samples and then applied a restricted permutation test
specifically designed to compare only the distances to HC at baseline (week 0) and at the
endpoint (week 38). We discovered a significant difference between the baseline distance
to HC and the endpoint distance to HC in both patients with CD and UC. However, due
to the very low contribution of the diagnosis factor to the overall variance in the whole
cohort (4%), we cannot rule out that these differences are caused by large dispersion of
the measurements.
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Figure 6. Distance to healthy controls at the beginning and at the end of therapy. A visual representation of the restricted
permutation design with Bray–Curtis distance to healthy controls at the beginning (week 0) and at the end (week 38) of the
study for Crohn’s disease (A) and ulcerative colitis (B) separately. In the violin plots, the middle dashed line represents the
median and the outer dashed lines represent the first and third quartiles. Each dot in the superimposed strip plot represents
a single distance from a patient at baseline (week 0) to a healthy control at baseline or a single distance from a patient at the
endpoint (week 38) to a healthy control at the endpoint. Abbreviations: HC, healthy controls.

3.5. Metagenomic Predictions

Metabolic pathways from MetaCyc were reconstructed from our 16S rRNA data using
PICRUST2 [31]. We identified a significant increase in multiple metabolic pathways in
patients with IBD compared with HC (Figure 7, Table S2), further we describe only the most
relevant to IBD pathology. The underrepresented metabolic pathways include fermentation
to butyrate and propionate (PWY-5677, PWY-5088, PWY-5676). Further, biotin biosynthesis
was decreased in patients with IBD (PWY-5005). Pathways including the biosynthesis of
enterobactin, an iron chelator utilized by bacteria to acquire iron from the environment, and
enterobacterial common antigen were increased in patients with IBD (ENTBACSYN-PWY,
ECASYN-PWY).

3.6. Fungal Microbiome

We found no differences in alpha diversity represented by Shannon entropy between
individuals in the healthy controls group (p = 0.327), probably due to the small sample size,
because in the patient group the differences were significant (p = 0.009) between individuals
(Figure S7). In terms of beta diversity calculated using Bray–Curtis dissimilarity, the
individual factor explained only 5% of the variance in the HC group and 6% in the IBD
group (Figure 1).

The community composition was dominated by the genera Saccharomyces, Penicillium,
and Candida and the Ascomycota/Basidiomycota ratio was skewed towards Ascomycota
in all three groups.

At baseline, the fungal community composition of patients with IBD was not signifi-
cantly different from that of healthy controls. We did not find any significant changes in
Shannon entropy over the course of therapy. Similarly, we observed no significant differ-
ences in Shannon entropy between the baseline and the endpoint of the study. Additionally,
patients’ fungal communities were not shifted towards the HC mycobiome at the endpoint
compared to the baseline (data not shown).
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Figure 7. Differentially abundant pathways reconstructed from 16S rRNA data by PICRUST2. The volcano plot shows the
differentially abundant pathways between healthy controls and patients with IBD as determined by ANCOM. Each dot
represents a pathway entry from the MetaCyc database, which was reconstructed from 16S rRNA data. Pathways increased
in HC are blue, pathways increased in IBD are orange. The dashed line indicates the W-statistic cut-off value. The full
list of the differentially abundant features can be found in Table S2. Abbreviations: HC, healthy controls; IBD, patients
with inflammatory bowel disease; W, W-statistic; clr, centered log ratio; PWY-5677, succinate fermentation to butanoate;
PWY-5005, biotin biosynthesis; PWY-5088, L-glutamate degradation to propionate; PWY-5676, acetyl-CoA fermentation to
butanoate; ECASYN-PWY, enterobacterial common antigen biosynthesis; ENTBACSYN-PWY, enterobactin biosynthesis.

3.7. Serum Antibody Levels against Specific Commensals

Total levels of IgM, IgA, and IgG were measured in the serum of HC and patients with
IBD at baseline (week 0) and at the endpoint (week 38; Table 2).

Differences in the total levels of IgM, IgA, and IgG were significantly different between
HC and patients with CD both at baseline and at the endpoint. Pairwise differences between
the baseline and the endpoint in patients with CD were significant only for IgM. A positive
correlation between total serum IgM levels and disease severity was found in patients with
CD (Figure 8).
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Table 2. Total serum IgM, IgA, and IgG levels in healthy controls and patients with IBD. The antibody levels (mg/mL)
of patients with IBD at week 0 and 38 and of healthy controls are reported as medians with first and third quartiles in
parentheses. Data were log-transformed and multiple comparisons between patients and healthy controls were evaluated
by one-way ANOVA followed by Tukey’s multiple comparison test. The comparisons between antibody levels in patients at
week 0 and week 38 were evaluated by paired t-tests. Abbreviations: ns, not significant; CD, Crohn’s disease; UC, ulcerative
colitis; HC, healthy controls.

Week 0 Week 38 HC Week 0
vs. HC

Week 38
vs. HC

Week 0 vs.
Week 38

IgM CD 2.1 (1.3; 3.4) 2.4 (1.4; 7.6) 1.1 (0.8; 1.8) 0.020 <0.001 <0.001
UC 2.6 (0.9; 4.0) 1.3 (1.0; 3.2) ns ns ns

IgA CD 1.9 (0.5; 5.0) 2.2 (0.6; 6.6) 0.7 (0.5; 1.4) 0.009 0.010 ns
UC 2.5 (1.3; 4.4) 3.2 (1.3; 5.7) 0.039 0.024 ns

IgG CD 15.9 (8.1; 35.1) 11.2 (5.3; 20.4) 1.1 (0.8; 1.8) <0.001 0.002 ns
UC 10.5 (6.5; 18.1) 10.6 (5.7; 59.8) 0.019 <0.001 ns
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Figure 8. Correlation of total IgM serum levels and disease severity in patients with Crohn’s disease (A) and patients with
ulcerative colitis (B). Each dot represents a sample from a patient at a specific time point. Trendline (bold line) including
confidence interval (dotted line) is shown. Abbreviations: HBI, Harvey–Bradshaw index; pMayo, partial Mayo score; n,
number of samples.

We measured specific IgM targeted against antigenic structures of assorted bacteria
(Lactobacillus plantarum, Bifidobacterium adolescentis, Blautia coccoides, Roseburia intestinalis,
Faecalibacterium prausnitzii, Bacteroides thetaiotaomicron, Escherichia coli, Prevotella ruminicola,
Ruminococcus flavefaciens, and Eubacterium rectale). We detected a significant increase in
antibodies against most of the bacteria (except F. prausnitzii) between the baseline and the
endpoint of the therapy in patients with CD (Table 3). Conversely, in patients with UC
none of the specific antibodies were significantly different between the baseline and the
endpoint. We did not detect any significant differences between specific antibody levels of
healthy controls and patients with IBD.
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Table 3. Comparison of specific IgM levels in healthy controls and patients with inflammatory bowel disease (IBD). Levels
of IgM specifically targeted to assorted bacterial lysates in patients with IBD at week 0 (w0) and 38 (w38), and in healthy
controls. Data were log-transformed and multiple comparisons between patients and healthy controls were evaluated by
one-way ANOVA followed by Tukey´s multiple comparison test. The comparisons between antibody levels in patients
at week 0 (w0) and week 38 (w38) were evaluated by paired t-tests. Arrows indicate increase of the antibody levels.
Abbreviations: ns, not significant; CD, Crohn’s disease; UC, ulcerative colitis; HC, healthy controls.

CD
w0 vs. HC

CD
w38 vs. HC

CD
w0 vs. w38

UC
w0 vs. HC

UC
w38 vs. HC

UC
w0 vs. w38

Lactobacillus ns ns ↗ p = 0.005 ns ns ns
Bifidobacterium ns ns ↗ p = 0.010 ns ns ns

Blautia ns ns ↗ p = 0.005 ns ns ns
Roseburia ns ns ↗ p < 0.001 ns ns ns

Faecalibacterium ns ns ns ns ns ns
Bacteroides ns ns ↗ p = 0.005 ns ns ns
Escherichia ns ns ↗ p = 0.003 ns ns ns
Prevotella ns ns ↗ p = 0.005 ns ns ns

Ruminococcus ns ns ↗ p = 0.001 ns ns ns
Eubacterium ns ns ↗ p < 0.001 ns ns ns

3.8. Patients’ PBMCs Produce Increased Levels of IL-17 at the Endpoint of Therapy

Since the immune response to microbiota might change during anti-TNF therapy, we
analyzed the T cell response to microbial stimuli before the start of the therapy (week 0)
and after 38 weeks. We isolated PBMCs and challenged them in vitro with a panel of gut
commensals and measured the levels of IL-17A produced. We found that at week 38 T
cells from patients with UC react with increased IL-17 production to antigens from Blautia
(Figure S8A). Additionally, PBMCs isolated from patients with CD react more strongly to
antigens isolated from E. coli K6 at week 38 (Figure S8B).

4. Discussion

Monitoring the microbiome during anti-TNF therapy provided interesting insights
into the link between gut microbial composition and disease advancement and severity.

Since data on microbiome temporal variability are scarce in the literature, we con-
ducted a longitudinal analysis in a HC group to provide a reference for our IBD patient
study group. The fecal microbiome of HC was relatively stable in time and did not show any
significant temporal fluctuations (Figure S2), in agreement with previous studies [35,36].
We confirmed that individual differences play a huge role in both alpha and beta diversity
(Figure S1, Figure 1) [37]. Interindividual variation exceeds temporal variation. In our
cohort, almost 50% of the Bray–Curtis bacterial beta diversity variance was explained by
the individual factor, whereas the shared variance of the cohort in time contributed only 2%
and individual variability in time by less than 26%. Unsurprisingly, BMI also substantially
contributed (17%) to the overall bacterial beta diversity variability in our HC cohort, which
is in line with other studies [38].

There is quite robust evidence that patients with IBD differ from HC in their gut
microbiome diversity and composition. Moreover, it appears the two distinct subtypes of
IBD have their specific fecal microbiome signature [25]. However, it is not clear whether
these microbiota changes are the cause or a consequence of intestinal inflammation. In
agreement with the existing literature, we found both alpha and beta diversity differences
between HC and patients with IBD (Figure 2). In addition, we also found microbiome
diversity differences between patients with CD and UC, where Shannon entropy was lower
in the patient group with UC. This might be due to the large proportion of patients with
CD in remission (65%), who started the treatment to maintain remission, in contrast to no
patients with UC in remission entering the study. Different results are reported by Pascal
et al. and Ventin-Holmberg [25,39], who found patients with CD to have the lowest alpha
diversity, and by Nishino et al. [24], who did not find any significant differences between
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the two disease types. As previously mentioned, this discrepancy could be attributed to
the disease severity and disease localization of the participating individuals in the Nishino
study (49% and 73% of patients in remission for UC and CD, respectively) and the Ventin-
Holmberg study (66% and 57% of patients in remission for UC and CD, respectively).

During the course of therapy, more pronounced, although statistically insignificant,
changes in terms of disease severity and alpha diversity were observed in patients with UC
compared with patients with CD (Figure S3). This outcome could reflect the aforementioned
high percentage of patients with CD in remission entering the study. Disease severity
negatively correlates with bacterial alpha diversity in patients with UC; the higher the
pMayo score, the lower the bacterial diversity (Figure 3). The anti-TNF therapy acts to
reduce the gut inflammation and as our results suggest it improves alpha diversity, which
in turn regulates the gut environment. The resulting effect of the therapy and changes in
microbiome could promote gut tissue healing.

Patients with UC with disease localized to the rectum had the highest diversity and
the lowest clinical scores, which can be explained by the relatively low bacterial load
in the rectum in comparison to the colon where most fermentation processes take place
(Figure 4) [40]. Shannon entropy was similar in patients with CD with different disease lo-
calizations, but the clinical scores differed significantly between patients with ileal (L1) and
ileocolonic (L3) disease localization, indicating that patients with a larger affected area suf-
fered from a more severe disease. The reason why we observe less pronounced differences
in fecal bacterial diversity in patients with CD with different gut region involvement could
be that fecal samples represent mainly the colonic rather than ileal microenvironment [41].

Discussion on the differences between the efficacy of chimeric infliximab and fully
human adalimumab is still not settled in the medical literature. This is largely because of
a lack of clinical trials, which are challenging to design due to different dosing regimens,
disease types and disease activity in the patients involved [42]. Although some studies
claim that the effects of these drugs are similar [43,44], others suggest that IFX and ADA
should be used under different circumstances [45]. Therefore, the drug choice is dependent
on the doctor’s judgment and local clinical guidelines, including previous treatment success
or failure, adverse events, disease subtype, severity, and localization, as well as local
availability, which precludes randomization of the study population. In our study cohort,
we found that patients with UC treated with IFX had higher disease scores at baseline
and during therapy (Figure S4), which is due to the clinical guidelines assigning specific
patients to a specific treatment.

Another factor that turned out to play a role in bacterial diversity was previous
intestinal surgery (Figure 5). Patients who underwent a surgical procedure (drainage
or ileocecal resection) tended to have a lower bacterial diversity. Although the presence
or absence of intestinal surgery accounted for only 3% of the beta diversity variation,
patients could be clustered based on the surgical procedure. This could be explained
by the fact that patients who had undergone intestinal surgery had very severe disease,
which is accompanied by more extreme dysbiosis. Additionally, antibiotics used for bowel
preparation before surgery can induce dysbiosis, which can persist more than 3 months
after administration [46]. Lastly, the tissue stress and change in gut physiology can lead to
altered food digestion and absorption which can contribute to the observed dysbiosis [47].

A unique feature of our study was the longitudinal design, where we tracked the
patients with IBD over the course of therapy from week 0 to week 38, collecting as many
as 8 samples per individual. We did not find any associations between the treatment
outcome and the changes of the microbiome in time. Pairwise comparisons between the
baseline (week 0) and the endpoint (week 38) showed no significant differences in diversity
neither in patients with CD nor in patients with UC (Figure S5). Other studies reported
similar results [15,48,49]. To our knowledge, only one study [16] showed a significant
increase in alpha diversity post-treatment in 18 patients with severe CD, 88% of whom
reached remission.
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Contradictory data on the effect of Ruminococcus exist in the current literature. Ru-
minococci comprise multiple phylogenetically distinct bacterial genera, which are part of
the healthy human microbiome, but some are enriched in IBD flares. Although ruminococci
from the Lachnospiraceae family such as R. gnavus and R. torques are associated with pa-
tients with IBD [50,51] and are reported to produce inflammatory polysaccharides [52], the
true ruminococci from Ruminococcaceae family are enriched in HC [53,54] or associated
with IFX responders [39,55]. Ruminococci are well adapted for survival in the environment
of elevated oxidative stress that exists in gut of patients with IBD through adhesion and
degradation of protective intestinal mucins [51], but under different conditions can also
metabolize available substrates to produce beneficial SCFAs [56,57]. Here, we showed that
uncultured Ruminococcus from the family Ruminococcaceae was increased after anti-TNF
therapy in patients with UC (Table S1, Figure S6).

A shift of the bacterial community composition in patients with IBD towards that of
HC is generally considered a sign of microbiome improvement. We noted a significant
shift of beta diversity similarity towards HC in both patients with CD and UC at the study
endpoint, suggesting a change towards a healthy microbiome (Figure 6). The same results
were obtained by Aden et al., who also reported a shift towards healthy subjects in IBD [15].
This result is congruent with our data on alpha diversity where more dramatic changes
occurred in the patient group with UC as well.

Metagenomic predictions revealed several known pathways lacking in patients with
IBD compared with healthy individuals (Figure 7, Table S2). The first being the SCFAs,
butyrate and propionate, metabolites produced by the gut microbiota, which are known for
their immunomodulatory properties and serve as an energy source for colonocytes [58,59].
The second pathway identified as underrepresented in the microbiome of patients with IBD
was biotin biosynthesis. Biotin is a vitamin, which can be synthesized by the gut microbiota
and instantly absorbed directly in the large intestine. Biotin and other micronutrients
deficiency have been described in patients with IBD [60]. Recent studies report that mice
deprived of biotin show signs of the leaky gut syndrome, including the downregulation of
tight junction proteins typical for patients with IBD [61,62]. A decreased biosynthesis of
biotin by the intestinal bacteria could contribute to the reduced availability of this vitamin
in the gut of patients with IBD. We also identified pathways that were overrepresented
in patients with IBD compared with HC (Figure 7, Table S2). Increased biosynthesis of
enterobactin was predicted in the microbiome of patients with IBD, which suggests possible
colonization by adherent invasive Escherichia coli (AIEC) capable of producing enterobactin.
Enterobactin is an iron-chelating molecule that helps pathogens to overcome low iron
availability [63]. Furthermore, we detected an increased biosynthesis of enterobacterial
common antigen (ECA) in patients with IBD, suggesting the presence of members of this
family with pathological potential. ECA is an antigen found on the surface of microbes
in the family Enterobacteriaceae. In a complex with lipopolysaccharide, it can elicit an
unwanted immune response in the host [64]. Pioneering studies in the 1970s first observed
immune response to ECA in patients with UC [65,66]. Nonetheless, the metagenomic
analysis only extrapolates from 16S rRNA data and a more in-depth analysis is needed to
confirm these findings.

Fungi represent a minor fraction of the gut microbiome compared to bacteria. Similar
to bacteria, there is quite substantial interindividual variability between individual my-
cobiomes, which accounted for 25% of the beta diversity variance in our patient cohort
(Figure S7, Figure 1) This finding is in accord with a study of the fungal microbiome in
healthy individuals [21]. We have not detected any differences in the fungal microbiome
between the diagnostic groups, nor did we detect any temporal changes during the ther-
apy. This is in contrast to a study with 235 patients with IBD where alpha diversity was
decreased in patients with UC and the community composition differed between patients
of both IBD diagnoses and HC [20]. Nevertheless, the root of the inconsistency may be
in the smaller sample size of our IBD cohort in comparison to the Sokol’s study compris-
ing almost five times more patients. The genera Saccharomyces, Penicillium, and Candida
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were found to be dominant in almost all samples, but some samples had a quite high
amount of unassigned ASVs, not uncommon in fungal studies [21]. Importantly, fungi
detected in stool can be just transient visitors of the gut [67] and heavily depend on diet
composition [68,69] hence masking the effect of the treatment.

Total levels of IgM, IgG, and IgA were increased in patients with IBD compared to
healthy controls (Table 2), suggesting an ongoing inflammation in these subjects and the
presence of immunoglobulins directed against specific bacterial species. One surprising
finding is that patients with CD had increased levels of IgM at the study endpoint com-
pared with the baseline. At the endpoint we counted 77% of patients in remission, so the
explanation may lie in the protective role of IgM, which has been shown to be beneficial
in patients with sepsis [70]. Given the fact that B cells can produce and react to TNF, the
authors speculate that blockade of TNF leads to increased number of B cells and enhanced
production of antibodies as already documented in rheumatoid arthritis patients [71].
The increase of the IgM but not IgG or IgA at the study endpoint could be explained by
increased amount of memory pre-switch B cells in patients with CD [72].

While the presence of antibodies against E. coli antigens in patients with IBD has been
established for decades [73], we wanted to expand the scope of antigens and tested the
humoral response to a whole panel of gut commensals (Table 3). We found an increased
IgM response at week 38 in patients with CD against all antigens tested except Faecalibac-
terium prausnitzii, which has been repeatedly linked with HC or patients who achieved
remission [74]. A recent study on bacterial flagellins found increased levels of IgG and
IgA antibodies against members of the Lachnospiraceae family, including Roseburia and
Eubacterium (also present in our panel), in sera of patients with CD. These were linked with
elevated specific memory T cells and disease complications [75]. Taking into account recent
studies identifying antibody levels against specific commensals in healthy controls [76,77],
we speculate that the absence of significant differences in antibody levels between HC and
IBD can be caused by this peculiarity.

Accumulating evidence suggests that the role of TNF-α and IL-17 in IBD pathogenesis
is more complicated than previously thought since these cytokines can exert both pro- and
anti-inflammatory effects [78,79]. They can promote intestinal barrier repair and several
mouse studies confirmed that they might suppress intestinal inflammation [80,81]. In
addition, anti-IL-17 therapy has not shown therapeutic efficacy in the treatment of patients
with CD [82]. Besides, new cases of IBD have been reported in patients receiving anti-IL-17
therapy to treat their dermatological and rheumatic diseases [83]. Thus, the intriguing
question is how anti-TNF treatment affects IL-17 production. In our study, we have shown
that blood cells isolated after 38 weeks of therapy respond with increased IL-17 production
to specific bacterial antigens (Figure S8). This finding is consistent with a study that found
increased serum production of IL-17 in patients receiving anti-TNF treatment [84]. Similarly,
serum IL-17 levels of patients with CD with active disease were reported to be lower than
those of healthy controls and patients with CD in remission [85]. The importance of IL-17
production in IBD could be also in its influence on the induction of anti-microbial peptides
and consequent maintenance of gut homeostasis [86]. Future microbiome studies would
benefit from targeting a very particular patient group within one diagnosis, defined disease
localization and treatment to eliminate as many variables influencing microbial diversity
as possible. These variables and not so large sample size were the main limitations of our
study which made the results challenging to interpret.

5. Conclusions

In conclusion, we confirmed differences in the bacterial microbiome of HC and patients
with IBD and also between patients with CD and UC. These results are complemented
by metabolic pathways predictions, which also differed between HC and patients with
IBD. Moreover, we highlight that interindividual variability in bacteriome diversity plays
a greater role than temporal variability and disease phenotype. This might explain why
studies consistently report changes in diversity, but evidence for differential abundance
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has been mixed. In addition, we demonstrated the importance of disease severity, disease
localization, and intestinal surgical interventions in bacterial microbiome research sug-
gesting the study cohort composition has tremendous impact in the observed diversity.
We showed that at the study endpoint, beta diversity of both patients with CD and UC
were more similar to HC subjects than at baseline, although we have identified only Ru-
minococcus to be differentially abundant in patients with UC. Furthermore, we detected
an increased humoral response to multiple gut commensals in patients with CD at the
study endpoint. These results emphasize the importance of gut microbiota diversity and
composition as well as specific immune response to gut bacteria in IBD pathogenesis. TNF
inhibitor therapy influences these factors to a different extent in patients with CD and UC.
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