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Abstract: Type II DNA topoisomerase (topo II) is an essential nuclear enzyme and a well-validated
anticancer drug target. Previously, we have carried out several rounds of structural optimizations
on our in-house topo II inhibitor E17, which was shown to have superior anticancer activity and
less risk of multidrug resistance (MDR). Among the newly developed acridone derivatives, 6h
displayed significant anticancer efficacy with unique mechanisms of action. At low concentrations,
it arrested cancer cell cycles and triggered cell apoptosis, which is similar to the action of the well-
known topo II inhibitor VP16. By contrast, 6h showed significant and long-term anti-proliferative
activity at relatively high concentrations, with negligible influence on apoptosis. In addition, 6h
exhibited no serious cardiotoxicity compared to doxorubicin (DOXO), a widely used topo II-targeting
antineoplastic drug in clinic, but with damaging myocardial side effects. Collectively, our present
work has supported the therapeutic value of 6h as a promising chemotherapy for cancers.

Keywords: acridone derivative 6h; topo II inhibitor; DNA intercalating agent; chemotherapy;
less cardiotoxicity

1. Introduction

Unwinding the duplex DNA induces differences in the topology and conformation of
replicating DNA. DNA replication requires DNA breakage and religation to relieve the
torsional stress, and this process is mediated by DNA nucleases topoisomerases (topos) [1].
Topos are usually divided into two major categories, topo I and topo II, which catalyze
the passage of DNA single strands and double helices, respectively. Unlike topo I, ATP
hydrolysis is necessary to maintain the biochemical functions of topo II by promoting topo-
logical transformations, rather than cleaving DNA recombination [2,3]. Albeit with distinct
mechanisms, both topos function as prominent and well-acknowledged anticancer targets.

A plethora of topo II inhibitors, e.g., DOXO, etoposide (VP16), and mitoxantrone
(MTX), have been developed as first-in-class chemotherapeutic drugs in clinic, in particular
for the treatment of various advanced malignant tumors [4]. Nevertheless, these drugs
continuously suffer limitations in cardiotoxicity, multidrug resistance (MDR), or therapy-
induced secondary malignancies, all of which weaken their therapeutic values to a great
extent [5]. Thus, there is an urgent need to develop more efficacious and safer topo II
inhibitors with favorable druggable prospects.

Our lab has a long-standing interest and research record in the search for topo II-
oriented antineoplastic agents, leading to the discovery of a spectrum of novel acridone,
quinoxalinone, and anthraquinone derivatives with promising anti-proliferative effica-
cies [6–9]. Among them, the acridone derivative E17 produced higher topo II inhibitory
potency than two reference drugs, VP16 and ICRF-187. A preliminary mechanistic study

Cells 2021, 10, 3138. https://doi.org/10.3390/cells10113138 https://www.mdpi.com/journal/cells

https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0002-5582-8628
https://doi.org/10.3390/cells10113138
https://doi.org/10.3390/cells10113138
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cells10113138
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells10113138?type=check_update&version=2


Cells 2021, 10, 3138 2 of 8

unraveled that E17 induced the accumulation of a cleavage complex without a significant
influence on the degradation of topo II. The finding that E17 might not cause serious MDR,
unlike VP16, was more exciting, which inspired us to carry out further in-depth chemi-
cal optimizations on this lead compound (unpublished data). Thereafter, a more potent
acridone-oriented topo II inhibitor 6h [1-((3-(dimethylamino)propyl)amino)-7-hydroxy-4-
nitroacridin-9(10H)-one] was identified, which displayed stronger anticancer efficacy and
unique dose-affected anticancer mechanisms compared to VP16.

Previously, several acridone derivatives have been identified as DNA intercalating
topo II inhibitors [10,11], and their anticancer activity, topo II inhibition, and DNA inter-
calation effects are proven to be closely associated with cell cycle arrest and apoptosis.
However, to the best of our knowledge, whether these two effects play the same role in
affecting cell cycle arrest and apoptosis in acridone derivatives is still poorly understood.
Although it is generally recognized that with increased concentrations of anticancer drugs
exposed to tumor cells, more apoptosis will be induced and the cell cycle will be arrested
at a particular phase, the question of how topo II inhibition and the DNA intercalation of
DNA intercalating topo II inhibitors affect anticancer activity still needs to be explored
in depth.

To this end, we herein present the biological evaluation and mechanistic study results
of 6h, which were quite different from those of VP16 and existing DNA intercalating topo
II inhibitors.

2. Materials and Methods
2.1. Materials

The chemical structure of 6h is presented in Figure 1a. Reference drugs (VP16 and
DOXO) were commercially available from Sigma-Aldrich Corporation, and another refer-
ence compound E17 was available from our in-house chemical library.
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Figure 1. 6h exhibited strong anticancer efficacy by inhibiting topo IIα. (a) Chemical structure of
6h. (b) 6h dose-dependently inhibited the proliferation of different cancer cells. Data are presented
as mean ± SD (n = 3). (c,d) 6h inhibited colony formation of two cancer cells. Images display the
colony formation in 6h-treated cells. 6h dose-dependently inhibited colony formation in A549 and
MDA-MB-231 cells. (e,f) 6h inhibited topo IIα-mediated DNA relaxation. VP16 was set as a positive
control. Supercoiled pBR322 DNA (SC) and relaxed DNA (RLX) are shown. D: DMSO, V: VP16 at
100 µM.
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2.2. Cell Cultures

All cells were commercially obtained from the Chinese Academy of Sciences Cell
Bank. Human breast cancer cells, MDA-MB-231, were maintained in L-15 medium, while
human lung cancer cells (A549), human acute myelogenous leukemia cells (KG1), and
rat myocardial cells (H9c2) were maintained in RPMI 1640 medium. Both media were
supplemented with 10% fetal bovine serum (FBS), 100 U/mL penicillin, and 100 mg/mL
streptomycin. Cells were cultured at 37 ◦C in a humidified atmosphere containing 5% CO2.

2.3. Cell Viability Assay

Cell proliferation was measured using the Cell Counting Kit-8 (CCK-8) method, based
on the manufacturer’s instructions. Briefly, cells were incubated in a 96-well plate at a
density of 3~15 × 103 cells/well/100 µL for 12 h in 5% CO2 incubator at 37 ◦C. Then,
cells were treated with different concentrations of compounds for another 72 h. Finally,
10% CCK-8 was added to each well and incubated for an additional 4 h. Absorbance was
measured at 450 nm. The inhibitory rate was calculated and the cytotoxicity of target
compounds was expressed as IC50 using GraphPad Prism 7.

2.4. Colony Formation Assay

Cells were seeded in a 6-well plate at a 1 × 104 cell/well density and treated with
increasing concentrations of compound 6h for 24 h. Then, fresh medium was replaced,
and cells were incubated for additional 7 days. Thereafter, media was discarded, 1 mL of
MeOH:AcOH (3:1, v/v) was added, and the mixture was fixed at −20 ◦C for 1 h. After
the solution was discarded, plates were air-dried and the cells were stained with 2 mL
1 × Giemsa stain solution at room temperature for 30 min. The plates were imaged using
a gel imaging instrument (ZEISS, Jena, Germany). Image-Pro Plus was used to calculate
the colony formation area, and the untreated group of each cell was set to 100% in colony
formation. The result was analyzed to generate histogram using software Prism 7 [12,13].

2.5. Topo IIα-Mediated pBR322 DNA Relaxation Assay

Supercoiled pBR322 (0.25 µg) was incubated with 1U IIα for 30 min at 37 ◦C in
relaxation buffer (5 mM Tri-HCl, 12.5 mM NaCl, 1 mM MgCl2, 0.5 mM DTT, 10 µg/mL
albumin, 1 mM ATP, pH 7.5) in the presence of increasing concentrations of 6h or VP16.
The reaction was terminated by adding 2 µL of 10% SDS, and then the samples were
electrophoresed through a 1% (W/V) agarose gel at 100V for 1 h. The gel was stained
with ethidium bromide (1 µg/mL in water) for 15 min, destained in water for 10 min,
and visualized with a gel documentation system (Bio-Rad ChemiDoc™ XRS+, Hercules,
CA, USA).

2.6. Measurement of Mitochondrial Membrane Potential (∆ψm)

The H9c2 cells were seeded on 6-well plates overnight. Cells were treated with 6h or
DOXO for 24 h. Then, 10 µg/mL of JC-1 dye was added to the media and incubated for
another 20 min at 37 ◦C. After removing the dye, cells were washed with PBS buffer twice
and immediately examined under a fluorescence microscope.

2.7. Cell Cycle Analysis

Cells were treated with 6h or VP16 for 24 h, harvested in cold PBS buffer, fixed in
70% ethanol, stored overnight at 4 ◦C, washed with PBS again, resuspended in 1 mL of
20 mg/mL PI staining reagent containing 100 mg/mL RNase, and incubated in dark for
30 min. Cell cycle distributions were assessed by flow cytometry (Agilent NovoCyte, Santa
Clara, CA, USA).
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2.8. Annexin V-FITC/PI Apoptosis Detection Assay

KG1 cells were treated with 6h or VP16 for 48 h, harvested, washed with PBS twice,
resuspended in 100 µL of incubation buffer containing Annexin V-FITC and PI, incubated
in dark for 20 min, and analyzed by flow cytometry (Agilent NovoCyte, USA).

2.9. Data Analysis

The inhibiting rate of 6h or VP16 to topo IIα was calculated with software ImageJ and
the colony formation area was counted with software Image-Pro Plus 6.0. Data that came
from flow cytometry were analyzed with NonoExpress. The experiments were repeated
at least three times. Quantitative data are presented as means ± standard error of mean
(SEM). A p value < 0.05 was considered significant.

3. Results
3.1. 6h Exhibited Significant Anti-Proliferative Activity by Inhibiting Topo IIα

The anti-proliferative activity of 6h was initially examined towards three types of topo
II-sensitive cancer cells (MDA-MB-231, A549, and KG1), and VP16 and E17 were utilized
as positive controls. As demonstrated in Figure 1b, 6h displayed stronger anticancer
efficacy than VP16. When treated with 5.0 µM of 6h, the growth inhibition was around
80% in A549 cells. By contrast, the inhibition rate of VP16 was lower than 30% under the
same condition. The same phenomenon was observed in different concentrations and for
different cancer cells. It is worth noting that 6h demonstrated approximately 10 times more
potent cytotoxicity against the test cancer cells than VP16.

The cytotoxic effect of 6h was further confirmed by a colony formation assay (CFA),
which is a well-acknowledged in vitro cell survival assay based on the colony formation
ability of a single cell [14]. Two adherent cells, MDA-MB-231 and A549, were used in this
assay. As delineated in Figure 1c,d, the colony formation area was less than 10%, even in
the presence of 6h at 0.5 µM. Additionally, A549 cells seemed to be more sensitive at a low
dosage of 6h compared to MDA-MB-231 cells.

Given the fact that the relaxation of a supercoiled DNA substrate is dependent on
topo II, a dose-dependent DNA relaxation assay, in the presence of topo IIα and 6h, was
performed by using the supercoiled plasmid pBR322 as a substrate. As evinced in Figure 1e,
the majority of pBR322 existed in a supercoiled state, proving that 6h strongly prevented
topo IIα-mediated DNA relaxation. The inhibition rate of 6h approached 70.78% at 0.5 µM
and 49.36% at 0.1 µM, while that of VP16 was 68.56% at 100 µM. This result indicated that
6h behaved as a more potent anticancer agent than VP16.

3.2. 6h Induced Different Cell Cycle Arrests in Cancer Cells

Next, we hoped to examine how 6h affected the cell cycle progression of KG1 cells
by a flow cytometry assay. As shown in Figure 2a, the number of KG1 cells in the G2/M
phase dramatically increased from 22.94% to 70.41% in the presence of 6h at 0.1 µM, which
was equivalent to VP16 (21.11% to 84.76% at 1.0 µM). These results further verified that 6h
could induce serious cell cycle arrest, and its activity was comparable to VP16.

To double check the cell cycle arrest, 6h and VP16 were subsequently treated in MDA-
MB-231 cells under the same conditions. It was found that the cell cycle of VP16 was
arrested in the S phase, and the cell number increased from 31.30% to 66.10%. As far as 6h
was concerned, unexpectedly, the cell number in the S phase only slightly increased by 10%
at 2.5 µM, and almost no change was observed at a high concentration (5.0 µM), as evinced
in Figure 2b. It is likely that the cell cycle of 6h-treated cells was blocked at the initial state
in MDA-MB-231 cells, which differed entirely from the cell cycle of VP16-treated cells.
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Figure 2. (a) Topo II inhibitors 6h and VP16 induced G2/M phase arrest in KG1 cells. Cancer cells were treated with
different concentrations of 6h (upper panel) or VP16 (lower panel) for 24 h and subjected to cell cycle analysis. (b) VP16 and
low concentration of 6h induced S phase arrest in MDA-MB-231 cells while high concentration of 6h gave a different result.

3.3. 6h Induced Obvious Apoptosis in KG1 Cells

To check whether the observed prominent cytotoxicity of 6h was associated with
apoptosis, an Annexin V/PI detection assay was performed in KG1 cells. As illustrated
in Figure 3, when KG1 cells were exposed to 0.25 µM of 6h, the proportion of apoptotic
cells increased from 3.28% to 21.84%, which was still more than VP16 (15.6%) at a relatively
higher concentration of 1.0 µM. The results demonstrated that 6h could induce significant
cell apoptosis. However, with increasing concentrations of 6h, the number of apoptotic
cells decreased, which might be largely attributed to the DNA intercalation nature of 6h,
and this still needs further verification.
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Figure 3. 6h could induce significant apoptosis in KG1 cells. After exposure to 6h for 48 h, cells
were harvested and stained with Annexin V-FITC and PI, and then analyzed by flow cytometry to
determine early or late apoptotic and necrotic cell populations.

3.4. 6h Induced Less Cardiotoxicity in H9c2 Cells

Anthracyclines, such as DOXO, epirubicin, and idarubicin, still remain mainstays as
first-line chemotherapeutic drugs, with tangible effectiveness spanning from hematological
malignancies to varied solid tumors. However, anthracycline-related cardiotoxicity, in a
dose-dependent manner, has drastically restricted their wide clinical applications [15,16].
Cardiac toxicity detection of 6h was, therefore, conducted by examining H9c2 cardiac
myoblast cells from rats.



Cells 2021, 10, 3138 6 of 8

As shown in Figure 4a, cell vitality was comparable to the control group in the presence
of 6h at 1.0 µM and 5.0 µM for 24 h. When the concentration of 6h was increased to 10 µM,
the cell survival rate was approximately 90%, while the DOXO-treated group exhibited
a cell survival rate of 70% at the same concentration. After treatment of 6h for 48 h, the
cell survival rate dropped to 80% at 1.0 µM, and 70% at 5.0 µM or 10.0 µM; therefore, it
seems very unlikely that 6h will damage cardiac cells. However, obvious cell damage was
observed in the DOXO group after 48 h of exposure, where the cell survival rate dropped
to 36~38%.
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Figure 4. 6h induced less cardiotoxicity in H9c2 cells. (a) 6h induced less cardiac cell cytotoxicity.
H9c2 cells were treated with 6h or DOXO for 24 h or 48 h, and cell viability was detected by CCK-8
method. Means ± SEM; n = 3; **: p < 0.01, 6h vs. DOXO. (b) 6h did not induce mitochondrial damage
in H9c2 cells. H9c2 cells were maintained in media with or without 6h or DOXO for 24 h. Cells were
stained with JC-1 and examined under a fluorescence microscope.

Many studies have suggested that mitochondrial dysfunction is not only the pri-
mary molecular mechanism underlying DOXO-induced cardiotoxicity, but also largely
contributes to the intrinsic and extrinsic apoptosis [17–19]. Therefore, we examined the
influence of 6h on mitochondrial membrane potential (∆ψm) using a JC-1 staining assay.
As shown in Figure 4b, after the treatment of H9c2 cells with different concentrations (1,
5 and 10 µM) of 6h, red granular aggregates were completely observed in the cytoplasm,
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implying that 6h did not cause any changes in ∆ψm. However, significant loss of ∆ψm was
observed in the DOXO-treated group. In addition, the cytoplasm was wrinkled, distorted,
and broken in the control group. In contrast, the cytoplasm of 6h-treated H9c2 cardiac cells
was still plump and displayed less damage, which is indicative of the lower cardiotoxicity
of 6h.

4. Discussion

Topo II inhibitors still remain first-in-class chemotherapeutic regimens in clinic, with
well-recognized effectiveness for the treatment of both solid tumors and hematopoietic
malignancies [20,21]. However, long-term therapy-induced side effects, cardiotoxicity in
particular, have greatly hampered their clinical applications. The DNA intercalator 6h
is a recently identified acridone derivative in our group; it comes from several rounds
of structural optimizations of E17, a previously well-characterized topo II-targeting lead
compound with potent anti-proliferative activity and less possibility of triggering MDR.
The biological evaluation and mechanistic study of 6h revealed that it exhibited more
potent anti-proliferative efficacy and stronger topo IIα inhibition compared with VP16
and E17.

Its unique dose-affected anticancer mechanisms are more intriguing. At low concen-
trations, 6h could arrest the cell cycle and induce obvious apoptosis in MDA-MB-231 cells,
which is very similar behavior to that of VP16. However, at a relatively higher concen-
tration, the cell cycle stayed at the initial state and the apoptosis decreased in KG1 cells,
which might be largely attributable to its strong DNA intercalating ability (unpublished
data). By contrast, a high concentration of 6h is supposed to limit the function of topo II
and the accumulation of DNA double-strand breaks (DSBs); this is based on the fact that
DNA intercalators can insert into the base pairs of DNA and prevent topo II from binding
to the DNA, while the accumulation of DSBs is the direct cause of topo II inhibitor-induced
apoptosis, as has been described by Tewey et al. [22,23]. In a word, unlike VP16, with high
concentrations, the DNA intercalator 6h may impede topo II from interacting with DNA,
leading to different cell cycle arrest and apoptosis, accordingly.

Meanwhile, the reduced apoptosis of KG1 cells, by treating them with high concentra-
tions of 6h, might be largely attributable to the observed fact that at the time when 6h, a
strong DNA intercalator, triggered cell apoptosis, it was posterior to the non-intercalator
after 48 h of treatment. To the best of our knowledge, this is the first report of the different
parts that topo II inhibition and the DNA intercalation of an acridone-based DNA interca-
lating topo II inhibitor play in the anticancer activity of 6h, which might also be applied
to other strong DNA intercalators. This systematic and mechanistic study is still being
investigated in our lab, and we will report its progress in the near future.

Rat H9c2 cardiomyocytes were used to evaluate the cardiotoxicity of 6h. As 6h did
not induce mitochondrial injury, and has little effect on cell viability, this indicates that 6h
would not cause serious cardiotoxicity, unlike DOXO.

5. Conclusions

Our newly developed acridone derivative 6h is a strong topo II inhibitor. It arrests
cancer cell cycles and induces cancer cell apoptosis at low concentrations, but strongly in-
hibits cancer cell proliferation at high concentrations, which suggests that 6h has long-term,
effective anticancer activity, and unique dose-affected anticancer mechanisms. Further-
more, 6h does not damage the mitochondria of cardiac cells, such as anthracyclines, further
supporting the low cardiotoxic effect of 6h. Altogether, 6h is a promising topo II-mediated
anticancer agent and worthy of further development.
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