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Abstract: Apoptotic cells generated during development and for tissue homeostasis are swiftly
and continuously removed by phagocytes via a process called efferocytosis. Efficient efferocytosis
can be achieved via transcriptional modulation in phagocytes that have engulfed apoptotic cells.
However, such modulation and its effect on efferocytosis are not completely understood. Here, we
report that phagocytes are recruited to apoptotic cells being cleared through the Mcp-1–Ccr2 axis,
which facilitates clearance of apoptotic cells. We identified Mcp-1 as a modulated transcript using a
microarray and found that Mcp-1 secretion was augmented in phagocytes engulfing apoptotic cells.
This augmented Mcp-1 secretion was impaired by blocking phagolysosomal degradation of apoptotic
cells. Conditioned medium from wild type (WT) phagocytes promoted cell migration, but that from
Mcp-1−/− phagocytes did not. In addition, blockade of Ccr2, the receptor for Mcp-1, abrogated cell
migration to conditioned medium from phagocytes incubated with apoptotic cells. The intrinsic
efferocytosis activity of Mcp-1−/− and Ccr2−/− phagocytes was unaltered, but clearance of apoptotic
cells was less efficient in the peritoneum of Mcp-1−/− and Ccr2−/− mice than in that of WT mice
because fewer Ccr2-positive phagocytes were recruited. Taken together, our findings demonstrate a
mechanism by which not only apoptotic cells but also phagocytes induce chemoattraction to recruit
phagocytes to sites where apoptotic cells are cleared for efficient efferocytosis.

Keywords: efferocytosis; apoptotic cells; phagocytes; migration; chemoattraction; Mcp-1; Ccr2

1. Introduction

Apoptotic cells generated during development and for tissue homeostasis are swiftly
and continuously removed through a process called efferocytosis [1,2]. Efficient efferocyto-
sis is dependent on both phagocytes and apoptotic cells. Apoptotic cells do not passively
wait to be cleared, but actively recruit phagocytes by secreting chemoattractants called
‘find-me’ signals such as nucleotides and modulate gene programs in the neighboring
cells within a tissue by releasing metabolites as ‘goodbye’ signals [3–5]. In addition, apop-
totic cells expose ‘eat me’ signals and simultaneously blunt ‘do-not-eat-me’ signals to
be specifically engulfed [6,7]. The best-known eat-me signal is phosphatidylserine (PS),
which is generally located in the inner leaflet of the plasma membrane in normal cells but
translocates to the outer leaflet of the plasma membrane in apoptotic cells [8]. By contrast,
CD47, a ‘do-not-eat-me’ signal, binds to SIRPα on phagocytes and disables phagocyto-
sis [9–11]. However, CD47 clustering is disrupted in apoptotic cells and the interaction
of CD47 with SIRPα is weakened [12]. Thus, these regulated eat-me and do-not-eat-me
signals enable phagocytes to specifically engulf apoptotic cells. Phagocytes also express
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corresponding receptors for these signals and thus distinguish cells to be engulfed from
those not to be engulfed [11]. For example, Tim-4 and Mertk, which are well-characterized
engulfment receptors for apoptotic cells, directly recognize apoptotic cells by binding to PS
on these cells and indirectly recognize apoptotic cells via bridging molecules such as Gas
6 [13–16]. Thus, phagocytes can sense cells to be cleared through interactions between PS
and its receptors.

During efferocytosis, the transcriptional and translational programs of phagocytes
are modulated for efficient clearance of apoptotic cells after they are engulfed and/or rec-
ognized. Transcription of genes involved in various processes is regulated in phagocytes,
which increases the competence of phagocytes to recognize and engulf apoptotic cells
promptly, and recruits neutrophils to promote digestion of ingested apoptotic cells [17–20].
Additionally, the levels of some proteins are translationally or post-translationally mod-
ulated in phagocytes for efficient efferocytosis after engulfment of apoptotic cells. For
example, Ucp-2, Drp-1, and Orai1, which are involved in proton gradient dissipation in
mitochondria and calcium flux, are upregulated in phagocytes engulfing apoptotic cells,
causing phagocytes to engulf multiple apoptotic cells continuously [21–23].

The genes involved in efferocytosis and its signaling pathways have been identified
over the past decades. Consequently, considerable progress has been made, especially with
regard to molecules involved in recognition and ingestion of apoptotic cells. However, less
is known about genes that are regulated in phagocytes during efferocytosis. Therefore, in
this study, we performed a microarray to identify transcriptionally regulated genes and
to evaluate their effects on efferocytosis. Mcp-1 was transcriptionally modulated during
efferocytosis. It was upregulated in phagocytes incubated with apoptotic cells and this
was dependent on degradation of apoptotic cells in phagocytes. Upregulation of Mcp-1 in
phagocytes augmented secretion of Mcp-1, which promoted phagocyte chemoattraction.
Depletion of Mcp-1 or Ccr2, the receptor for Mcp-1, in phagocytes did not alter their
intrinsic efferocytosis activity; however, clearance of apoptotic cells was less efficient in
Mcp-1−/− and Ccr2−/− mice due to a defect in phagocyte chemoattraction. Taken together,
our findings imply that more phagocytes are recruited to apoptotic cells being engulfed
through the Mcp-1-Ccr2 axis and that this facilitates clearance of apoptotic cells.

2. Materials and Methods
2.1. Reagents

The antibodies used in this study were anti-Ccr2 antibody ((NBP1-48338, Novus,
St Charles, MO, USA), normal rabbit IgG (0111-01, SouthernBiotech, Birmingham, AL,
USA), anti-CD16/32 antibody (#101302, BioLegend, San Diego, CA, USA), Goat anti-rabbit
Alexa Fluor 488 (A11008, Invitrogen, Waltham, MA, USA), PE anti-mouse F4/80 (#123110,
BioLegend, USA) and FITC anti-mouse F4/80 (#123108, BioLegend, USA).

Inhibitors and other reagents used in this study were Cytochalasin D (C8273-1MG,
Sigma-Aldrich, Burlington, MA, USA), bafilomycin A1 (ab120497, Abcam, Waltham, MA,
USA), apyrase (M0398S, NEB, Ipswich, MA, USA), PS beads (P-BOPS, Echelon Biosciences,
Salt Lake City, UT, USA), TAMRA-SE (C1171, Life Technologies, Waltham, MA, USA),
Dexamethasone (D1756-500MG, Sigma-Aldrich, USA), CellTrackerTM Green CMFDA dye
(C7025, Thermo Fisher Waltham, MA, USA).

2.2. Mice

C57BL/6 were purchased from Taconic bioscience. Tim-4−/− mice (RBRC04895) were
obtained from Riken BioResource Center (Tsukuba, Japan). Mertk−/− and Ccr2RFP mice
were purchased from Jackson Laboratory, USA. Mcp-1−/− mice were a generous gift from
SungHoon Back at University of Ulsan. All mice were maintained and housed in equipped
animal facility with temperature at 20–25 ◦C and humidity at 30–70%, under the same
dark/light cycle (12:12). All experiments using mice were approved by the animal care
and ethics committees of GIST in accordance with the national institutes of health guide
for the care and use of laboratory animals.
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2.3. Quantitative PCR

Total RNA from BMDMs incubated with or without apoptotic thymocytes was ex-
tracted using RNeasy Plus Mini Kit (74136, Qiagen, Dusseldorf, Germany). After that,
cDNA was synthesized with SuperScript® III First-Strand Synthesis System (18080-051,
Invitrogen, Waltham, MA, USA). The levels of the indicated transcripts were measured
using StepOnePlus real-time PCR system (Applied Biosystem, Waltham, MA, USA).

2.4. Preparation of Apoptotic Cells

Apoptotic Jurkat cells were prepared by irradiating Jurkat cells in DPBS with 100 mJ/cm2

ultraviolet-C (UVC). The equal volume of complete RPMI medium was immediately added
and the cells were further incubated at 37 ◦C for 2 h. Apoptotic thymocytes were prepared
as previously described. Briefly, thymocytes derived from 4- to 6-week-old C57BL/6 mice
were stained with 50 µM TAMRA-SE or 0.5 µM CellTracker for 30 min and washed with
RPMI medium containing 10% serum. Then, apoptosis in thymocytes was induced using
50 µM dexamethasone at 37 ◦C for 4 h in a 5% CO2 incubator.

2.5. ELISA

Peritoneal macrophages derived from the indicated mice or BMDMs were incubated
with apoptotic Jurkat cells, PS beads, or PS liposomes in the absence or presence of
Mfge8D89E (10 µg/mL), cytochalasin D, or bafilomycin A1 for 8 h. Conditioned medium
from the cells was collected, and Mcp-1 or Mcp-3 was measured using ELISA kit (900-K126
and 900-K123, PeproTech, Cranbury, NJ, USA) and ABTS ELISA buffer kit (900-K00, Pepro-
Tech, Cranbury, NJ, USA) according to the manufacturer’s protocol. Briefly, a 96-well plate
was coated with an Mcp-1- or Mcp-3-capturing antibody for 12 h and blocked by blocking
solution containing 1% BSA in PBS. One-hundred microliters of conditioned medium was
added to the plate. After that, a detection antibody—avidin-HRP—and ABTS substrate
were sequentially added and incubated for 2 h, 30 min, and 30 min, respectively. Fluores-
cence was measured using a microplate reader (VersaMax, Molecular Devices, San Jose,
CA, USA).

2.6. Efferocytosis Assay

Efferocytosis assay was performed as previously described [24]. Basically, peritoneal
macrophages derived from the indicated mice were incubated with TAMRA-labeled (C1171,
Life Technologies, USA) apoptotic thymocytes for 15 min. A ratio of 1:10 (phagocytes to
apoptotic cells) was used. To validate the effects of cytochalasin D, bafilomycin A1, or
Mcp-1 on efferocytosis, the phagocytes were incubated with TAMRA-stained apoptotic
thymocytes in the presence or absence of cytochalasin D for 8 h, bafilomycin A1 for 8 h,
or Mcp-1 for 15 min. After that, the phagocytes were extensively washed with ice-cold
PBS, trypsinized, and analyzed by flow cytometry (BD FACS Canto II, Franklin Lakes, NJ,
USA). For in vivo efferocytosis assay, 1 × 107 of TAMRA-labeled apoptotic thymocytes
in 300 µL PBS were intraperitoneally injected into 8–10-week-old mice. Two hours after
injection, peritoneal exudates were collected and stained with an FITC-conjugated anti-
F4/80 antibody and analyzed by flow cytometry. TAMRA positive and F4/80 negative
cells were considered as unengulfed apoptotic cells which were counted using Sphero
AccuCount particles (ACBP-50-10, Spherotech, Lake Forest, IL, USA).

2.7. Migration Assay

Transwell migration assays were performed by applying 100 µL of THP-1 cells at
2 × 106/mL to the upper chamber as the conditioned medium in the lower chamber
(600 µL) of 8 µm pore size transwells (35224, SPL, Pocheon, Korea) at 37 ◦C for 6 h. The
number of migrated THP-1 cells was manually determined using hemocytometer and the
percentage of migrated cells was calculated as the percentage of input cells. To disrupt
the gradient of Mcp-1, recombinant Mcp-1 (50 ng/mL) was added to the upper chamber
with THP-1 cells. 0.025 units/mL apyrase (M0398S, NEB, Ipswich, MA, USA) was used
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for 5 min at room temperature to remove nucleotides in conditioned medium, and an
anti-CCR2 antibody (5 µg) was pre-incubated with THP-1 cells for 30 min.

2.8. Ccr2 Positive Cell Recruitment

Unstained apoptotic cells (1 × 107) in 300 µL PBS were intraperitoneally injected into
8–10-week-old WT and Mcp-1−/− or Ccr2+/− and Ccr2−/− Mice. Two hours after injection,
peritoneal exudates were collected, stained with anti-Ccr2 and PE- or FITC-conjugated
anti-F4/80 antibodies, and analyzed by flow cytometry. The relative number of Ccr2 or RFP
positive cells were counted using Sphero AccuCount particles (ACBP-50-10, Spherotech,
Lake Forest, IL, USA).

2.9. Statistical Analysis

All data are shown as mean ± standard deviation. Each experiment was repeated at
least three times independently. Data were analyzed using the GraphPad Prism 7 software
(Prism 7, GraphPad Software, La Jolla, CA, USA). It was considered that differences were
statistically significant when the p-values were less than 0.05.

3. Results
3.1. Phagocytes Release Mcp-1 during Engulfment of Apoptotic Cells

To identify genes that are modulated during efferocytosis, we performed a microar-
ray in which RNA from bone marrow-derived macrophages (BMDMs) incubated with
apoptotic thymocytes was compared with that from BMDMs not incubated with apoptotic
thymocytes. In total, 283 genes were upregulated, and 80 genes were downregulated more
than 1.5-fold in BMDMs incubated with apoptotic cells compared with control BMDMs
(Figure 1a). Subsequent analysis revealed that expression of genes linked to cell differentia-
tion, cell migration, cell proliferation, and immune responses was modulated in phagocytes
incubated with apoptotic cells (Figure 1b). We decided to study the functional relevance of
genes belonging to the chemokine family, which is related to cell migration, for efferocytosis
because their function in this process is unknown. Three genes—Mcp-1, Mcp-3, and Cxcl2—
were selected because they were upregulated to a relatively large extent in the microarray
analysis and their transcripts were undetectable in thymocytes (Supplementary table).
Quantitative PCR analysis confirmed the transcriptional changes of Mcp-1 and Mcp-3, but
not of Cxcl2, detected in the microarray (Figure 1c). These two genes were also upregulated
in peritoneal macrophages incubated with apoptotic cells. Moreover, they were upregu-
lated more in peritoneal macrophages than in BMDMs (Figure 1d). Notably, expression of
Mcp-1 and Mcp-3 was only marginally detected in apoptotic thymocytes, suggesting that
these two genes are upregulated specifically in phagocytes. We next tested whether the
increased levels of these two transcripts lead to increases of Mcp-1 and Mcp-3 at the protein
level using an enzyme-linked immunosorbent assay (ELISA). Unexpectedly, only the level
of Mcp-1, not of Mcp-3, was appreciably higher in BMDMs incubated with apoptotic cells
than in control BMDMs (Figure 1e). Due to the distinctive upregulation of Mcp-1 and Mcp-3
in peritoneal macrophages incubated with apoptotic cells, we also investigated whether
the levels of Mcp-1 and Mcp-3 are increased in peritoneal macrophages incubated with
apoptotic cells. Mcp-1 was secreted by peritoneal macrophages in the basal state, whereas
Mcp-3 was undetectable. When peritoneal macrophages were incubated with apoptotic
cells, secretion of both Mcp-1 and Mcp-3 appreciably increased, and 10-fold more Mcp-1
than Mcp-3 was secreted (Figure 1f). These data imply that phagocytes release Mcp-1 and
Mcp-3 during efferocytosis. Mcp-1 was significantly upregulated in both BMDMs and
peritoneal macrophages at the transcript and protein levels, and phagocytes incubated
with apoptotic cells produced much more Mcp-1 than Mcp-3; therefore, we focused mainly
on Mcp-1 hereafter.
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Figure 1. Mcp-1 secretion by phagocytes is augmented during efferocytosis. (a) Schematic diagram showing how genes
regulated during efferocytosis were identified. BMDMs were incubated with or without apoptotic thymocytes for 2 h and
then transcriptional changes were compared between these two samples. The numbers of up- and downregulated genes in
phagocytes incubated with apoptotic cells compared with control phagocytes are shown. (b) Gene ontology analysis. Genes
up- or downregulated more than 1.5-fold in phagocytes incubated with apoptotic cells compared with control phagocytes
were categorized according to their function. BMDMs (c) or peritoneal macrophages (d) were incubated with or without
apoptotic thymocytes for 2 h, and the transcript levels of Mcp-1, Mcp-3, and Cxcl2 (c) or Mcp-1 and Mcp-3 (d) were measured
using quantitative RT-PCR. BMDMs (e) or peritoneal macrophages (f) were incubated with or without apoptotic Jurkat for
8 h, and then conditioned medium from phagocytes was collected. The protein levels of Mcp-1 and Mcp-3 were measured
using an ELISA. All data are shown as the mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001. NS, not significant; PM,
peritoneal macrophages; AC, apoptotic cells.

3.2. Phagolysosomal Acidification Is Necessary for Mcp-1 Secretion

Next, we investigated the mechanism by which secretion of Mcp-1 from phagocytes
increases during efferocytosis. We first investigated whether a factor in the conditioned
medium of apoptotic cells (apoptotic supernatants) stimulates secretion of Mcp-1. Mcp-1
secretion was not elevated by apoptotic supernatants but was robustly increased by apop-
totic cells (Figures 2a and S1), suggesting that apoptotic cells are crucial for release of
Mcp-1 by phagocytes. Thus, we next investigated whether binding of apoptotic cells to
phagocytes is important for Mcp-1 secretion. To this end, binding of apoptotic cells to
phagocytes was blocked by Mfge8D89E, which binds to PS on apoptotic cells but not to
integrins on phagocytes [25]. Treatment of apoptotic cells with Mfge8D89E abolished not
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only efferocytosis, but also the elevation of Mcp-1 secretion by peritoneal macrophages
(Figures 2b and S2). In addition, peritoneal macrophages derived from Tim-4−/− and
Mertk−/− mice secreted substantially less Mcp-1 than wild type (WT) controls when they
were incubated with apoptotic cells (Figure 2c). These data imply that PS recognition
is necessary for Mcp-1 secretion during efferocytosis. We next investigated whether PS
recognition is sufficient for Mcp-1 secretion. To address this, we allowed phagocytes to
bind to apoptotic cells, but not to internalize them, using cytochalasin D, an inhibitor of
actin polymerization. Cytochalasin D reduced Mcp-1 secretion by peritoneal macrophages
incubated with apoptotic cells in a dose-dependent manner, which was paralleled by a
similar decrease in the percentage of phagocytes engulfing apoptotic cells (Figure 2d,e).
This suggests that binding of apoptotic cells to phagocytes is insufficient to induce Mcp-1
secretion and that internalization of apoptotic cells or a subsequent step(s) is necessary for
elevation of Mcp-1 secretion. The level of Mcp-1 secretion was commensurate with the
percentage of phagocytes engulfing apoptotic cells, and PS recognition was necessary but
not sufficient for elevation of Mcp-1 secretion. Therefore, degradation of apoptotic cells in
phagocytes is likely crucial for elevation of Mcp-1 secretion. To investigate this, we blocked
phagolysosomal degradation of apoptotic cells using bafilomycin A1, which inhibits acidi-
fication of phagolysosomes and thus degradation of phagolysosomal cargos. Bafilomycin
A1 diminished Mcp-1 secretion by peritoneal macrophages incubated with apoptotic cells
without affecting the efficiency of efferocytosis (Figure 2f,g), implying that degradation
of apoptotic cells in phagocytes is required for elevation of Mcp-1 secretion during ef-
ferocytosis. This notion was supported by experiments using indigestible or simplified
surrogates mimicking apoptotic cells, namely, PS beads and PS liposomes, respectively.
Incubation with neither PS beads nor PS liposomes elevated Mcp-1 secretion by peritoneal
macrophages (Figure 2h,i). In summary, these data suggest that phagolysosomal degra-
dation of apoptotic cells is necessary for elevation of Mcp-1 secretion by phagocytes. In
addition, they indicate that engulfment receptors for apoptotic cells are not directly linked
to elevation of Mcp-1 secretion during efferocytosis and that Tim-4−/− and Mertk−/−

peritoneal macrophages secrete less Mcp-1 because they contain fewer engulfed apoptotic
cells than control phagocytes.

3.3. Mcp-1 Promotes Phagocyte Chemoattraction

Mcp-1 is a member of the CC chemokine family that mediates chemotaxis and in-
duces monocyte chemoattraction [26]. Thus, we hypothesized that, in addition to find-me
signals, Mcp-1 secreted by phagocytes engulfing apoptotic cells also functions as a chemoat-
tractant to recruit more phagocytes to sites where apoptotic cells are being cleared. To
test this, we first investigated whether Mcp-1 secreted by engulfing phagocytes induces
phagocyte migration using a transwell migration assay. Conditioned medium from phago-
cytes incubated with apoptotic cells enhanced migration of THP-1 monocytes, whereas
conditioned medium from Mcp-1−/− peritoneal macrophages incubated with apoptotic
cells did not (Figure 3a). Addition of purified Mcp-1 to the upper chamber of the tran-
swell abrogated migration of THP-1 cells to the lower chamber (Figure 3b), suggesting
that Mcp-1 in conditioned medium induces phagocyte migration. Noticeably, the en-
hanced migration of phagocytes was not caused by nucleotides such as ATP released from
apoptotic cells that function as chemoattractants because apyrase, a ATP-diphosphatase,
had no effect on cell migration induced by conditioned medium, and the level of ATP
was much lower in conditioned medium than in apoptotic supernatants, which is likely
due to degradation of ATP by CD39, an ectonucleotidase that catalyzes hydrolysis of
triphosphonucleosides to the monophosphonucleoside derivative, expressed in peritoneal
macrophages (Figure 3c–e) [27,28]. Ccr2 is the receptor for Mcp-1 and is highly expressed
in monocytes [29]. Thus, we next investigated whether the enhanced migration of THP-1
cells to conditioned medium is dependent on Ccr2. To this end, we disabled Ccr2 using
an anti-Ccr2 antibody and performed a transwell migration assay. Blockade of Ccr2 with
an anti-Ccr2 antibody appreciably diminished migration of THP-1 cells to conditioned
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medium (Figure 3f). These data suggest that phagocyte migration is induced through the
Mcp-1-Ccr2 axis during clearance of apoptotic cells.

Figure 2. Degradation of apoptotic cells in phagocytes is necessary for Mcp-1 secretion. (a) Peritoneal macrophages were
incubated with apoptotic cells or apoptotic supernatants for 8 h. The levels of Mcp-1 in conditioned medium from the cells
were measured using an ELISA. (b) Peritoneal macrophages were incubated with apoptotic cells treated with or without
Mfge8D89E (10 µg/mL) for 8 h. The levels of Mcp-1 were measured as in panel (a). (c) Peritoneal macrophages derived from
WT, Tim-4−/−, or Mertk−/− mice were incubated with apoptotic cells for 8 h and then the levels of Mcp-1 in conditioned
medium from the cells were measured using an ELISA. (d,e) Peritoneal macrophages were incubated with apoptotic cells in
the presence of the indicated concentrations of cytochalasin D for 8 h. The levels of Mcp-1 in conditioned medium (d) and
efferocytosis by the cells (e) were measured. Peritoneal macrophages were incubated with apoptotic cells in the presence
of 0.5 µM (f) or the indicated concentrations (g) of bafilomycin A1. The levels of Mcp-1 in conditioned medium (f) and
efferocytosis by the phagocytes (g) were evaluated. (h,i) Peritoneal macrophages were incubated with apoptotic cells, PS
beads, or PS liposomes for 8 h. The levels of Mcp-1 in conditioned medium were measured as in a. All data are shown as
the mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001. NS, not significant; PM, peritoneal macrophages; AC, apoptotic cells;
Sup, supernatants; CytoD, cytochalasin D; Baf A1, bafilomycin A1; PS, phosphatidylserine.

3.4. Clearance of Apoptotic Cells Is Impaired in Mcp-1−/− and Ccr2−/− Mice

Next, to investigate the relevance of Mcp-1 to efferocytosis, we first evaluated its
effects on efferocytosis. Efferocytosis by Mcp-1−/− peritoneal macrophages was similar
to that by WT peritoneal macrophages, as indicated by the percentage and MFI (mean
fluorescence intensity, representing the relative number of apoptotic cells per phagocyte) of
phagocytes that engulfed apoptotic cells (Figure 4a). Moreover, addition of purified Mcp-1
did not affect the efficiency of efferocytosis by peritoneal macrophages (Figure 4b). These
data imply that Mcp-1 is unrelated to the intrinsic efferocytosis capability.

A crucial feature of efferocytosis is recruitment of phagocytes to sites where apoptotic
cells are generated to facilitate their clearance, which is achieved by find-me signals re-
leased from apoptotic cells. Mcp-1 was released from phagocytes during efferocytosis and
enhanced phagocyte chemoattraction, and therefore may play a similar role as find-me
signals to facilitate recruitment of phagocytes and thus clearance of apoptotic cells. Thus,
we next investigated whether the inability of Mcp-1−/− phagocytes to induce cell migration
is linked to a defect of apoptotic cell clearance in vivo, although the intrinsic efferocytosis
ability of Mcp-1−/− peritoneal macrophages remains unchanged. To this end, apoptotic
cells were intraperitoneally injected and unengulfed apoptotic cells were measured. There
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were more unengulfed apoptotic cells in the Mcp-1−/− peritoneum than in the WT peri-
toneum (Figures 4c and S3a). Interestingly, fewer Ccr2-positive cells were recruited to the
Mcp-1−/− peritoneum than to the WT peritoneum (Figure 4d), which correlated with the
number of unengulfed apoptotic cells, implying that recruitment of fewer phagocytes to
the Mcp-1−/− peritoneum leads to an increase in unengulfed apoptotic cells. Furthermore,
we validated the defect of apoptotic cell clearance in Mcp-1−/− mice using Ccr2−/− mice.
Ccr2 deletion is indicated by RFP expression in cells expressing Ccr2. Using this feature,
we evaluated recruitment of Ccr2-expressing cells to the peritoneum after intraperitoneal
injection of apoptotic cells. Efferocytosis by Ccr2−/− peritoneal macrophages was compa-
rable with that by Ccr2+/− peritoneal macrophages (Figure 4e). However, there were more
unengulfed apoptotic cells in the Ccr2−/− peritoneum than in the Ccr2+/− peritoneum
(Figures 4f and S3b). In addition, similar to Mcp-1−/− mice, fewer RFP-positive cells
were recruited to the Ccr2−/− peritoneum than to the Ccr2+/− peritoneum (Figure 4g),
suggesting that phagocytes are recruited through the Mcp-1-Ccr2 axis during efferocytosis.

Figure 3. Conditioned medium from phagocytes during efferocytosis attracts monocytes in a Mcp-1-
dependent manner. (a) Migration of THP-1 monocytes through a transwell to conditioned medium
from WT or Mcp-1−/− peritoneal macrophages incubated with or without apoptotic cells was
measured. The percentages of input monocytes that migrated to the lower chamber are shown.
(b) Pure Mcp-1 (50 ng/mL) was added to the upper well along with THP-1 cells, and migration was
assessed toward conditioned medium from phagocytes incubated with apoptotic cells placed in the
lower chamber. (c) Conditioned medium derived from phagocytes incubated with apoptotic cells
was treated with or without apyrase, and then migration of THP-1 cells toward the conditioned
medium was assessed. (d) ATP concentration in conditioned medium derived from phagocytes
incubated with or without apoptotic cells were measured using a colorimetric method. (e) Peritoneal
macrophages were stained with a PE-conjugated anti-CD39 antibody or isotype control antibody, and
analyzed by flow cytometry. (f) THP-1 cells were pretreated with an anti-Ccr2 antibody. Migration of
THP-1 cells toward conditioned medium derived from phagocytes incubated with apoptotic cells
was evaluated as in a. All data are shown as the mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001. NS,
not significant; CM, conditioned medium; AC, apoptotic cells; Ab, antibody.

Collectively, transcriptional programs are modulated in phagocytes engulfing apop-
totic cells, and this facilitates prompt and continuous clearance of apoptotic cells. Our
observations demonstrate a mechanism by which this is achieved. Specifically, phagocyte
chemoattraction is induced through the Mcp-1-Ccr2 axis during efferocytosis, resulting
in recruitment of more phagocytes to apoptotic cells being phagocytosed and efficient
clearance of these cells.
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Figure 4. Clearance of apoptotic cells is impaired in Mcp-1−/− and Ccr2−/− mice. (a) Peritoneal macrophages derived from
WT or Mcp-1−/− mice were incubated with TAMRA-labeled apoptotic thymocytes for 15 min. The percentages and MFIs of
phagocytes engulfing apoptotic cells were measured by flow cytometry. (b) Peritoneal macrophages were incubated with
TAMRA-labeled apoptotic thymocytes in the absence or presence of pure Mcp-1 for 15 min. Phagocytes engulfing apoptotic
cells were analyzed by flow cytometry. (c) TAMRA-labeled apoptotic thymocytes were intraperitoneally injected into WT or
Mcp-1−/− mice. Two hours after injection, peritoneal exudates were collected, stained with an anti-F4/80 antibody, and
analyzed by flow cytometry. The relative number of TAMRA-positive and F4/80-negative cells per counting bead was
determined. (d) Apoptotic thymocytes were intraperitoneally injected into WT or Mcp-1−/− mice. Two hours after injection,
peritoneal exudates were stained with an anti-Ccr2 antibody and analyzed by flow cytometry. The relative number of
Ccr2-positive cells per counting bead was determined. (e) Peritoneal macrophages derived from Ccr2+/− or Ccr2−/− mice
were incubated with CellTracker-labeled apoptotic thymocytes and analyzed by flow cytometry. (f) CellTracker-labeled
apoptotic thymocytes were intraperitoneally injected into Ccr2+/− or Ccr2−/− mice. Two hours after injection, peritoneal
exudates were stained with an anti-F4/80 antibody and analyzed by flow cytometry. The relative number of CellTracker-
positive and F4/80-negative cells per counting bead was determined. (g) Apoptotic thymocytes were intraperitoneally
injected into Ccr2+/− or Ccr2−/− mice. Two hours after injection, peritoneal exudates were collected and stained with an
anti-F4/80 antibody. The relative number of RFP-positive cells per counting bead was determined. Red circles indicate
RFP (Ccr2)-positive cells. All data are shown as the mean ± SEM. * p < 0.05, ** p < 0.01. NS, not significant; PM, peritoneal
macrophages; AC, apoptotic cells.

4. Discussion

Apoptotic cells are not passive cargos engulfed by phagocytes, but actively play roles
for efficient efferocytosis. They secrete various molecules, including nucleotides, S1P, and
lactoferrin, which induce chemotaxis [3,30–32]. These molecules recruit specific profes-
sional phagocytes such as monocytes and macrophages but repel undesired phagocytes
such as neutrophils and help phagocytes find apoptotic cells promptly, which contributes
to efficient clearance of apoptotic cells. In this study, we showed that secretion of Mcp-1
by phagocytes is induced during efferocytosis, and that this leads to recruitment of more
phagocytes to sites where apoptotic cells are engulfed and thus enhances clearance of these
cells. Thus, Mcp-1 functions similarly to find-me signals. Mcp-1 is released by phagocytes
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instead of apoptotic cells and can therefore be called a ‘help-me’ signal. Clearance of
apoptotic cells was less efficient in Ccr2−/− mice than in Mcp-1−/− mice. This phenomenon
may be due to the redundancy of chemokines released by phagocytes engulfing apop-
totic cells. Secretion of Mcp-3, as well as Mcp-1, was elevated in phagocytes engulfing
apoptotic cells (Figure 1f). In addition, phagocytes engulfing apoptotic cells may release
other chemokines besides Mcp-1 and Mcp-3. Indeed, Ccr2 is a promiscuous receptor for
a variety of chemokines including CC and CXC chemokines [33]. Thus, Ccr2 may affect
phagocytic recruitment much more than a chemokine that binds to it, resulting in the
more severe defect of apoptotic cell clearance in Ccr2−/− mice. It remains to be elucidated
whether phagocytes engulfing apoptotic cells secrete other chemokines that bind to Ccr2
as a receptor.

A recent study showed that apoptotic cell-derived metabolites metabolized in phago-
cytes upregulate Dbl by stabilizing Dbl mRNA, leading to engulfment of multiple apoptotic
cells by phagocytes [34]. In this study, we showed that indigestible or simplified surrogates
of apoptotic cells, namely, PS beads and PS liposomes, respectively, failed to elevate Mcp-1
secretion. In addition, phagolysosomal degradation of apoptotic cells was necessary for
elevation of Mcp-1 secretion by phagocytes. These findings indicate that metabolites de-
rived from apoptotic cells likely regulate the level of Mcp-1 and that upregulation of Mcp-1
during efferocytosis can be due not only to transcriptional regulation but also alteration of
Mcp-1 stability.

In summary, our observations suggest that during efferocytosis, phagocytes release
Mcp-1 to recruit more phagocytes to sites where apoptotic cells are being engulfed and thus
facilitate clearance of these cells. Due to the correlation between defects in efferocytosis
and autoimmune-related diseases, phagocyte chemoattraction through the Mcp-1-Ccr2
axis may have implications to develop therapeutics for these diseases.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10113115/s1, Figure S1: The percentages of apoptotic Jurkat cells after UV irradiation,
Figure S2: Mfge8D89E abrogates efferocytosis by peritoneal macrophages, Figure S3: Clearance of
apoptotic cells is impaired in Mcp-1−/− and Ccr2−/− mice, Table S1: upregulated and migration-
related genes.
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