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Abstract: Traumatic brain injury (TBI) represents a major cause of morbidity and disability and is a
risk factor for developing neurodegenerative diseases, including Alzheimer’s disease (AD). However,
no effective therapies are currently available for TBI-induced AD-like disease. Endocannabinoids are
endogenous lipid mediators involved in a variety of physiological and pathological processes. The
compound 2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid with profound
anti-inflammatory and neuroprotective properties. This molecule is predominantly metabolized
by monoacylglycerol lipase (MAGL), a key enzyme degrading about 85% of 2-AG in the brain.
Studies using animal models of inflammation, AD, and TBI provide evidence that inactivation of
MAGL, which augments 2-AG signaling and reduces its metabolites, exerts neuroprotective effects,
suggesting that MAGL is a promising therapeutic target for neurodegenerative diseases. In this
short review, we provide an overview of the inhibition of 2-AG metabolism for the alleviation of
neuropathology and the improvement of synaptic and cognitive functions after TBI.

Keywords: endocannabinoid; cannabinoid receptor; traumatic brain injury; Alzheimer’s disease;
monoacylglycerol lipase; proliferator-activated receptor γ

1. Introduction

Traumatic brain injury (TBI) is defined as a disruption of brain function caused by
external forces, including falls, blows, or blasts. TBI is one of the most challenging health
concerns and a major cause of trauma-related morbidity and mortality. Each year, ap-
proximately 69 million individuals suffer TBI worldwide [1]. Depending on whether the
skull is broken, TBI can be classified into two types: closed-head TBI and penetrating
TBI (also called open TBI). Closed-head TBI is the most common type among patients
with TBI and is generally caused by a blunt impact in vehicle accidents and contact sports
activities. Based on its severity, determined using the Glasgow Coma Scale (GCS) scores,
TBI is also classified as mild, moderate, or severe [2]. Clinical symptoms of TBI are coma,
headache, seizures, amnesia, and behavioral changes. TBI not only causes immediate tissue
damages, but also induces potential long-term biochemical and neuropathological changes,
including oxidative stress, excitotoxicity, disruption of blood–brain barrier (BBB) perme-
ability, neuroinflammatory responses, and cognitive deficits [3]. Most of the symptoms
happen seconds to hours following TBI, and some symptoms may persist for days, months,
or years [4,5]. It has been proposed that TBI is an important risk factor for developing
Alzheimer’s disease (AD), stroke, Parkinson’s disease (PD), and epilepsy [6–15].

The rain damage following TBI can be divided into primary and secondary injury
(Figure 1). Primary injury results directly from the external mechanical disruption of brain
tissue, occurs at the time of the insult, and is usually not alterable. Secondary injury refers
to a cascade of biochemical, cellular, and pathological processes, including inflammatory
response and neuronal degeneration in subcortical and deep white matter tissue [16]. The
secondary injury is usually reversible and occurs within seconds or minutes following the
primary damage. However, these secondary injuries can persist for minutes, days, or years.
Compared to the primary injury, the secondary injury is revisable and thus provides a
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window for medical interventions. The inflammatory response is one of the major features
of brain damage in the case of secondary injury. Neuroinflammation can induce and
interact with many cellular and biochemical processes and consequently result in neuronal
degeneration, phosphorylation of tau proteins, aggregation of TAR DNA-binding protein
43 (TDP-43), synaptic impairments, cognitive decline, and eventually dementia (Figure 1).
Therefore, resolving neuroinflammation may prevent or delay secondary injury-induced
neuropathological events. Endocannabinoids are endogenous cannabinoids with anti-
inflammatory properties. In particular, 2-arachidonoylglycerol (2-AG), the most abundant
endogenous cannabinoid, displays profound anti-inflammatory and neuroprotective effects
both in vitro and in vivo [17–23]. Thus, boosting 2-AG signaling is likely an ideal approach
to the resolution of neuroinflammation following TBI [24].
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Figure 1. A schematic representation of brain damage following TBI, which causes primary injury
and secondary injury. Primary injury occurs immediately after TBI, and secondary injury is initiated
from minutes to hours following TBI. Secondary injury involves a cascade of pathophysiological
processes including neuroinflammatory responses, tau phosphorylation, TDP-43 aggregation, and Aβ

accumulation. These neuropathological changes following TBI lead to neurodegeneration, synaptic
dysfunction, and cognitive decline.

2. Endocannabinoid 2-AG Synthesis and Metabolism

The endocannabinoid 2-AG is the second identified endocannabinoid and a full ag-
onist for cannabinoid receptors 1 and 2 (CB1 and CB2) [25,26]. While 2-AG is produced
through several pathways, diacylglycerol lipases (DAGL), including DAGLα and β, are
the main enzyme for the synthesis of 2-AG from diacylglycerol (DAG). Recent studies
provide insights into cell type-specific synthesis of 2-AG [27,28]. For instance, 2-AG in
neurons and astrocytes is primarily synthesized by DAGLα, while DAGLβ is responsible
for 2-AG formation in microglial cells [27,28]. The compound 2-AG is an unstable lipid and
is rapidly degraded by several enzymes, including monoacylglycerol lipase (MAGL), α/β
hydrolase domain-containing proteins 6 and 12 (ABHD6/12), cyclooxygenase-2 (COX-2),
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cytochromes, and lipoxygenases (Figure 2). Although 2-AG can be degraded by these
enzymes upon its formation, it is predominantly metabolized by MAGL, a serine hydrolase
firstly purified from the rat adipose tissue in 1976 [29]. It has been estimated that 85%
of 2-AG in the brain is degraded by MAGL [30,31]. MAGL plays an important role in
lipid metabolism and is highly expressed in neurons and astrocytes in the brain. It is
clear now that MAGL is the primary enzyme hydrolyzing 2-AG in neurons and astrocytes,
while 2-AG in microglial cells is largely degraded by ABHD12 [28]. There is a 3 to 5-fold
increase in brain 2-AG content in astrocytic and neuronal MAGL knockout animals, respec-
tively [27]. However, no significant differences in the brain levels of 2-AG were observed
between normal control and microglial MAGL knockout mice [27]. These studies provide
important information indicating that synthesis and metabolism of 2-AG in the brain are
cell type-specific, which may underlie their different functional roles in physiological and
neuropathological processes.
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Figure 2. Major pathways of 2-AG synthesis and metabolism. Membrane phospholipids are con-
verted to diacylglycerol (DAG) by phospholipase C (PLC) and then to 2-AG by diacylglycerol lipases
(DAGLα and β). The compound 2-AG is hydrolyzed by the enzymes monoacylglycerol lipase
(MAGL) and α/β hydrolase domain-containing proteins 6 and 12 (ABHD6/12) to glycerol and
arachidonic acid (AA) and oxidatively metabolized by cyclooxygenase-2 (COX-2) to form a new type
of prostaglandin glycerol esters (PG-Gs). AA is a precursor of prostaglandins (PGs) through the en-
zymes COX-1/2 and of hydroperoxyeicosatetraenoic acid (HPETE) through the enzyme arachidonate
5-lipoxygenase (LOX) to form leukotrienes.

The immediate metabolites of 2-AG are glycerol and arachidonic acid (AA, Figure 2).
Arachidonic acid is a precursor of prostaglandins (PGs) through cyclooxygenase-1 (COX-1)
and COX-2 and of leukotrienes (LT4s: A4 to E4) through the enzyme arachidonate 5-
lipoxygenase (LOX, Figure 2). AA-derived prostaglandins and leukotrienes are proinflam-
matory and neurotoxic [32], while 2-AG displays anti-inflammatory and neuroprotective
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properties [17–20]. Besides PGs and LT4s, lipoxins (LXs), another class of derivatives from
AA, display anti-inflammatory properties. LXs, including LXA4 and LXB3, are synthesized
from AA through two major routes involving the cooperation of three major enzymes, in-
cluding 5-LOX, 15-LOX, and 12-LOX [33,34]. Their derivatives (LXs) and aspirin-triggered
LXs (ATLs) are synthesized from AA by 15-LOX and acetylated COX-2. Both LXs and
ATLs can act on several types of receptors, including G protein-coupled lipoxin A4 receptor
ALX/formyl peptide receptors (FPR2), aryl hydrocarbon receptors, and G protein-coupled
receptor 32 [35–37]. From this point of view, MAGL is likely an ideal therapeutic target for
neurodegenerative diseases [38–40].

3. Resolving Neuroinflammation and Maintaining the Integrity of the Blood–Brain
Barrier by the Inhibition of 2-AG Metabolism in TBI

Neuroinflammation instigated by TBI is a complex immune process resulting from
a mechanical insult (blast, diffuse, or focal concussion) and depending on the degree of
the insult (severe, moderate or mild) and is one of the neuropathological features in TBI.
Neuroinflammatory responses occur immediately following TBI and thus are an important
trigger of progressive brain damage. TBI induces widespread neuroinflammation in the
brain and is characterized by the entering of peripheral monocytes due to increased per-
meability of the blood–brain barrier (BBB), activation of resident microglia, and release of
inflammatory cytokines, chemokines, and prostaglandins [41]. Microglia, developed from
macrophages or monocytes, are the major resident immune cells in the brain. Quiescent
microglia transform into activated cells following an external injury, and this process is me-
diated by the generation and release of pro- and anti-inflammatory cytokines. Experimental
and clinical evidence indicate that microglia quickly transform into M1 pro-inflammatory
cells immediately following TBI or M2 anti-inflammatory cells that can release trophic fac-
tors including insulin-like growth factor-1 [42,43]. Although microglia may have beneficial
effects by clearing cell debris and dead cells, excessive production of pro-inflammatory
cytokines produced by activated microglia appears to contribute to the pathological pro-
gression in TBI [44]. Astrocytes are also an important component of neuroinflammatory
responses in TBI [45]. Interestingly, TBI-induced neuroinflammatory responses can be
mitigated by the inactivation of MAGL. It has been shown that expression of cytokines
(e.g., IL-1β, IL-6, TNFα), reactivity of astrocytes and microglia, and levels of nicotinamide
adenine dinucleotide phosphate oxidase (NOX2) and COX-2 are significantly reduced in
TBI animals treated with JZL184, a potent MAGL inhibitor [40,46,47]. Disruption of MAGL
function by JZL148 prevents 2-AG degradation and raises 2-AG levels in the brain. Inactiva-
tion of MAGL, in the meantime, also reduces 2-AG metabolites (e.g., prostaglandins) [27,48].
In particular, a large proportion of prostaglandins in the brain is derived from 2-AG [48]. It
is likely that enhanced 2-AG signaling and reduced PGs induced by MAGL inactivation
contribute to the resolution of neuroinflammation in TBI.

The anti-inflammatory effects of LXs and ATLs in TBI appear to be via binding to
FPR2 to suppress cytokines, including IL1β, IL6, and TNF, in mice [49]. While the amount
of LXs might be reduced by inactivation of MAGL, the overall effects of MAGL inactivation
are anti-inflammatory and neuroprotective, suggesting that enhanced 2-AG signaling by
MAGL inactivation plays a dominant role in the alleviation of TBI-induced neuropathology
and synaptic and cognitive deficits [24,40,50].

TBI, following even a mild head impact, could result in the breakdown of the BBB
and the subsequent brain entry of peripheral immune cells and plasma protein [51]. These
peripheral components can exacerbate neuroinflammation, excitotoxicity, and neurodegen-
eration in the brain after brain injury. Administration of exogenous 2-AG has been shown
to protect the BBB in an animal model of closed-head injury and suppress TBI-induced
expression of inflammatory cytokines [18,46]. Enhancement of endogenous 2-AG levels by
inhibition of 2-AG metabolism with WWL70, a selective ABHD6 inhibitor, prevented BBB
dysfunction following TBI, which was accompanied by attenuated neuronal degeneration,
neuroinflammation, and deficits in working memory performance [52]. Maintaining the
integrity of the BBB by the inhibition of 2-AG degradation was further confirmed by the
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inactivation of MAGL with JZL184 [46]. These animals also showed improved neurological
and behavioral recovery, as well as BBB integrity. Meanwhile, TBI-activated astrocytes and
microglia were also diminished in animals treated with JZL184 [46]. These studies pro-
vide evidence that inhibition of 2-AG metabolism prevents BBB dysfunction and resolves
neuroinflammation following TBI, which is key to preventing secondary/further brain
damage and neuropathological consequences.

4. Alleviation of TBI-Induced Neuropathology by Inactivation of MAGL

Hyperphosphorylated tau protein and aggregation of TDP-43 are neuropathological
consequences of TBI. Hyperphosphorylated tau is one of the neuropathological hallmarks
of AD and is the main component of neurofibrillary tangles (NFTs) [53–55]. In the nervous
system, tau proteins are abundantly found in neuronal axons, but they are also expressed
in somatodendritic compartments and in oligodendrocytes [56,57]. Generally, the binding
of tau to microtubules is modulated by phosphorylation and dephosphorylation. How-
ever, abnormal phosphorylation leads to the release of microtubule-bound tau and the
generation of NFTs. Increased tau phosphorylation has been demonstrated in models of
mild and severe TBI [58]. In a recent study, Edwards et al. reported that an increase in
tau accumulation was observed as early as one day after the initial injury in the cortex,
amygdala, hippocampal area, and brainstem, with robust deposition on the ipsilateral
side of the impact [59]. The robust deposition of tau on the contralateral side of the brain
appeared one week later. This suggests TBI as a risk factor for tauopathies through the
induction of tau hyperphosphorylation and aggregation. Hyperphosphorylated tau pro-
tein promotes NFTs accumulation in axons, resulting in impaired synaptic activity and
induction of cells death, which may exacerbate the secondary injury post TBI. For exam-
ple, C57Bl/6J mice inoculated with brain homogenates from TBI mice showed memory
deficits and widespread phosphorylated tau throughout the brain 4, 8, and 12 months
after inoculation [60]. Significant synaptic loss and reduction in postsynaptic density in
the hippocampus were also observed after inoculation of TBI-brain homogenates [60].
Therefore, preventing or limiting tau phosphorylation may promote recovery from TBI.
A previous study demonstrated that pharmacological inhibition of MAGL reduced the
levels of phosphorylated tau as well as of P25 and phosphorylated GSK3β, key players
in tau phosphorylation, 8 and 30 days after the first injury in a mouse model of repetitive
mild closed-head injury [40], suggesting that inhibition of 2-AG metabolism is capable of
suppressing tau phosphorylation. A later study in a tau animal model of AD supports this
notion. The authors showed that JZL184 significantly reduced the levels of phosphorylated
GSK3β and phosphorylated tau, including p-tauT181 and p-tau (Ser202, Thr205), and
improved spatial learning and memory retention in the animals [39].

Transactivation response DNA-binding protein 43 (TDP-43), which is expressed in
most tissues, regulates transcription and exon splicing via binding to both DNA and RNA.
In amyotrophic lateral sclerosis (ALS), TDP-43 is hyperphosphorylated, ubiquitinated,
cleaved into fragments (25 and 35 kDa) and mislocalized in the cytoplasm of neurons and
glial cells [61]. TDP-43 has been proved to be linked to amyotrophic lateral sclerosis (ALS)
and frontotemporal lobar degeneration (FTLD) [61]. It is also identified as an important
characteristic feature in several neurodegenerative diseases, including AD and PD [62–64].
Studies show that TDP-43 is a crucial disease-associated protein in repetitive or concussive
TBI. Increased TDP-43 breakdown fragments (35, 33, and 12 kDa) and redistributed TDP-43
from the nucleus to the cytoplasm are observed in TBI models [65,66]. Increased levels of
TDP-43 and its 35 kDa fragment are also present in the cerebrospinal fluid (CSF) of severe
TBI patients [67]. A clinical study reported that widespread TDP-43 accumulation occurred
in patients with chronic traumatic encephalopathy (CTE), a TBI-triggered neurodegener-
ative disease [66]. TDP-43 abnormality induced by TBI worsened the brain injury. For
instance, TBI aggravated cell death, TDP-43 abnormality, and cognitive impairments in
TDP-43A315T mice [65]. Our previous study also found that expression of TDP-43 was
persistently increased in the cortex and hippocampus in a mouse model of repetitive mild
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closed-head injury [40]. Importantly, this study revealed that pharmacological inactivation
of MAGL robustly reduced TDP-43 production, providing the first evidence that inhibition
of 2-AG metabolism prevents TBI-induced excessive formation of TDP-43, which, in turn,
promotes recovery from the secondary injury, thus preventing cognitive decline [40].

Aβ peptides are peptides constituted by 36–43 amino acids and the main component
of the amyloid plaques in the brain of patients with AD. Several lines of evidence from pre-
clinical and clinical studies indicate that accumulation of Aβ peptides occurs within hours
after brain injury and that Aβ is spread throughout the cerebral cortex [68]. Expression of
APP, β-secretase, and nicstrin (NCT, a component of γ-secretase), as well as formation of
Aβ are significantly increased in a mouse model of repetitive mild closed-head injury [40].
Rapid co-accumulation of APP with its cleavage enzymes (β-secretase and Presenilin-1)
and Aβ production also occur in patients dying within weeks after brain trauma [69]. The
produced Aβ is aggregated into plaques/oligomers, which causes apoptotic cell death,
chronic inflammation, and cognitive impairments. Thus, suppression of the accumulation
and deposition of Aβ will attenuate TBI-induced AD-like neuropathological changes. Our
previous study showed that inhibition of 2-AG metabolism by pharmacological inactivation
of MAGL repressed TBI-increased expression of APP, β-secretase, and NCT [40]. Therefore,
TBI-induced neuroinflammation, TDP-43 production, tau phosphorylation, and Aβ forma-
tion, which are major neuropathological features, can be mitigated by the inactivation of
MAGL, suggesting that multiple signaling pathways are involved in the protective effects
produced by the inhibition of 2-AG metabolism in TBI.

5. Improvement of Synaptic and Cognitive Functions by Inactivation of MAGL in TBI

Long-term synaptic plasticity in terms of long-term potentiation (LTP) is a biological
process referring to the ability of synapses to persistently strengthen synaptic transmis-
sion, which may underlie learning and memory [70]. Studies have revealed that TBI
impairs long-term synaptic plasticity. We observed that basal synaptic transmission in
terms of input–output function and LTP were impaired at CA3–CA1 synapses 30 days
after repetitive mild closed-head injury [40]. The results from other studies showed that
TBI significant decreased the threshold and the amplitude of population spikes as well
as the amplitude of EPSPs in the hippocampal CA1 region [71]. In addition, TBI robustly
suppressed post-tetanic potentiation (PTP), paired pulse ratio (PPR), and short-term plas-
ticity in a blast-induced traumatic brain injury (bTBI) mouse model [72]. TBI-induced
impairments of short- and long-term synaptic plasticity are likely associated with decreases
in the expression and function of glutamate receptors. We observed that the expression of
glutamate receptor subunits, including AMPA receptor subunits GluA1 and GluA2 and
NMDA receptor subunits GluN2A and GluN2B, was significantly downregulated 8 and
30 days after TBI [40]. Interestingly, pharmacological inhibition of MAGL was capable
of restoring TBI-reduced expression of these glutamate receptor subunits and improv-
ing basal synaptic transmission and LTP [40]. Moreover, pharmacological inhibition of
MAGL decreased TBI-induced synaptic hyperexcitability in layer 5 neurons 10 days after
injury [47]. Inhibition of 2-AG metabolism also attenuated TBI-induced increases in the
frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) in layer
5 pyramidal neurons of rats [73]. These studies provide important information that the
inhibition of 2-AG metabolism prevents TBI-caused disturbance of brain homeostasis and
synaptic dysfunction.

Neurocognitive decline and dementia are the major consequences of TBI [3,74–76].
Assessment of learning and memory is widely used in animal studies to evaluate cognitive
functions following TBI. Since inactivation of MAGL ameliorates TBI-induced neuropathol-
ogy, maintains the integrity of synapses, and improves long-term synaptic plasticity, it is
likely that inhibition of 2-AG metabolism would prevent TBI-induced cognitive decline.
Our study provides evidence that TBI-induced deficits in spatial learning and memory
are attenuated by pharmacological inactivation of MAGL [40], suggesting that limiting
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2-AG degradation following TBI is a promising approach for preventing or diminishing
neuropathological and neurocognitive sequelae.

6. Potential Mechanisms Underlying the Neuroprotective Effects of MAGL
Inactivation in TBI

Previous studies provided evidence that inhibition of 2-AG metabolism produced neu-
roprotective effects in several animal models of neurodegenerative disease [38–40,48,77–79].
However, the molecular mechanisms responsible for these neuroprotective effects are still
not clear. Since CB1 and CB2 receptors are the targets of 2-AG, it is likely that these re-
ceptors may play a role in the neuroprotective effects of MAGL inactivation (Figure 3). It
has been demonstrated previously that 2-AG or MAGL inhibitors, including URB602 and
JZL184, exert neuroprotective effects against cytokine- or Aβ-induced insults in primary
cultured hippocampal neurons and the effects appear to be mediated by CB1 receptor-
dependent suppression of COX-2, ERK1/2, and NF-κB [21,80]. Inconsistent with the results
of these studies, there are reports of CB1 or CB2 receptor-independent neuroprotective
effects by the inhibition of MAGL. Pharmacological or genetic inactivation of MAGL re-
duced LPS-induced inflammatory cytokines and protected neurons from degeneration in
an animal model of Parkinson’s disease in the presence of CB1 or CB2 receptor blockade or
genetic deletion [48]. Similarly, pharmacological or genetic inactivation of MAGL reduced
the levels of eicosanoids, Aβ, and inflammatory cytokines in the brain of PS1/APP, mice
and the effects were not affected by antagonism of CB1 or CB2 receptors [78]. It has been
proposed that the anti-inflammatory and neuroprotective effects of MAGL inhibition are
primarily mediated by a reduction of 2-AG metabolites (AA and prostaglandins), rather
than by an enhancement of endocannabinoid signaling [48,78]. Another study also re-
vealed that JZL184 reduced the expression of APP, β-secretase, and total Aβ and Aβ42, as
well as neuroinflammation in APP transgenic mice lacking CB2R [79]. The results from
previous studies suggest that the mechanisms involved in the anti-neuroinflammatory
and neuroprotective effects of MAGL inactivation are complex, and additional signaling
pathways may also contribute to the neuroprotective effects produced by 2-AG metabolism
inhibition [50].

Earlier studies revealed that administration of 2-AG produced neuroprotective effects
in an animal model of closed-head injury, and the effects were mediated by CB1 recep-
tors [17,19]. Other studies also showed that neuroinflammation, neurodegeneration, and
neurotoxicity induced by cytokines, Aβ, or glutamate were attenuated by the application
of 2-AG or MAGL inhibitors [21–23]. This indicates that 2-AG is an important signaling
mediator protecting neurons against harmful insults. However, very few studies have
been conducted to explore the downstream signaling pathways of 2-AG in mediating these
neuroprotective effects. Peroxisome proliferator-activated receptor γ (PPARγ), a member
of the nuclear receptor family functioning as transcription factor, has been proposed as a
target of endocannabinoids [22,81]. An early study showed that 2-AG-induced suppression
of IL-2 was not mediated through CB1R, but through PPARγ signaling in T cells, suggest-
ing that 2-AG can directly activate PPARγ [82]. In cultured hippocampal neurons, 2-AG-
or JZL184-induced CB1R dependent anti-inflammatory and neuroprotective effects were
suppressed by a PPARγ antagonist, and the protective effects were mimicked by a PPARγ
agonist [22]. Importantly, it was reported that PPARγ is involved in the reduction of Aβ

and neuroinflammation and the improvement of spatial learning and memory induced by
MAGL inhibition in a mouse model of AD [83]. The PPARγ-mediated anti-inflammatory
and neuroprotective effects occur likely through suppression of NF-kB transcriptional
activity [22,83,84]. In addition, activation of PPARγ can ameliorate several aspects of
neuropathology following TBI. For instance, pioglitazone, a PPARγ ligand, inhibited the
inflammatory response and attenuated the cognitive dysfunction associated with TBI [85].
These studies suggest that PPARγ is likely an important downstream molecule in medi-
ating anti-inflammatory and neuroprotective effects of 2-AG signaling against harmful
insults (Figure 3) [50].
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Figure 3. Hypothetic signaling pathways mediating neuroprotection produced by MAGL inactivation
in TBI. An external force triggers the activation of inflammatory responses through NF-kB signaling
in brain immune cells, including astrocytes and microglia, resulting in the release of chemokines,
cytokines, and eicosanoids. These inflammatory factors promote tau phosphorylation, TDP-43
aggregation, and Aβ formation, leading to synaptic dysfunction and neurodegeneration, which,
in turn, cause cognitive deficits and eventually lead to dementia. Inhibition of 2-AG metabolism
by inactivation of MAGL augments the anti-inflammatory and neuroprotective 2-AG signaling,
which stimulates the expression and activity of PPARγ through CB1/2-dependent and-independent
mechanisms. PPARγ interacts with NF-kB to inhibit its transcriptional activity, resulting in decreases
in the expression of genes involved in inflammatory and neurodegenerative processes. Inactivation
of MAGL also reduces 2-AG metabolites, including arachidonic acid (AA), prostaglandins (PGs), and
leukotrienes (LT4s), which are proinflammatory and neurotoxic. Resolution of neuroinflammation
by inactivation of MAGL is likely a key to mitigate TBI-induced neuropathology and to improve
synaptic and cognitive function.

7. Outlook on Potential Treatment Strategies for TBI

There are several MAGL inhibitors currently available. They can be classified into two
main categories, i.e., irreversible (JZL184, JW651, and ABX-1431) [86–88] and reversible
inhibitors (pristimerin and euphol) [89]. Reversible inhibitors bind to the enzyme to form a
complex in a reversible way, while irreversible inhibitors bind tightly to the enzyme and
persistently inactivate it, thus producing longer effects. Both irreversible and reversible
MAGL inhibitors are capable of boosting 2-AG levels by suppressing the catabolic ac-
tivity of MAGL and have been shown to produce anti-inflammatory effects in several
animal models of neurodegenerative diseases [17,21,23]. Previous studies demonstrated
that JZL184, an irreversible MAGL inhibitor, induced antagonism of the endocannabinoid
system and desensitization of the CB1 receptor [90]. However, reversible MAGL inhibitors
are less likely to desensitize the CB1 receptor [91,92] due to their rapid dissociation from
the enzyme. Several recent studies reported that pristimerin, a reversible MAGL inhibitor,
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suppressed inflammatory responses both in vivo and in vitro [93–96]. Therefore, although
both irreversible and reversible MAGL inhibitors would alleviate or attenuate the symp-
toms of TBI and TBI-induced AD-like neuropathology by resolving neuroinflammation,
reversible MAGL inhibitors might provide a better therapeutic effect. Current available
MAGL inhibitors are mostly irreversible. It is imperative to identify and develop novel
reversible MAGL inhibitors.

8. Summary

In this review, we discussed the beneficial effects of the inhibition of 2-AG metabolism
in TBI-induced AD-like neuropathology. We focused on MAGL, as it is the key enzyme
hydrolyzing 2-AG in the brain. Apparently, both enhanced 2-AG signaling and reduction
of its metabolites by inactivation of MAGL contribute to anti-inflammatory and neuropro-
tective effects in the context of TBI, suggesting that MAGL is likely a therapeutic target
for TBI [40,50]. However, the mechanisms involved in the mitigation of neuropathology
and the prevention of synaptic and cognitive declines induced by MAGL in TBI remain to
be studied. Neuroinflammation is a crucial factor triggering a series of neuropathological
changes, including tau phosphorylation, TDP-43 aggregation, and Aβ production, follow-
ing TBI, and suppression of neuroinflammation by inhibition of 2-AG metabolism is a key
in preventing TBI-caused neuropathological changes. Therefore, understanding of how
TBI-triggered neuroinflammation is resolved by the inactivation of MAGL will provide a
better therapeutic strategy for TBI.
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