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Abstract: Triple-negative breast cancer (TNBC) is a subtype of breast cancer that comprises various
disease entities, all of which share a set of common features: a lack of expression of the estrogen
receptor, progesterone receptor, and human epidermal growth factor receptor 2, respectively. Be-
cause of their receptor status, conventional chemotherapy remains the main therapeutic option for
TNBC patients. We employed a reverse phase protein array approach (RPPA), complemented by
immunohistochemistry, to quantitatively profile the activation state of 84 actionable key signaling
intermediates and phosphoproteins in a set of 44 TNBC samples. We performed supervised and
unsupervised approaches to proteomic data analysis to identify groups of samples sharing common
characteristics that could be amenable to existing therapies. We found the heterogenous activation of
multiple pathways, with PI3 K/AKT/mTOR signaling being the most common event. Some specific
individualized therapeutic possibilities include the expression of oncogenic KIT in association with
cytokeratin 15 and Erk1/2 positive tumors, both of which may have clinical value.

Keywords: breast cancer; triple negative breast cancer; proteomics; signaling pathway profiling;
reverse phase protein array

1. Introduction

Over the last few decades, we have witnessed substantial improvements in breast
cancer (BC) mortality rates [1,2]; downward BC mortality trends are seen in most high-
income countries and are essentially a reflection of the improvements that have taken place
in the clinical management of BC, together with developments enabling early diagnosis
of the disease. Improvements in the clinical management of BC are mainly due to the
establishment of more effective combination chemotherapy regimens, the implementation
of endocrine therapies in the adjuvant setting, as well as the introduction of novel targeted
drugs. Nonetheless, BC is still the leading cause of death from cancer among women, and
the future burden of the disease is estimated to increase significantly due to demographic
patterns [3]. In the US alone, the number of new BC cases is forecasted to surge from
205,606 patients in the year 2000 to 379,052 by the year 2050 [4]. Worldwide, the number
of incident BC cases is expected to exceed three million by 2040 [5]. As these two trends
diverge (incidence increasing and mortality decreasing), they have, so far, essentially offset
each other. However, as we approach the upper limit of efficacy that the current therapies
can achieve, we will need to implement much more effective therapies and/or regimens to
be able to maintain the current downward mortality trends.
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As mentioned, the therapeutic options currently at the disposal of BC oncologists
have undeniably resulted in survival benefits for patients bearing tumors of the estrogen
receptor (ER)-positive and human epidermal growth factor receptor 2 (Her2)-positive
subtypes, respectively. However, about 12–20% of all breast cancers are negative for ER,
progesterone receptor (PgR), and Her2, comprising the triple negative breast cancer (TNBC)
group [6,7]. This is a highly heterogeneous disease not only at the molecular level but also
at the pathologic and clinical levels.

TNBC is associated with a significantly higher probability of relapse and poorer
overall survival in the first few years after diagnosis when compared with other breast
cancer subtypes. For this cancer subtype, conventional chemotherapy remains the main
therapeutic option as the major currently available BC therapies are based on our ability
to target ER and Her2. The limited treatment options, in combination with the more
aggressive nature and substantial heterogeneity of these tumors, makes the identification
of novel therapeutic targets for this group of patients of particular importance [8–10].
Previously proposed classifications of TNBC, both at the transcriptomics level [11–13]
and the proteomic level [14], identified multiple TNBC molecular subtypes potentially
amenable to different treatment strategies. However, the different classifications were not
concordant, especially across different modalities, suggesting that some molecular subtypes
are not consistent, and underscoring the need for multiple studies across technological
platforms and patient cohorts.

We have previously reported a systematic gel-based proteomic profiling study of a
prospective cohort of 78 TNBC patients, which resulted in the establishment of a cumulative
TNBC protein database containing more than 400 unique entries. An analysis of this
database identified a number of proteins as being overexpressed in TNBC samples, which
could constitute potential therapeutic targets [15,16]. However, as many of the proteins we
identified in this manner did not have a corresponding drug available for clinical use, we
undertook a complementary approach. We performed functional proteomic profiling of
our TNBC cohort with reverse phase protein arrays (RPPA) to profile pathway activation
across samples using a panel of activation-state-specific antibodies. Most of the targeted
drugs currently available are directed against signaling pathway intermediates and are
designed to interfere with their function. Accordingly, a systematic pathway activation
profiling of TNBC samples could potentially identify alternative subtypes of TNBCs that
are amenable to a particular therapy, which would be of clinical value. We present here
our profiling analysis of the activation state of key signaling mediators, such as Akt or
Erk, as well as BC-relevant markers, such as p53, BRCA1, and proliferation markers in
TNBC samples.

2. Materials and Methods
2.1. Sample Collection and Preparation

Fresh snap-frozen tissue biopsies from non-selected retrospective TNBC cases were
collected by the Department of Pathology at the Copenhagen University Hospital [15].
Fresh breast tissue samples were flash-frozen in liquid nitrogen immediately following
surgery and stored at −80 ◦C until the time of analysis; on average, no more than 15 min
elapsed from tissue excision to freezing. None of the patients had previously undergone
surgery involving the breast, and they did not receive preoperative treatment. The patients
presented a unifocal tumor with an estimated size >20 mm. The project was approved (KF
01–069/03) by the Copenhagen and Frederiksberg regional division of the Danish National
Committee on Biomedical Research Ethics. Written informed consent was obtained from
each patient included in the study. Clinicopathological information was provided by the
Department of Pathology, Copenhagen University Hospital.

2.2. Reverse Phase Protein Arrays (RPPA)

The tissue samples were prepared by solubilizing 20–40 (depending on tumor cell
content and area of section) 8 µm-thick cryosections of snap-frozen tissue biopsies in
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100 µL ZeptoMARK lysis buffer CLB1 to yield lysates with similar protein concentrations
(approximately 2 mg/mL) [17]. Actual protein concentrations were determined using a
modified Bradford assay, compatible with the ZeptoMARK lysis buffer CLB1 (Zeptosens,
Bayer Technology Services, Witterswil, Germany). All but three samples were spotted at
equal total protein concentrations starting from 1.5 mg/mL, adjusted with the ZeptoMARK
lysis buffer CLB1. Three samples, TNBCs #13, #37, and #22 had protein concentrations
lower than 1.5 mg/mL and were spotted at the available concentrations. All other samples
were diluted 1:10 with ZeptoMARK spotting buffer CSBL1, and subsequently further
diluted to obtain a dilution series of 0.15, 0.1125, 0.056, and 0.028 mg/mL, respectively, and
finally spotted directly onto ZeptoMARK hydrophobic chips. Array spotting and image
acquisition and processing were done as previously described [18]. An additional on-
chip protein determination was also made to allow for multiple sample comparisons [18].
Samples were spotted onto arrays in duplicates. Relative intensities for each spot were
obtained by plotting net spot intensities against protein concentrations of each of the spotted
samples. The eight datapoints for each sample were then fitted using a weighted linear
least square fit (STATA, StataCorp, College Station, TX, USA) and the relative intensity
interpolated at the median protein concentration. Heatmaps and hierarchical clustering
were performed using MeV software [19].

2.3. Antibodies

All antibodies used in this study as well as their working dilutions for the different
technologies are presented in Table S1. Zeptosens have prevalidated over 300 antibodies
for use with their RPPA platform using a standardized screening process [20,21]. These
antibodies can be used to simultaneously profile pathway response across multiple samples.
For this study, a subset of antibodies was selected to specifically profile cancer-relevant
pathways. Pathways covered include RAS-MAPK, Rb/cell-cycle, and PI3 K-Akt signaling
axes, as well as DNA repair and apoptosis. A complete list of validated antibodies is avail-
able from Bayer Technology Services (www.bayertechnology.com/fileadmin/_migrated/
content_uploads/Flyer_BTS_Zeptosens_List_260914.pdf; accessed on 14 February 2020).

2.4. Immunohistochemistry (IHC) of Formalin-Fixed, Paraffin-Embedded (FFPE) Samples

Fresh tissue samples were partitioned immediately following surgery, with a part
being snap-frozen and and a fraction fixed in neutral buffered formalin and paraffin
embedded for IHC-based analyses. IHC analysis were performed on five-µm sections cut
from the FFPE blocks essentially as previously described [15].

2.5. Quantitative Assessment of IHC Staining

Computer-aided analysis of digitized whole slide images was used for quantitative
comparison of immunohistochemical stainings. Slides were scanned using a NanoZoomer-
XR Digital slide scanner (Hamamatsu Photonics, Hamamatsu City, Japan). Full section
whole slide images were analyzed with QuPath digital pathology image analysis software
(QuPath v0.2.3), an open-source imaging software [22]. Two metrics for IHC staining were
used: the percentage of staining carcinoma cells (% positive cells), and a composite score,
calculated based on the extent and intensity of staining (3× % of strongly staining cells +
2× % of moderately staining cells + 1× % of weakly staining cells, giving a range of 0–300).

2.6. DNA Purification and Sequencing

Genomic DNA was collected from four 10 µm-thick FFPE tissue sections of and
purified using the QIAamp DNA-mini kit on a Qiacube instrument (Qiagen, Hilden,
Germany) according to manufacturer’s instructions. Concentration and purity of isolated
DNA were measured on a Nanodrop 2000 instrument. Dideoxynucleotide-sequencing of
c-KIT exons 9, 11, 13, and 17 (standard c-KIT clinical mutational analysis for prediction of
response to TKI therapy; see Table S2) was performed in nested PCR reactions, in which the
nest 1 reactions in a volume of 15 µL contained 0.33 µmol/L of each nest 1 primer, 7.5 µL

www.bayertechnology.com/fileadmin/_migrated/content_uploads/Flyer_BTS_Zeptosens_List_260914.pdf
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RedEx PCR master mix (Sigma-Aldrich, Brøndby, Denmark), and 50–100 ng genomic DNA.
PCR conditions consisted of initial denaturing at 95 ◦C for 5 min, 25 cycles at 95 ◦C for
30 s, 55 ◦C for 30 s, and 72 ◦C for 30 s, and a final extension at 72 ◦C for 10 min. The
nest 2 reactions were contained in a volume of 50 µL 0.4 µmol/L of each nest 2 primer,
25 µL RedEx PCR master mix (Sigma-Aldrich), and 1 µL of 100-fold diluted nest 1 product.
The PCR conditions were the same as for the nest 1 reactions except that 35 cycles were
used. PCR products were isolated using the QIAquick PCR purification kit (Qiagen). For
sequencing using the T3 and T7 primers, 25 ng purified PCR products were used for
BigDye incorporation using the BigDye Terminator 3.1 Cycle Sequencing Kit (Thermo
Fisher Scientific, Waltham, MA, USA) and sequenced on an ABI3500 DX DNA sequenator
according to the manufacturer’s instructions.

2.7. Data Analysis

Data were first normalized by transforming values using the mean and the standard
deviation of the row of the matrix to which the value belongs using the following for-
mula: Value = [(Value) − Mean(Row)]/[Standard deviation(Row)]. Samples and genes
were then median centered and clustered using Pearson correlation and average link-
age. GraphPad Prism (v.9.2.0; GraphPad Software, San Diego, CA, USA) was used for
one-way and two-way analyses of variance (ANOVA), as well as Fischer’s exact test
and Kaplan–Meier survival analysis. In all cases, an alpha value of 0.05 was used. The
knowledge-based platform MetaCore (Thomson Reuters, Spring Garden, PA, USA) was
used for pathway analysis.

3. Results
3.1. RPPA-Mediated Functional Profiling of Tnbcs

In order to identify novel therapeutic options for the clinical management of TNBC,
we profiled a cohort of TNBC patients (status defined by a lack of ER, PgR, and HER2
expression in immunohistochemical assays) [15] by an RPPA analysis of a set of 84 signaling
pathway intermediates using phospho-specific antibodies (listed in Table S1).

To minimize the effect of the cellular content of the samples on the results, only
samples with >60% tumor cell content, evaluated by CK19 stainings, were included in
the study (Figure 1A,B). Hematoxylin- and eosin-stained (H&E) sections of each sample
were reviewed by a pathologist to do a coarse determination of the percentage of tumor
cells. In addition, we analyzed the tissue sections for CK19-positive cells (CK19+) as this
epithelial marker is ubiquitously expressed by mammary epithelial cells. The proportion
of cells was only used as an inclusion criterion for the samples but not as a normalization
parameter. A total of 44 TNBC tumor samples out of the original 78 samples were found
to fulfill the inclusion criterion and were included in this study. Lysates were prepared
by solubilizing cryosections of snap-frozen tissue biopsies, and the samples were arrayed
onto a hydrophobic chip surface by spotting. An on-chip protein determination was made,
allowing for multiple sample comparisons (Figure 1C). The arrayed samples were then
probed with phospho-specific and total protein antibodies to measure the activity status of
multiple signaling pathways or networks [21]. Antibody microarray data, consisting of
relative intensity values interpolated at the median protein concentration for each sample
(see Section 2), were analyzed by two-way unsupervised hierarchical clustering, as de-
scribed [23]. The unsupervised hierarchical clustering analysis of proteomic data identified
three major clusters (clusters one through three, Figure 2A). These clusters were character-
ized by well-known signaling modules, such as PI3 K/Akt in cluster one. Cluster two was
characterized by samples with high expression levels and the phosphorylation of most of
the proteins involved in the Akt-mTOR pathway. Interestingly, cluster two presented high
levels of Akt expression and phosphorylation but lower levels of activation of downstream
effectors compared to cluster one. Cluster two also presented low levels of PTEN and
higher levels of phospho-IRS1, an adaptor protein in charge of conveying signaling from
the IGF-1 receptor to activate the PI3 K/Akt signaling pathway. The remaining cluster
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showed highly heterogeneous pathway activation (Cluster three). Overall, the analysis
confirmed the extensive molecular heterogeneity of TNBCs and the prevalence of the PI3
K/AKT/mTOR signaling axis in these cancers.
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Figure 1. Sample preparation workflow. (A) Sample biopsies were serially sectioned and first and last
sections stained with hematoxylin and eosin (HE) and cytokeratin 19 (CK19; an epithelial cell marker)
for pathology reevaluation. Yellow arrow indicates section order. (B) Tandem sections were stained
with CK19 to assess the tumor cell area for each sample. Tissue sections stained with CK19 were
scanned, and images were segmented and analyzed with image processing software (Visiopharm,
Hørsholm, Denmark), which allowed for the quantification of relative tumor cell content. Only
samples with tumor cell content >60% were included in this study. (C) Lysates were prepared
by solubilizing cryosections of snap-frozen tissue biopsies in CLB1 lysis buffer and total protein
concentrations determined.
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 Figure 2. RPPA analysis of 44 TNBC samples. (A) Signal intensities were normalized and log2
converted signals were used for an unsupervised hierarchical cluster analysis. A black color indicates
the median expression level calculated for a particular protein or phosphorylation across all samples;
higher level expression than median is shown as a red color, and a green color refers to a lower than
average abundance. Sample names and protein names are listed above and on the right-hand side,
respectively. Clusters 1 through 3 are defined at the bottom of heatmap. (B) Heatmap of proteins
with a Pearson correlation rank above 0.5, sorted by the phosphorylation status of Akt Thr−308.
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3.2. Pathway-Restricted Analysis of RPPA Data

We then performed a pathway-restricted analysis of our data, limiting the analysis
to proteins known to be within the Akt pathway (Figure S1). Figure 2B shows data
clustered by the phosphorylation state of Akt. We performed a Pearson correlation analysis
between the phosphorylation levels of all of the analytes and Akt phospho-Thr308 for all
44 TNBC samples. The proteins with a Pearson correlation of >0.5 and <−0.5 sorted by
the expression of Akt phospho-Thr308 are shown in Figure 2B. As one may expect, several
members of the Akt signaling pathway itself were on this list, such as S6 ribosomal protein.
We also found that the expression of two different non-canonical Akt protein targets,
N-cadherin and erbB4, were highly correlated with Akt phosphorylation (Figure 2B).
Phospho PTEN was the protein with the highest anti-correlation with phospho Akt. The
activation of Akt involves the phosphorylation of two residues, threonine 308 (Thr308) and
serine 473 (Ser473). Both Akt Thr308 and Ser473 phosphorylations were highly correlated
(r = 0.8851; p value < 0.0001) among the 44 TNBC samples (Figure 2B), suggesting that both
phosphorylation states were co-regulated among TNBCs tissues.

3.3. Cytokeratin 15 Expression in Tumor Cells Was Associated with Erk1/2 Signaling

Although TNBCs are distinct from the basal-like intrinsic molecular subtype of breast
carcinomas, they show a substantial overlap with these tumors [11,24]. Basal-like breast
cancers are characterized by the expression of basal keratins and have previously been
suggested to contain a high proportion of stem-cell-like cells [25]. We and others have
identified cytokeratin 15 (CK15) as a marker of mammary progenitor or stem cells [26–29],
and a recent study reported a 15-gene mammary stem cell signature that comprised CK15
and showed prognostic value in TNBCs [27]. We had included CK15 in our RPPA analysis
to ascertain whether CK15 expression was associated with a particular signaling event
in TNBCs that could be targetable. A correlation analysis of our RPPA data showed that
the expression of CK15 was associated with the expression of v-kit Hardy-Zuckerman
4 feline sarcoma viral oncogene homolog (c-Kit) protein and Erk1/2 phosphorylation
(inset a; Figure 3A). The c-Kit association was consistent with our previous report that the
expression of c-Kit correlates with that of CK15 in ER-negative breast epithelial cells [30].

The levels of expression of CK15 and Erk1/2 phoshorylation in tumor cells were
verified by a quantitative IHC analysis of the interleaved tissue sections to those sections
used to prepare lysates for the RPPA analysis (Figure 3). The stained images were scored
by computer-aided analysis (see Section 2). The scores were normalized, and the median
was centered and plotted (Figure 3). We found that the samples that displayed a strong
signal in our RPPA analysis did correspondingly in the IHC. Conversely, samples with a
low or no RPPA signal showed no immunoreactivity in the IHC. The samples with the
heterogenous expression of CK15, exhibiting CK15-negative tumor regions (Figure 3, inset
b, white arrow) in the vicinity of cells with marked CK15 expression (Figure 3, inset b, black
arrow), showed a similar pattern of staining of P-Erk1/2 (Figure 3, inset c, white and black
arrows, respectively). The IHC analysis confirmed that CK15 expression was associated
with c-Kit protein expression (p < 0.001; two-way ANOVA multiple comparison analysis)
and Erk1/2 phosphorylation (p < 0.001; two-way ANOVA multiple comparison analysis).
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3.4. Expression of Oncogenic C-Kit Defines a Subset of Tnbcs

One of the ongoing research activities in our lab addresses the need to define the
molecular phenotypes of the various cell types and precursors generated by the stem cell
hierarchy in the breast epithelium. To that effect, we have immunophenotyped normal
human luminal epithelial cells and identified CK15 and c-Kit as protein biomarkers of
normal undifferentiated luminal cells in resting acini [30]. C-Kit is a tyrosine kinase receptor
that mediates the activation of several effector-signaling pathways involved in key cellular
functions, such as cell survival, proliferation, and differentiation [31]. Since c-Kit was
previously reported to be overexpressed in approximately 25% of samples in a large TNBC
cohort [32], we had included c-Kit in our RPPA profiling analysis. We found that a subset
of our samples expressed c-Kit at substantially high levels (Figure 4). As before, we could
validate these results with an IHC analysis, showing that samples with a strong RPPA
signal for c-Kit presented moderate to strong immunoreactivity (Figure 4, panel a, black
arrow), whereas samples with a low RPPA signal had no detectable immunoreactivity for
c-Kit (Figure 4, panel b, white arrow). Under the conditions of the IHC assay, 9 out of the
44 TNBC samples (20%) expressed c-Kit.

Oncogenic c-Kit receptor tyrosine kinase “driver” mutations have been identified
in a number of cancers, such as acute myeloid leukemia (AML), melanoma, in mast cell
leukemia, and in gastrointestinal stromal tumors (GIST) [33], and tyrosine kinase inhibitors
(TKIs), such as imatinib or sunitinib, with activity against c-Kit routinely used in the
treatment of these cancers. KIT mutation testing is important for the prediction of the
response to TKI therapy. Commonly, mutations map to the extracellular region (exon 9),
juxtamembrane region (exon 11), and kinase domain (exons 13, and 17). We performed a
mutational analysis of KIT in samples (Figure 4, yellow and red arrows) for which we had
biological material available to analyze (Table 1). We found somatic mutations in three of
the cases (Figure 4, red arrows). In one of these (Figure 4, #18), c-Kit was expressed at very
high levels, suggesting that the pharmacological inhibition of c-Kit in this case could have
been of use in the management of the disease.
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relative fluorescence intensity (RFI) values of samples found negative by IHC analysis. IHC images of samples stained
for c-Kit and showing strong (black arrow, subpanel a) or no expression (white arrow, subpanel b) of c-Kit are presented
for illustration purposes. Sequenced samples are indicated by arrows (yellow arrows no mutations detected, red arrows
oncogenic mutations present). Magnification, 20×.

Table 1. Mutational Analysis of KIT.

Patient
c-KIT

Exon 9 Exon 11 Exon 13 Exon 17

TNBC #15 wild-type wild-type wild-type c.2394 G > T
(silent/polymorphism)

TNBC #17 wild-type wild-type wild-type wild-type

TNBC #18 c.1414 G > A
(silent/polymorphism)

c.1678_1680 del3
p.Val560 del wild-type wild-type

TNBC #21 wild-type c.1660_1662 del3
p.Glu1554 del wild-type wild-type

TNBC #26 wild-type wild-type wild-type wild-type

TNBC #27 wild-type wild-type wild-type wild-type

TNBC #31 wild-type wild-type wild-type wild-type

TNBC #32 wild-type wild-type wild-type wild-type

TNBC #34 wild-type c.1678_1680 del3
p.Val560 del wild-type wild-type

4. Discussion
4.1. Profiling of Pathway Activation

Novel therapies for triple negative breast cancer (TNBC) are necessary to improve
the dismal prognosis of this disease. The purpose of this study was to identify molecular
subtypes of TNBC based on actionable signaling intermediates, thus defining possible
therapies or therapy combinations that could be of clinical value in the management of
TNBC patients. We employed an RPPA approach to quantitatively profile the activation
state of 84 cancer-related key signaling intermediates and phosphoproteins in a set of
44 TNBC samples. We tried to identify groups of samples sharing common characteristics



Cells 2021, 10, 2768 10 of 14

that may be amenable to existent therapeutic approaches with the aim of developing more
effective therapeutic regimens for TNBCs. The results from the RPPA analysis can be easily
adapted to a clinical setting through the development of immunohistochemical assays. We
could identify three major clusters, where the first cluster (Figure 2A, cluster one) showed
PI3 K/Akt signaling, the second cluster was defined by Akt-mTOR pathway activation but
with lower levels of activation of canonical Akt downstream effectors, and the third cluster
was characterized by the heterogenous activation of multiple pathways.

As a part of The Cancer Genome Atlas (TCGA) Project, protein expression data have
been generated over a large number of breast tumors using RPPAs [34]. This publicly
available collection of cancer functional proteomics data includes a large set of basal-type
tumors (n = 118) that have been profiled for 245 protein markers. Although only 52 out of
84 markers were identical to those in our own study, we investigated whether we could
reiterate our observations. The supervised hierarchical clustering of these 52 markers
largely confirmed our analysis (Figure S2A). As with our own dataset, we could find the
clusters defined by specific signaling modules, the most prominent of which was PI3 K/Akt
signaling Figures 2A and S2).

Among the 25 proteins we found to be statistically correlated with the phosphorylation
of Akt at Thr−308, 9 had a Pearson rank >0.7 (Figure 2B). The expression of two different
non-canonical Akt protein targets, N-cadherin and erbB4, was highly correlated with Akt
phosphorylation (Figure 2B). The most straightforward conclusion is that both proteins
are, directly or indirectly, under the regulation of Akt. Indeed, there have been previous
reports in the literature showing an association between ERBB4 expression and Akt phos-
phorylation in TNBCs [35], as well as between N-cadherin expression and Akt signaling
during epithelial mesenchymal transition (EMT) [36]. However, a direct causal relationship
cannot be excluded either as Rieger-Christ and colleagues showed that an increase in the
phosphorylation of Akt at serine−473 was detected in N-cadherin transfectants, suggestive
of N-cadherin-mediated Akt activation in bladder cancer cell invasion [37].

We also found that Akt phosphorylation at Thr308 and Ser473 were highly correlated
(r = 0.8851) among the 44 TNBC samples (Figure 2B), suggesting that both phosphorylation
states were co-regulated among TNBCs tissues. Although the phosphorylation of Thr308 is
sufficient to activate some downstream effectors, the additional phosphorylation of Ser473
enables the full activation of Akt [38]. A similar trend was also observed in the analysis
of the phosphorylation status of the TCGA breast cancer study [39]. Stemke-Hale and
colleagues showed that Akt phosphorylation was at significantly higher levels in PTEN-low
compared with PTEN-high breast cancers [40].

Recent research into the biology of TNBCs has resulted in the identification of several
possible novel targets for pathway-driven therapeutics in this disease [41,42]. As one
may expect, major signaling modules involved in cell survival and proliferation, such
as mitogen-activated protein kinase (MAPK) and PI3 K/Akt signaling, are among the
prominent candidate target pathways in TNBCs, with several clinical trials already under-
way. Our analyses used phospho-specific antibodies to measure the phosphorylation at
the Ser473 and Thr308 residues of Akt, using these as activation readouts for PI3 K/Akt
signaling. This was also the case for two of the three major subfamilies of the MAPK
family for which we had reliable reagents: the extracellular signal-regulated kinases (ERKs)
(Thr202/185, Tyr204/187), and the p38 kinases (Thr180/Tyr182). The levels of activation
for these specific pathways in our TNBC samples can be seen in Figure 2. Only in a few
cases were we unable to detect the activation of any of these three pathways (Figure 2,
samples #12 or #14), but, in most cases, at least one of these signaling pathways was
highly active (for example, sample #34 for Erk1/2, or sample #41 for p38), suggesting
that most TNBCs would be amenable to pathway-directed therapies that target MAPKs
and/or Akt. However, one additional aspect also needs to be considered: TNBC are
heterogeneous in terms of genetic alterations of the PI3 K/Akt pathway, where 7–23%
of cases have a mutation in the PIK3 CA gene with a high degree of mutual exclusivity
with PTEN mutation/loss (11–35%) and INPP4 B loss (30%), whereas the latter two genes
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have a major degree of overlap between them [39,43]. In addition, many components of
the RAS-RAF-MEK pathway are amplified in TNBC, including KRAS, BRAF, and EGFR,
among others [39]. This implies that genetic alterations of the PI3 K/Akt pathway (and
other interconnected pathways) can partly explain the heterogeneity observed at the level
of activation/inhibition of downstream effectors.

One last point to be taken into consideration is that only samples with >60% tumor
cell content, evaluated by CK19 stainings, were included in the study. This approach
was taken to ameliorate the technical difficulties associated with samples consisting of a
mixture of tumor cells and normal cells, which is especially challenging when the tumor
cell content is very low. Nonetheless, the RPPA data we generated from the tissue lysates
result from a blend of diverse cell populations (e.g., endothelial cells, stromal cells, normal
epithelial cells, tumor cells, and immune cells), thus producing an averaging effect. With
the exception of the specific markers investigated by IHC, we cannot easily determine the
cell of origin of a given signaling intermediate in our RPPA data.

4.2. CK15, c-Kit, and Erk1/2 Signaling

We could also further identify some specific individualized therapeutic possibilities
based on our RPPA profiling, such as the expression of c-Kit or CK15 in Erk1/2 positive
tumors. Among the 44 TNBC samples examined, two were strongly positive for CK15
(Figure 3; samples #4 and #38), and both showed high-levels of Erk1/2 phosphorylation
(phospho-Thr202/185, Tyr204/187). This association was a non-reciprocal relation as
samples with high levels of phospho-Erk1/2 did not necessarily express CK15 (Figure 3;
samples #11 or #16), suggesting the possibility that Erk1/2 pathway activation may be
driving CK15-positive cells in TNBCs, identifying the Erk MAPK signaling pathway as
a potential drug target for CK15-positive TNBC tumors. The Erk signaling axis has been
previously shown to regulate the expansion and tumorigenicity of breast cancer stem-like
cells [44,45].

In relation to c-Kit, we found that 9 out of the 44 TNBC samples had strong expressions
of c-Kit, which was confirmed by IHC (Figure 4). This frequency of c-Kit expression
(20.4 percent of cases) was in line with previous reports [32,46]. This prevalence was
also confirmed by the TCGA data, with c-Kit expression defining a subgroup of patients
(Figure S2). In addition, we found that one of the TNBC samples with strong c-Kit protein
expression had an oncogenic mutation in KIT (Table 1). Although c-kit expression is
common in TNBCs, reports on the presence of c-kit mutations are scarce [47]. In conclusion,
we found that high-level c-Kit expression is a frequent event in TNBCs, and activating
mutations were also present, which makes the case for further research into the potential
effect of c-Kit inhibitors on TNBCs in the presence of activating mutations in a clinical
trial setting.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10102768/s1, Supplementary Figure S1: MetaCore analysis of RPPA data showed that
several proteins within the Akt signaling pathway were affected in the examined samples in signaling
modules related to (A) cell migration and survival, but also (B) in connection to other pathways.
Supplementary Figure S2: RPPA data for TNCB breast cancer Columns are centered; unit variance
scaling is applied to columns. Rows are clustered using Euclidean distance and average linkage.
Columns are clustered using correlation distance and average linkage. Supplementary Table S1. List
of all antibodies used in this study. Supplementary Table S2. Primer sequences for sequencing of
c-KIT exons 9, 11, 13 and 17.

Author Contributions: I.G., E.S.-R., J.v.O. and J.M.A.M.; Data curation, I.G., J.A.E. and M.G.; Formal
analysis, J.A.E., J.v.O. and J.M.A.M.; Funding acquisition, J.v.O. and J.M.A.M.; Investigation, I.G.,
J.A.E., M.G., E.S.-R., M.-L.M.T., J.v.O. and J.M.A.M.; Methodology, I.G., J.A.E. and M.G.; Project
administration, J.M.A.M.; Resources, and M.-L.M.T.; Supervision, J.M.A.M.; Writing—original draft,
I.G., J.A.E. and J.M.A.M.; Writing—review & editing, I.G., J.A.E., M.G., E.S.-R., M.-L.M.T., J.v.O. and
J.M.A.M. All authors have read and agreed to the published version of the manuscript.

https://www.mdpi.com/article/10.3390/cells10102768/s1
https://www.mdpi.com/article/10.3390/cells10102768/s1


Cells 2021, 10, 2768 12 of 14

Funding: This work was supported by a grant from the “A Race against Breast Cancer” founda-
tion. The funding bodies played no role in the design of the study and collection, analysis, and
interpretation of data or in drafting this manuscript.

Institutional Review Board Statement: All subjects gave oral and written consents according to the
Helsinki II Declaration. The study was approved by the Copenhagen and Frederiksberg regional
division of the Danish National Committee on Biomedical Research Ethics (KF 01–069/03).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy law restrictions.

Acknowledgments: The authors wish to express their gratitude to Sofia Svensson and Anni Han-
desten for expert technical assistance.

Conflicts of Interest: The authors declare they have no competing interest.

Abbreviations

IHC: immunohistochemistry; 2 D PAGE, two-dimensional polyacrylamide gel electrophoresis;
Her2, human epidermal growth factor receptor 2; ER, estrogen receptor; PgR, progesterone receptor;
RPPA, Reverse Phase Protein Array.

References
1. Autier, P.; Boniol, M.; La Vecchia, C.; Vatten, L.; Gavin, A.; Hery, C.; Heanue, M. Disparities in breast cancer mortality trends

between 30 European countries: Retrospective trend analysis of WHO mortality database. BMJ 2010, 341, c3620. [CrossRef]
[PubMed]

2. DeSantis, C.E.; Bray, F.; Ferlay, J.; Lortet-Tieulent, J.; Anderson, B.O.; Jemal, A. International Variation in Female Breast Cancer
Incidence and Mortality Rates. Cancer Epidemiol. Biomark. Prev. 2015, 24, 1495–1506. [CrossRef] [PubMed]

3. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of
incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [CrossRef]

4. Hayat, M.J.; Howlader, N.; Reichman, M.E.; Edwards, B.K. Cancer statistics, trends, and multiple primary cancer analyses from
the Surveillance, Epidemiology, and End Results (SEER) Program. Oncologist 2007, 12, 20–37. [CrossRef] [PubMed]

5. Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Pineros, M.; Znaor, A.; Bray, F. Estimating the global cancer
incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [CrossRef] [PubMed]

6. Foulkes, W.D.; Smith, I.E.; Reis-Filho, J.S. Triple-negative breast cancer. N. Engl. J. Med. 2010, 363, 1938–1948. [CrossRef] [PubMed]
7. Howlader, N.; Altekruse, S.F.; Li, C.I.; Chen, V.W.; Clarke, C.A.; Ries, L.A.; Cronin, K.A. US incidence of breast cancer subtypes

defined by joint hormone receptor and HER2 status. J. Natl. Cancer Inst. 2014, 106. [CrossRef]
8. Palma, G.; Frasci, G.; Chirico, A.; Esposito, E.; Siani, C.; Saturnino, C.; Arra, C.; Ciliberto, G.; Giordano, A.; D’Aiuto, M. Triple

negative breast cancer: Looking for the missing link between biology and treatments. Oncotarget 2015, 6, 26560–26574. [CrossRef]
9. Marme, F.; Schneeweiss, A. Targeted Therapies in Triple-Negative Breast Cancer. Breast Care 2015, 10, 159–166. [CrossRef]

[PubMed]
10. Podo, F.; Buydens, L.M.; Degani, H.; Hilhorst, R.; Klipp, E.; Gribbestad, I.S.; Van Huffel, S.; van Laarhoven, H.W.; Luts, J.; Monleon,

D.; et al. Triple-negative breast cancer: Present challenges and new perspectives. Mol. Oncol. 2010, 4, 209–229. [CrossRef]
11. Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human

triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Investig. 2011, 121,
2750–2767. [CrossRef]

12. Prado-Vazquez, G.; Gamez-Pozo, A.; Trilla-Fuertes, L.; Arevalillo, J.M.; Zapater-Moros, A.; Ferrer-Gomez, M.; Diaz-Almiron, M.;
Lopez-Vacas, R.; Navarro, H.; Main, P.; et al. A novel approach to triple-negative breast cancer molecular classification reveals a
luminal immune-positive subgroup with good prognoses. Sci. Rep. 2019, 9, 1538. [CrossRef] [PubMed]

13. Jezequel, P.; Loussouarn, D.; Guerin-Charbonnel, C.; Campion, L.; Vanier, A.; Gouraud, W.; Lasla, H.; Guette, C.; Valo, I.; Verriele,
V.; et al. Gene-expression molecular subtyping of triple-negative breast cancer tumours: Importance of immune response. Breast
Cancer Res. 2015, 17, 43. [CrossRef]

14. Masuda, H.; Qi, Y.; Liu, S.; Hayashi, N.; Kogawa, T.; Hortobagyi, G.N.; Tripathy, D.; Ueno, N.T. Reverse phase protein array
identification of triple-negative breast cancer subtypes and comparison with mRNA molecular subtypes. Oncotarget 2017, 8,
70481–70495. [CrossRef] [PubMed]

15. Cabezon, T.; Gromova, I.; Gromov, P.; Serizawa, R.; Timmermans Wielenga, V.; Kroman, N.; Celis, J.E.; Moreira, J.M. Proteomic
profiling of triple-negative breast carcinomas in combination with a three-tier orthogonal technology approach identifies Mage-A4
as potential therapeutic target in estrogen receptor negative breast cancer. Mol. Cell Proteomics 2013, 12, 381–394. [CrossRef]
[PubMed]

http://doi.org/10.1136/bmj.c3620
http://www.ncbi.nlm.nih.gov/pubmed/20702548
http://doi.org/10.1158/1055-9965.EPI-15-0535
http://www.ncbi.nlm.nih.gov/pubmed/26359465
http://doi.org/10.3322/caac.21492
http://doi.org/10.1634/theoncologist.12-1-20
http://www.ncbi.nlm.nih.gov/pubmed/17227898
http://doi.org/10.1002/ijc.31937
http://www.ncbi.nlm.nih.gov/pubmed/30350310
http://doi.org/10.1056/NEJMra1001389
http://www.ncbi.nlm.nih.gov/pubmed/21067385
http://doi.org/10.1093/jnci/dju055
http://doi.org/10.18632/oncotarget.5306
http://doi.org/10.1159/000433622
http://www.ncbi.nlm.nih.gov/pubmed/26557820
http://doi.org/10.1016/j.molonc.2010.04.006
http://doi.org/10.1172/JCI45014
http://doi.org/10.1038/s41598-018-38364-y
http://www.ncbi.nlm.nih.gov/pubmed/30733547
http://doi.org/10.1186/s13058-015-0550-y
http://doi.org/10.18632/oncotarget.19719
http://www.ncbi.nlm.nih.gov/pubmed/29050296
http://doi.org/10.1074/mcp.M112.019786
http://www.ncbi.nlm.nih.gov/pubmed/23172894


Cells 2021, 10, 2768 13 of 14

16. Gromova, I.; Gromov, P.; Honma, N.; Kumar, S.; Rimm, D.; Talman, M.L.; Wielenga, V.T.; Moreira, J.M. High level PHGDH
expression in breast is predominantly associated with keratin 5-positive cell lineage independently of malignancy. Mol. Oncol.
2015, 9, 1636–1654. [CrossRef]

17. Gromov, P.; Celis, J.E.; Gromova, I.; Rank, F.; Timmermans-Wielenga, V.; Moreira, J.M. A single lysis solution for the analysis of
tissue samples by different proteomic technologies. Mol. Oncol. 2008, 2, 368–379. [CrossRef]

18. Winters, M.; Dabir, B.; Yu, M.; Kohn, E.C. Constitution and quantity of lysis buffer alters outcome of reverse phase protein
microarrays. Proteomics 2007, 7, 4066–4068. [CrossRef]

19. Saeed, A.I.; Bhagabati, N.K.; Braisted, J.C.; Liang, W.; Sharov, V.; Howe, E.A.; Li, J.; Thiagarajan, M.; White, J.A.; Quackenbush, J.
TM4 microarray software suite. Methods Enzymol. 2006, 411, 134–193. [CrossRef]

20. van Oostrum, J.; Calonder, C.; Rechsteiner, D.; Ehrat, M.; Mestan, J.; Fabbro, D.; Voshol, H. Tracing pathway activities with kinase
inhibitors and reverse phase protein arrays. Proteomics Clin. Appl. 2009, 3, 412–422. [CrossRef]

21. Voshol, H.; Ehrat, M.; Traenkle, J.; Bertrand, E.; van Oostrum, J. Antibody-based proteomics: Analysis of signaling networks
using reverse protein arrays. FEBS J. 2009, 276, 6871–6879. [CrossRef] [PubMed]

22. Bankhead, P.; Loughrey, M.B.; Fernandez, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.;
Coleman, H.G.; et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017, 7, 16878. [CrossRef]
[PubMed]

23. Ummanni, R.; Mannsperger, H.A.; Sonntag, J.; Oswald, M.; Sharma, A.K.; Konig, R.; Korf, U. Evaluation of reverse phase protein
array (RPPA)-based pathway-activation profiling in 84 non-small cell lung cancer (NSCLC) cell lines as platform for cancer
proteomics and biomarker discovery. Biochim. Biophys. Acta 2014, 1844, 950–959. [CrossRef] [PubMed]

24. Burstein, M.D.; Tsimelzon, A.; Poage, G.M.; Covington, K.R.; Contreras, A.; Fuqua, S.A.; Savage, M.I.; Osborne, C.K.; Hilsenbeck,
S.G.; Chang, J.C.; et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer.
Clin. Cancer Res. 2015, 21, 1688–1698. [CrossRef]

25. Prat, A.; Adamo, B.; Cheang, M.C.; Anders, C.K.; Carey, L.A.; Perou, C.M. Molecular characterization of basal-like and non-basal-
like triple-negative breast cancer. Oncologist 2013, 18, 123–133. [CrossRef] [PubMed]

26. Celis, J.E.; Gromova, I.; Cabezon, T.; Gromov, P.; Shen, T.; Timmermans-Wielenga, V.; Rank, F.; Moreira, J.M. Identification of a
subset of breast carcinomas characterized by expression of cytokeratin 15: Relationship between CK15+ progenitor/amplified
cells and pre-malignant lesions and invasive disease. Mol. Oncol. 2007, 1, 321–349. [CrossRef]

27. Soady, K.J.; Kendrick, H.; Gao, Q.; Tutt, A.; Zvelebil, M.; Ordonez, L.D.; Quist, J.; Tan, D.W.; Isacke, C.M.; Grigoriadis, A.;
et al. Mouse mammary stem cells express prognostic markers for triple-negative breast cancer. Breast Cancer Res. 2015, 17, 31.
[CrossRef]

28. Asselin-Labat, M.L.; Shackleton, M.; Stingl, J.; Vaillant, F.; Forrest, N.C.; Eaves, C.J.; Visvader, J.E.; Lindeman, G.J. Steroid hormone
receptor status of mouse mammary stem cells. J. Natl. Cancer Inst. 2006, 98, 1011–1014. [CrossRef]

29. Villadsen, R.; Fridriksdottir, A.J.; Ronnov-Jessen, L.; Gudjonsson, T.; Rank, F.; LaBarge, M.A.; Bissell, M.J.; Petersen, O.W. Evidence
for a stem cell hierarchy in the adult human breast. J. Cell Biol. 2007, 177, 87–101. [CrossRef]

30. Moreira, J.M.; Cabezon, T.; Gromova, I.; Gromov, P.; Timmermans-Wielenga, V.; Machado, I.; Llombart-Bosch, A.; Kroman,
N.; Rank, F.; Celis, J.E. Tissue proteomics of the human mammary gland: Towards an abridged definition of the molecular
phenotypes underlying epithelial normalcy. Mol. Oncol. 2010, 4, 539–561. [CrossRef]

31. Lennartsson, J.; Jelacic, T.; Linnekin, D.; Shivakrupa, R. Normal and oncogenic forms of the receptor tyrosine kinase kit. Stem
Cells 2005, 23, 16–43. [CrossRef] [PubMed]

32. Millis, S.Z.; Gatalica, Z.; Winkler, J.; Vranic, S.; Kimbrough, J.; Reddy, S.; O’Shaughnessy, J.A. Predictive Biomarker Profiling of
>6000 Breast Cancer Patients Shows Heterogeneity in TNBC, With Treatment Implications. Clin. Breast Cancer 2015, 15, 473–481
e473. [CrossRef]

33. Coombs, C.C.; Tallman, M.S.; Levine, R.L. Molecular therapy for acute myeloid leukaemia. Nat. Rev. Clin. Oncol. 2015. [CrossRef]
[PubMed]

34. Li, J.; Lu, Y.; Akbani, R.; Ju, Z.; Roebuck, P.L.; Liu, W.; Yang, J.Y.; Broom, B.M.; Verhaak, R.G.; Kane, D.W.; et al. TCPA: A resource
for cancer functional proteomics data. Nat. Methods 2013, 10, 1046–1047. [CrossRef] [PubMed]

35. Hashimoto, K.; Tsuda, H.; Koizumi, F.; Shimizu, C.; Yonemori, K.; Ando, M.; Kodaira, M.; Yunokawa, M.; Fujiwara, Y.; Tamura, K.
Activated PI3K/AKT and MAPK pathways are potential good prognostic markers in node-positive, triple-negative breast cancer.
Ann. Oncol. 2014, 25, 1973–1979. [CrossRef]

36. Aleskandarany, M.A.; Negm, O.H.; Green, A.R.; Ahmed, M.A.; Nolan, C.C.; Tighe, P.J.; Ellis, I.O.; Rakha, E.A. Epithelial
mesenchymal transition in early invasive breast cancer: An immunohistochemical and reverse phase protein array study. Breast
Cancer Res. Treat 2014, 145, 339–348. [CrossRef]

37. Rieger-Christ, K.M.; Lee, P.; Zagha, R.; Kosakowski, M.; Moinzadeh, A.; Stoffel, J.; Ben-Ze’ev, A.; Libertino, J.A.; Summerhayes, I.C.
Novel expression of N-cadherin elicits in vitro bladder cell invasion via the Akt signaling pathway. Oncogene 2004, 23, 4745–4753.
[CrossRef]

38. Chan, C.H.; Jo, U.; Kohrman, A.; Rezaeian, A.H.; Chou, P.C.; Logothetis, C.; Lin, H.K. Posttranslational regulation of Akt in
human cancer. Cell Biosci. 2014, 4, 59. [CrossRef]

39. TCGA-Network. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70. [CrossRef]

http://doi.org/10.1016/j.molonc.2015.05.003
http://doi.org/10.1016/j.molonc.2008.09.003
http://doi.org/10.1002/pmic.200700484
http://doi.org/10.1016/S0076-6879(06)11009-5
http://doi.org/10.1002/prca.200800070
http://doi.org/10.1111/j.1742-4658.2009.07395.x
http://www.ncbi.nlm.nih.gov/pubmed/19860827
http://doi.org/10.1038/s41598-017-17204-5
http://www.ncbi.nlm.nih.gov/pubmed/29203879
http://doi.org/10.1016/j.bbapap.2013.11.017
http://www.ncbi.nlm.nih.gov/pubmed/24361481
http://doi.org/10.1158/1078-0432.CCR-14-0432
http://doi.org/10.1634/theoncologist.2012-0397
http://www.ncbi.nlm.nih.gov/pubmed/23404817
http://doi.org/10.1016/j.molonc.2007.09.004
http://doi.org/10.1186/s13058-015-0539-6
http://doi.org/10.1093/jnci/djj267
http://doi.org/10.1083/jcb.200611114
http://doi.org/10.1016/j.molonc.2010.09.005
http://doi.org/10.1634/stemcells.2004-0117
http://www.ncbi.nlm.nih.gov/pubmed/15625120
http://doi.org/10.1016/j.clbc.2015.04.008
http://doi.org/10.1038/nrclinonc.2015.210
http://www.ncbi.nlm.nih.gov/pubmed/26620272
http://doi.org/10.1038/nmeth.2650
http://www.ncbi.nlm.nih.gov/pubmed/24037243
http://doi.org/10.1093/annonc/mdu247
http://doi.org/10.1007/s10549-014-2927-5
http://doi.org/10.1038/sj.onc.1207629
http://doi.org/10.1186/2045-3701-4-59
http://doi.org/10.1038/nature11412


Cells 2021, 10, 2768 14 of 14

40. Stemke-Hale, K.; Gonzalez-Angulo, A.M.; Lluch, A.; Neve, R.M.; Kuo, W.L.; Davies, M.; Carey, M.; Hu, Z.; Guan, Y.; Sahin, A.;
et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 2008,
68, 6084–6091. [CrossRef]

41. Schneider, B.P.; Winer, E.P.; Foulkes, W.D.; Garber, J.; Perou, C.M.; Richardson, A.; Sledge, G.W.; Carey, L.A. Triple-negative breast
cancer: Risk factors to potential targets. Clin. Cancer Res. 2008, 14, 8010–8018. [CrossRef]

42. Swanton, C.; Caldas, C. Molecular classification of solid tumours: Towards pathway-driven therapeutics. Br. J. Cancer 2009, 100,
1517–1522. [CrossRef]

43. Cossu-Rocca, P.; Orru, S.; Muroni, M.R.; Sanges, F.; Sotgiu, G.; Ena, S.; Pira, G.; Murgia, L.; Manca, A.; Uras, M.G.; et al. Analysis
of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer. PLoS ONE 2015, 10, e0141763. [CrossRef]
[PubMed]

44. Luo, M.L.; Gong, C.; Chen, C.H.; Hu, H.; Huang, P.; Zheng, M.; Yao, Y.; Wei, S.; Wulf, G.; Lieberman, J.; et al. The Rab2A
GTPase promotes breast cancer stem cells and tumorigenesis via Erk signaling activation. Cell Rep. 2015, 11, 111–124. [CrossRef]
[PubMed]

45. Chang, C.J.; Yang, J.Y.; Xia, W.; Chen, C.T.; Xie, X.; Chao, C.H.; Woodward, W.A.; Hsu, J.M.; Hortobagyi, G.N.; Hung, M.C.
EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1-beta-catenin signaling. Cancer Cell 2011, 19,
86–100. [CrossRef] [PubMed]

46. Kashiwagi, S.; Yashiro, M.; Takashima, T.; Aomatsu, N.; Kawajiri, H.; Ogawa, Y.; Onoda, N.; Ishikawa, T.; Wakasa, K.; Hirakawa,
K. c-Kit expression as a prognostic molecular marker in patients with basal-like breast cancer. Br. J. Surg. 2013, 100, 490–496.
[CrossRef] [PubMed]

47. Zhu, Y.; Wang, Y.; Guan, B.; Rao, Q.; Wang, J.; Ma, H.; Zhang, Z.; Zhou, X. C-kit and PDGFRA gene mutations in triple negative
breast cancer. Int. J. Clin. Exp. Pathol. 2014, 7, 4280–4285.

http://doi.org/10.1158/0008-5472.CAN-07-6854
http://doi.org/10.1158/1078-0432.CCR-08-1208
http://doi.org/10.1038/sj.bjc.6605031
http://doi.org/10.1371/journal.pone.0141763
http://www.ncbi.nlm.nih.gov/pubmed/26540293
http://doi.org/10.1016/j.celrep.2015.03.002
http://www.ncbi.nlm.nih.gov/pubmed/25818297
http://doi.org/10.1016/j.ccr.2010.10.035
http://www.ncbi.nlm.nih.gov/pubmed/21215703
http://doi.org/10.1002/bjs.9021
http://www.ncbi.nlm.nih.gov/pubmed/23319435

	Introduction 
	Materials and Methods 
	Sample Collection and Preparation 
	Reverse Phase Protein Arrays (RPPA) 
	Antibodies 
	Immunohistochemistry (IHC) of Formalin-Fixed, Paraffin-Embedded (FFPE) Samples 
	Quantitative Assessment of IHC Staining 
	DNA Purification and Sequencing 
	Data Analysis 

	Results 
	RPPA-Mediated Functional Profiling of Tnbcs 
	Pathway-Restricted Analysis of RPPA Data 
	Cytokeratin 15 Expression in Tumor Cells Was Associated with Erk1/2 Signaling 
	Expression of Oncogenic C-Kit Defines a Subset of Tnbcs 

	Discussion 
	Profiling of Pathway Activation 
	CK15, c-Kit, and Erk1/2 Signaling 

	References

