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Abstract: Ventricular arrhythmias contribute significantly to morbidity and mortality in patients
with heart failure (HF). Pathomechanisms underlying arrhythmogenicity in patients with structural
heart disease and impaired cardiac function include myocardial fibrosis and the remodeling of ion
channels, affecting electrophysiologic properties of ventricular cardiomyocytes. The dysregulation
of ion channel expression has been associated with cardiomyopathy and with the development of
arrhythmias. However, the underlying molecular signaling pathways are increasingly recognized.
This review summarizes clinical and cellular electrophysiologic characteristics observed in dilated
cardiomyopathy (DCM) with ionic and structural alterations at the ventricular level. Furthermore,
potential translational strategies and therapeutic options are highlighted.
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1. Introduction: Characteristics of Ventricular Arrhythmias in Patients with
Dilated Cardiomyopathy

Ventricular arrhythmias contribute significantly to morbidity and mortality in patients
with cardiomyopathies. Dilated cardiomyopathy (DCM) is one major cause of progres-
sive heart failure (HF). The disease entity summarizes a variety of heterogenous clinical
subgroups [1–3]. DCM is currently defined as left ventricular or biventricular dilatation
and systolic dysfunction in the absence of abnormal loading conditions or coronary artery
disease sufficient to cause global cardiac impairment [4,5]. The reported prevalence is
estimated between 1:250 and 1:500 [1]. One-year mortality ranges between 25 and 30%,
and five-year mortality yields up to 50% [2]. Cases of sudden cardiac death (SCD) due to
life-threatening ventricular arrhythmias such as ventricular tachycardia (VT) and ventricu-
lar fibrillation (VF), as well as bradyarrhythmia, are reported in up to 12% of patients and
account for approximately 30% of overall mortality [2,3,6].

DCM is classified either according to the European Society of Cardiology (ESC) as
genetic or non-genetic or according to the American Heart Association (AHA) as secondary
or primary with genetic, acquired or mixed cause, respectively [5,7]. Primary forms of
DCM primarily affect the cardiac muscle, while secondary forms are caused by systemic
conditions, with a large overlap between these forms [2]. Both variants may include genetic
mutations, infections, autoimmune diseases, exposure to toxins and endocrine or neuro-
muscular causes [3]. Channelopathies (short and long QT syndrome, Brugada syndrome
and catecholaminergic polymorphic ventricular tachycardia) may also be considered car-
diomyopathies because of electric myocyte dysfunction [1]. Both genetic predisposition
and environmental factors play a pivotal role in the natural history of the diseases.
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Pathophysiological changes in DCM include a reduction in stroke volume and in
cardiac output, as well as an increase in end-diastolic pressure. Compensatory volume
overload results in an increased preload, contributing to increased afterload and ultimately
left ventricular elevated wall stress. Furthermore, neurohumoral activation enhances sym-
pathetic adrenergic activity and the activation of the renin–angiotensin–aldosterone system
(RAAS) [3]. Clinical manifestations of patients with DCM are heterogenous and depend on
etiology, age, comorbidities and the severity of the disease. Typical clinical findings include
symptoms of acute or chronic HF that range from signs of volume overload, dyspnea and
fatigue, to arrhythmia manifesting as palpitations, tachycardia or cardiogenic shock.

Electrocardiographic findings are mostly unspecific and include T-wave inversion,
right and left bundle branch block or atrioventricular and intraventricular conduction
abnormalities [3,8]. In addition, supraventricular and ventricular arrhythmias are clinically
relevant in patients with DCM [9–13]. This work will focus on ventricular arrhythmias (see
Figure 1). The pathophysiology of arrhythmogenesis in DCM is incompletely understood
despite its clinical and prognostic significance. Potential proarrhythmic mechanisms in-
clude changes in the conduction system through dilatation and the increased wall stress,
the generation of arrhythmogenic substrates through focal fibrosis and neurohumoral
activation leading to electrophysiological and structural remodeling [14]. Virtually all
(>90%) DCM patients exhibit premature ventricular contractions (PVC), and non-sustained
VT is found in 40–60% of patients’ Holter recordings [15]. These clinical findings highlight
the need to better understand genetic, epigenetic and structural changes underlying ven-
tricular arrhythmogenesis. Mechanistic insights may serve as a basis for the development
of therapies to prevent maladaptive electrical remodeling and to identify patients at risk
of SCD. A systematic search through the web-based engine PubMed was conducted in
order to identify all studies meeting the eligibility criteria using the search terms “dilated
cardiomypathy, cardiomyopathy, DCM, arrhythmia”.

Cells 2021, 10, x  3 of 14 
 

 

 
Figure 1. Graphical abstract on electrical ventricular remodeling in dilated cardiomyopathy. 
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diac conduction disorders and are particularly prone to malignant arrhythmias, are linked 
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(FLNC), desmoplakin (DSP), phospholamban (PLN) and RNA-binding motif protein 20 
(RBM20) (see Table 1) [17,20]. The recognition of DCM with electric instability is clinically 
relevant as the presence of mutations may impact therapeutic management [17,21]. How-
ever, in many cases, a correlation between genotype and phenotype cannot be readily es-
tablished due to incomplete penetrance and variable expression of the disease [16]. Fur-
thermore, there is an overlap between ‘arrhythmogenic DCM’ and the current concept of 
arrhythmogenic cardiomyopathies that requires further clarification [10,22]. Direct effects 
of DCM-related mutations on action potential duration (APD) are not well characterized. 
Indeed, DCM is not characterized by a single pattern of electrophysiological changes. Alt-
hough arrhythmias are commonly caused by variations in ion channels when isolated, 
they may also be a part of a complex manifestation of cardiomyopathy. On a cellular level, 
proarrhythmic defects in cardiac electrophysiology may be caused by ion channel remod-
eling, intercellular uncoupling, altered calcium homeostasis and changes in the extracel-
lular matrix, each resulting or participating in dysregulated action potential duration 
and/or propagation [23]. For example, the defective force hypothesis proposes that genetic 
mutations in DCM may impair the highly organized cytoskeleton and sarcomere archi-
tecture of the cardiomyocyte, resulting in myocyte dysfunction and in arrhythmias based 
on structural remodeling [3,19]. Furthermore, electrophysiological defects associated with 
SCN5A gain-of-function may induce triggered activity during repolarization or diastole, 
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2. Genetic Basis of Ventricular Arrhythmogenesis in DCM

More than 60 genes encoding for sarcomere proteins, cytoskeleton, nuclear envelope,
sarcolemma, ion channels and/or intercellular junction molecules have been implicated
in the pathogenesis of DCM to date [16,17]. The identification of new genes or novel
mutations and variants in known genes is currently a subject of intensive research. Familiar
forms of DCM with associated mutations are found in 30–40% of all patients, with titin
(TTN) being the most prevalent (20–25% of familial DCM cases), followed by lamin A/C
(LMNA, 5–10%) [17–19]. Genetic forms of DCM, which are typically characterized by car-
diac conduction disorders and are particularly prone to malignant arrhythmias, are linked
to mutations in lamin A/C (LMNA), cardiac sodium channel Nav1.5. (SCN5A), filamin
C (FLNC), desmoplakin (DSP), phospholamban (PLN) and RNA-binding motif protein
20 (RBM20) (see Table 1) [17,20]. The recognition of DCM with electric instability is clini-
cally relevant as the presence of mutations may impact therapeutic management [17,21].
However, in many cases, a correlation between genotype and phenotype cannot be readily
established due to incomplete penetrance and variable expression of the disease [16]. Fur-
thermore, there is an overlap between ‘arrhythmogenic DCM’ and the current concept of
arrhythmogenic cardiomyopathies that requires further clarification [10,22]. Direct effects
of DCM-related mutations on action potential duration (APD) are not well characterized.
Indeed, DCM is not characterized by a single pattern of electrophysiological changes.
Although arrhythmias are commonly caused by variations in ion channels when isolated,
they may also be a part of a complex manifestation of cardiomyopathy. On a cellular
level, proarrhythmic defects in cardiac electrophysiology may be caused by ion channel
remodeling, intercellular uncoupling, altered calcium homeostasis and changes in the
extracellular matrix, each resulting or participating in dysregulated action potential dura-
tion and/or propagation [23]. For example, the defective force hypothesis proposes that
genetic mutations in DCM may impair the highly organized cytoskeleton and sarcomere
architecture of the cardiomyocyte, resulting in myocyte dysfunction and in arrhythmias
based on structural remodeling [3,19]. Furthermore, electrophysiological defects associated
with SCN5A gain-of-function may induce triggered activity during repolarization or dias-
tole, whereas SCN5A channel loss-of-function may promote arrhythmogenesis through
conduction slowing and re-entry. By contrast, pathways that cause ventricular dilatation
and dysfunction associated with SCN5A mutations and their underlying structural defects
are unclear [24].

Table 1. Monogenetic causes of DCM particularly prone to ventricular arrhythmia.

Protein Gene Protein Function

Titin TTN Sarcomere structural protein
Lamin A/C LMNA Inner nuclear membrane

Cardiac sodium channel Nav1.5 SCN5A Cardiac sodium channel α-subunit
Filamin C FLNC Actin cytoskeleton

Desmoplakin DSP Desmosomal protein
RNA-binding motif protein 20 RBM20 RNA binding and splicing regulation

Phospholamban PLN Sarcoplasmic reticulum protein involved in calcium homeostasis

3. Electrical Remodeling

DCM is characterized by complex changes in electrical properties of ventricular
cardiomyocytes that predispose to ventricular arrhythmias. Electrophysiological changes
include the prolongation of APD by changes in repolarization, a decrease in conduction
velocity and disturbed excitation–contraction (EC) coupling. At the cellular and molecular
levels, alterations involve ion channels, calcium handling proteins and intercellular gap
junctions. Conduction slowing may arise from reduced depolarizing current and reduced
intercellular coupling by gap junctions.
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3.1. APD Changes

Prolongation of the action potential is a characteristic feature of cells isolated from
failing animal and human hearts, irrespective of their etiology, and has been confirmed
repeatedly for DCM [25–27]. A prolonged action potential is associated with a significant
delay in repolarization, which may increase susceptibility to malignant arrhythmias by
mechanisms such as triggered activity or reentry. The fast depolarization of cardiomyocytes
(phase 0 of the ventricular action potential) is initiated by the opening of voltage-dependent
sodium channels, which are primarily composed of Nav1.5. In animal models of DCM,
sodium current densities did not differ from the control [28,29]. As alterations in the
ion channel gene SCN5A are associated with DCM, there is evidence of sodium channel
involvement in dilation etiology, but the mechanisms by which the disruption of sodium
channel function leads to dilation remodeling remain unclear (Olson et al. 2005) [30].
SCN5A deficiency in a mouse model reduced membrane excitability and the resulting
slowed conduction may promote arrhythmia as a result of functional block [31]. Sodium
channels inactivate during repolarizing phase 1, and the transient outward potassium
current (Ito1) formed by Kv4.2, Kv4.3 and Kv1.4 is activated. In a mouse model of familial
DCM, Ito was significantly reduced in DCM cardiomyocytes before the onset of HF, and
the downregulation of Kv4.2 was evident on the mRNA and protein level [32]. In humans,
two isoforms of Kv4.3, Kv4.3-S and Kv4.3-L have been described, and isoform-specific
remodeling was detected in failing hearts due to DCM, with increased Kv4.3-L and reduced
Kv4.3-S mRNA transcript levels [33]. As this finding was also confirmed for ICM, it may be
a common feature of remodeling in cardiomyopathies [34]. Ventricular cardiomyocytes ex-
hibit an inward rectifying potassium current (IK1) that contributes to phase 3 repolarization
of ventricular action potentials and to the maintenance of the negative resting membrane
potential. It has been shown that the late repolarization phase for DCM is slower than that
for ICM, resulting in action potential prolongation [26]. In failing hearts due to underlying
DCM, the expression of the inwardly rectifying potassium channels (Kir) Kir2.2 and Kir2.3
decreased, which may account for the decreased IK1 current in DCM) [35].

3.2. EC Coupling

In DCM, excitation–contraction coupling is disturbed by alterations of the myocardial
architecture and by expression changes of calcium-handling proteins with subsequent
abnormal calcium cycling. These alterations contribute to reduced calcium transients,
impaired contractility and arrhythmia. Dyads formed by the apposition of transverse
(T)-tubules and junctional sarcoplasmic reticulum (jSR) are the main site for the coupling
of excitation and contraction. T-tubules are invaginations of the cardiac sarcolemma with
a high density of voltage-gated L-type Ca2+ channels (LTCC). Membrane depolarization
leads to Ca2+ influx into the dyadic cleft via LTCC, triggering Ca2+ release from the SR
via ryanodine receptors (RyR2), which then initiates sarcomere contraction. T-tubule
remodeling is seen in many forms of HF, including DCM [36]. In DCM, there is a regional
variability in the extent of T-tubule remodeling, as regions with near-normal contractility
featured intact T-tubules, while regions with diminished contractility showed loss and
disorganization of the T-tubule system. Furthermore, spatial re-organization occurs, with a
change in T-tubule orientation from a transverse to an axial direction [37,38]. Ryanodine
receptors are regulated by calcium and calcium/calmodulin dependent kinase II (CaMKII),
and increased phosphorylation has been shown in patients with DCM but not in patients
with ICM [39]. Increased CaMKII phosphorylation of RyR2 is suggested to play a critical
role in the development of pathological diastolic SR Ca2+ release events (SR Ca2+ leaks)
and the manifestation of arrhythmias [40–42].

Calcium sequestration into the sarcoplasmic reticulum (SR) lumen by the SR Ca2+-
ATPase (SERCA) determines the rate of cardiac relaxation and the calcium load available
for following contraction. SERCA pump activity is reversibly inhibited by PLN. Studies
have described decreased expression of PLN and SERCA2 mRNA levels in human failing
hearts due to DCM, while other studies show controversy about a corresponding decrease
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in protein levels [43–46]. Despite no significant protein level change in some studies, Ca2+

uptake activity and SERCA activity were shown to be significantly decreased, indicating
that additional regulatory factors that have not been discovered yet may be responsible for
the impaired uptake of Ca2+ into the SR [44]. Furthermore, genetic variants for PLN have
been identified that may predispose to an arrhythmogenic phenotype [47,48], reflected
by higher incidences of ICD therapy, premature ventricular contractions during Holter
monitoring and positive family history for SCD compared with DCM patients without
a PLN mutation [49,50]. Dominant-negative effects of PLN mutations on SERCA activity
have been reported, resulting in decreased calcium storage and Ca2+ transients [51,52].

3.3. Cell–Cell Coupling

Gap junctions connect two neighboring cardiomyocytes at their intercalated discs and
play a crucial role in impulse propagation across the myocardium and electrical synchro-
nization between myocytes. Connexin 43 (Cx43) is the major connexin protein found in
ventricular gap junctions and is predominantly expressed in its phosphorylated form in the
healthy heart. Left ventricular tissue samples from patients with DCM showed a decrease in
Cx43 expression and phosphorylation. Gap junctions were heterogeneously redistributed
to the lateral cell borders of cardiomyocytes [53,54]. Gap junction remodeling appears to
be associated with the presence of ventricular arrhythmia in DCM patients, as the patient
group with a history of VT showed reduced and more heterogeneous distribution of Cx43
than the non-VT group [53]. In knockout mice, Cx43 deficiency correlates with slowed and
dispersed impulse conduction [55,56], with significant contributions from changes in the
phosphorylation status and subcellular distribution [27]. It has been suggested that the
concurrent development of fibrosis is a prerequisite for conduction slowing [57]. Regional
uncoupling due to gap junction remodeling is hypothesized to drive the dispersion of repo-
larization between transmural layers and contribute to electrophysiological heterogeneity
of action potential duration [58]. Mechanisms by which dilation-induced cellular changes
form a substrate for ventricular arrhythmias remain poorly understood. As DCM may
arise from a variety of underlying causes and frequently presents with HF, distinguishing
specific electrophysiological remodeling that can be attributed to DCM from alterations
generally found in HF diseases is challenging.

4. Modulation of Epigenetic Signaling in DCM

Chromosomal alterations without changes in DNA sequence, also referred to as epige-
netic changes [59,60], affect electrical remodeling in DCM [61]. Chromatin compaction via
histone modifications represents one epigenetic mechanism. Typical modifications include
acetylation, methylation and phosphorylation. An equilibrium of enzymes regulates the
frequency of these changes. In human DCM, multiple alterations in the expression of his-
tone methylation- [62–65], acetylation- [63,66,67] and phosphorylation- [68,69] modifying
enzymes have been reported. Effects on several major pathways involved in DCM-induced
electrical remodeling have been described. Histone demethylases JMJD1A, JMJD2A and
JMJD2B mediate DCM-induced reactivation of atrial and brain natriuretic peptide (ANP
and BNP), with reduced histone methylation in their respective promotor regions [63].
This demethylation is furthermore conveyed by increased nuclear export and reduced total
expression of histone deacetylase 4 (HDAC4) [63]. While the exact effects of ANP and BNP
on human cardiac electrophysiology are not fully understood due to their pleiotropic mech-
anism of action and high inter-species variability, relevance in this field is likely [70–72].
Some evidence points towards an AP-shortening in human ventricles, potentially due
to influence on calcium and potassium channels [70,71,73,74]. In a porcine HF model,
HDAC2 was downregulated in HF with increased ventricular effective refractory periods
and prolonged QT intervals, potentially linked to reduced potassium channel transcripts
KCNJ2, KCNJ5 and KCNH2 [67].

Nuclear CaMKII with relevance in electromechanical coupling and calcium han-
dling [75] regulates chromatin accessibility via histone phosphorylation [68,69] and influ-
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ences the nuclear export of HDAC4, -5 and -9 [76–79]. Bromodomain-containing protein 4
(BRD4), important for the recognition of histone acetylation sites, leads to the formation of
super-enhancers with enrichment at calcium-handling gene loci [80]. Histone methylation-
induced expressional changes in structural proteins such as cell adhesion molecules [81]
and dystrophin [62] were reported in human DCM and show effects on AP duration [82].
Further epigenetic alterations in DCM include direct DNA methylation [83–86], changes
in the higher order of chromatin [87] and interactions with the nuclear membrane. Lamin
A/C mutations cause diminished conduction velocity, reduce action potential duration
and INa current and downregulate NaV1.5 channel expression by the binding of lamin to
the promotor region of SCN5A [88]. Furthermore, some definitions of epigenetics include
non-coding RNAs [89] as well, with several reported alterations in DCM [61].

Several clinically used HDAC inhibitors exert QT interval-prolonging effects [90–93].
QT prolongation is likely caused by (epi-)genetic regulation and not induced by direct
pharmacological interaction [94], which underlines the electrophysiological relevance of
epigenetic modulation in the electrical remodeling in DCM and its therapeutic potential.

5. Structural Remodeling

Structural remodeling in DCM is accompanied to a variable extent by ventricular fibro-
sis and scar formation that can promote arrhythmia by re-entry mechanisms. Myocardial
fibrosis on a cellular level is caused by increased myofibroblast activity and the deposition
of extracellular matrix proteins. Various cell types and proteins are involved in these pro-
cesses, and depending on the genetic causes and pathophysiology of fibrogenesis, disease
progression may vary. DCM induced by sarcomere protein mutations most commonly
involves myosin and troponin, causing cardiomyocytes’ degeneration and interstitial fi-
brosis [95]. The most common form of familial DCM caused by truncating titin mutations
disturbs mitochondrial energetic metabolism and alters the cytoskeleton, thereby leading
to cardiomyocyte dysfunction and inflammation and finally to myocardial fibrosis [96]. In
patients with lamin A/C mutations, increased production of fibronectin, syndecans and
nidogens and TGF-ß activation has been reported, with pronounced influence on cardiac
electrophysiology [97].

From a clinical perspective, fibrosis has been suggested as a prognostic marker [98–101].
Currently, the main detection methods for myocardial fibrosis rely on cardiovascular mag-
netic resonance (CMR) with late gadolinium enhancement (LGE) and mapping techniques
as the non-invasive gold standard for the identification and the quantification of myocar-
dial fibrosis (see Figure 2). While LGE is ideal for the detection of focal fibrosis, native T1
mapping and extracellular volume (ECV) quantification using gadolinium contrast agent
are more suitable for the detection of diffuse fibrosis and may therefore better detect early
stages of DCM [102].
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In most patients with sustained and hemodynamically not tolerated VT, MRI is limited
by artifacts from implanted ICDs for secondary prevention, and although scar detection
and ECV imaging by cardiac CT are possible, data are still scarce compared to CMR, and it
is not performed in clinical routine [103,104]. Endomyocardial biopsy is used in selected
cases in clinical routine, and serum markers are under evaluation in clinical studies [105].
The analysis of LGE patterns render the identification of patients with non-ischemic causes
possible, as those patients show non-ischemic patterns including mid-wall/sub-epicardial
or patchy distribution, in contrast to ischemic patterns in cardiomyopathies [106].

Fibrosis itself has been identified as a risk factor for mortality in DCM patients as
the presence of LGE has been associated with increased VT occurrence and with overall
mortality [107,108]. In addition, the complexity and extent of myocardial scars have been
associated with VT incidence and mortality [109,110]. The computer-based modeling of
reentry circuits in individual patients may help to identify patients at risk for arrhythmia
and support the planning of catheter ablation strategies [111].

6. Translational Perspective and Conclusions

The individualized risk prediction and treatment of patients with DCM remain chal-
lenging. The optimal pharmacological treatment according to current guideline recommen-
dations forms the basis of DCM therapy [9,112]. Yet, the current treatment of HF in DCM
does not differ from general HF management and effects of disease-modifying drugs on
ionic and structural alterations in DCM are less well characterized.

In antiarrhythmic therapy, potential reversible causes need to be excluded first (such
as the existence/progress of coronary artery disease, changes in electrolytes or proarrhyth-
mic drugs). Secondly, the severity and treatment options of the arrhythmia itself (PVC
vs. VT/VF), as well as the need for additional device therapy such as ICD therapy, need
to be addressed [10]. Antiarrhythmic drugs in DCM are mostly limited to class III com-
pounds acting through action potential prolongation. Antiarrhythmic treatment should
also consider using secondary antiarrhythmic effects of not primarily antiarrhythmic drugs
such as sacubitril/valsartan [113]. Furthermore, only recently a potential antiarrhythmic
effect of the sodium-glucose cotransporter 2 inhibitor dapagliflozin has been reported [114].
Recently, the Defibrillator Implantation in Patients with Nonischemic Systolic Heart Failure
Trial (DANISH-Trial) found no long-term benefit of prophylactic ICD implantation among
a heterogenic cohort of patients with non-ischemic HF [115]. Therefore, it appears relevant
to identify DCM patients with the highest risk of SCD. The ‘arrhythmic risk stratification in
nonischemic dilated cardiomyopathy’ trial (ReCONSIDER) aims at evaluating a two-step
model including non-invasive risk factors and electrophysiology data for risk stratification
in DCM [116].

Some ECG features could be clues of specific DCM subtypes, as certain disease-
causing genes are associated with characteristic ECG abnormalities and indeed point
toward particularly aggressive forms [8]. Currently, genetic testing is not part of routine
patient care in DCM because of high cost and relatively low yield, but might be considered
in patients suspected to have arrhythmogenic cardiomyopathy involving LMNA, PLN or
FLNC mutations [10]. A genetic test is generally performed in an index patient with either
a clinical diagnosis that fulfills the clinical criteria for the disease in question or when there
is at least a reasonable indication for the presence of that specific disorder [10]. Emerging
data suggest that genetic information may allow for gene-specific, more personalized
therapeutic strategies. In an individualized medical approach, it is therefore relevant to
evaluate every patient individually.

The focus in risk stratification is shifting towards optimized characterization of the
underlying etiology of DCM and the development of multi-parametric models [117]. Ad-
vanced SCD risk stratification could include the underlying DCM pathology or family
history for ventricular arrhythmias, clinical presentation, results of cardiac MRI, echocar-
diography and ECG. Recently, sex- and age-based differences in the natural history of DCM
have been reported [118]. Lower baseline left ventricular ejection fraction (LVEF), higher
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New York Heart Association (NYHA) class (III–VI), significant mitral regurgitation, the
presence of left bundle branch block and higher natriuretic peptide levels are predictors of
adverse outcomes [119].

In the case of refractory VT, catheter ablation should be considered depending on the
suspected arrhythmogenic substrate and scar evaluation to reduce VT/VF burden [9]. Inte-
grating imaging-based ablation strategies and computational modeling may improve abla-
tion strategies, ICD risk prediction and outcome [111,120]. In the future, the multimodal
characterization of patients is expected to provide the basis for optimized, personalized
antiarrhythmic DCM management.
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