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Abstract: Chronic liver injury of different etiologies may result in hepatic fibrosis, a scar formation
process consisting in altered deposition of extracellular matrix. Progression of fibrosis can lead to
impaired liver architecture and function, resulting in cirrhosis and organ failure. Although fibrosis
was previous thought to be an irreversible process, recent evidence convincingly demonstrated
resolution of fibrosis in different organs when the cause of injury is removed. In the liver, due to
its high regenerative ability, the extent of fibrosis regression and reversion to normal architecture is
higher than in other tissues, even in advanced disease. The mechanisms of liver fibrosis resolution can
be recapitulated in the following main points: removal of injurious factors causing chronic hepatic
damage, elimination, or inactivation of myofibroblasts (through various cell fates, including apoptosis,
senescence, and reprogramming), inactivation of inflammatory response and induction of anti-
inflammatory/restorative pathways, and degradation of extracellular matrix. In this review, we will
discuss the major cellular and molecular mechanisms underlying the regression of fibrosis/cirrhosis
and the potential therapeutic approaches aimed at reversing the fibrogenic process.
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1. Introduction

Chronic liver diseases caused by different agents may result in hepatic fibrosis, char-
acterized by a sequence of events leading to excessive deposition of collagen and other
extracellular matrix proteins, scar formation and altered liver structure and function, poten-
tially conducting to organ failure in cirrhosis [1,2]. Although in the past years the fibrogenic
process was considered a unidirectional and irreversible phenomenon, in the last decades
reversal of fibrosis, upon removal of the damaging agent(s), has been described in several
tissues. In the liver, due to its regenerative ability, the extent of fibrosis regression and
restitution towards normal architecture is higher than in other tissues, even in advanced
disease. In recent years, several clinical observations and experimental studies have im-
proved the mechanistic understanding of the fibrogenic process, providing information
on the molecular mechanisms underlying reversal of liver fibrosis. Currently, as reviewed
in some articles [3–5] the basis of fibrosis resolution can be recapitulated in the following
major points:

(1) Interruption or removal of detrimental agent(s) causing chronic hepatic injury [6];
(2) Elimination or inactivation of myofibroblasts [7];
(3) Inactivation of inflammatory response and induction of anti-inflammatory/

“restorative” pathways [8,9];
(4) Degradation of extracellular matrix [10];

The mechanisms underlying the regression of fibrosis are summarized in Figure 1.
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“restorative” pathways [8,9]; 

(4) Degradation of extracellular matrix [10]; 
The mechanisms underlying the regression of fibrosis are summarized in Figure 1. 
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insulin-like growth factor I (IGF-I); transcription factor 21 (Tcf21); natural killer cells (NK); activated HSCs (aHSCs); 
inactivated HSCs (iHSCs); extracellular matrix (ECM); NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3); 
matrix metalloproteases (MMPs); Kupffer cells (KCs); vascular endothelial growth factor (VEGF); tissue inhibitors of 
MMPs (TIMPs). 

2. Materials and Methods 
This is a non-systematic review article using the following electronic sources: 

PubMed, MEDLINE, Google Scholar, Ovid, Scopus, and Web of Science. We used the 
following single terms “regression of liver fibrosis”, “liver fibrotic process regression”, 
“reversibility of cirrhosis”, “cellular and molecular mechanisms of fibrosis reversion” or 
in combination search terms: “regression of fibrosis”, “liver”, “antifibrotic therapies”. We 
examined all the articles reporting in vitro research, animal models and human related 
data in English language (inclusion criteria) excluding papers with unavailable full text, 
abstracts, book chapters and articles published before 1990 (exclusion criteria). Finally, we 
evaluated supplementary references in papers examined in the first search round. 

3. Removal of Causative Agent(s) 
Clinical evidence has recently demonstrated that compensated cirrhosis caused by 

chronic HBV or HCV infection is reversible following viral suppression or eradication 
[11,12]. These findings indicate that removal of the causative agent not only leads to 
interruption of fibrogenic signals, but also induces fibrolytic/restorative pathways, 

Figure 1. Schematic representation of the mechanisms underlying liver fibrosis regression. Four main mechanisms
underlying the regression process of liver fibrosis are indicated. Hepatic stellate cells (HSCs); TNF receptor 1 (TNFR1);
insulin-like growth factor I (IGF-I); transcription factor 21 (Tcf21); natural killer cells (NK); activated HSCs (aHSCs);
inactivated HSCs (iHSCs); extracellular matrix (ECM); NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3);
matrix metalloproteases (MMPs); Kupffer cells (KCs); vascular endothelial growth factor (VEGF); tissue inhibitors of
MMPs (TIMPs).

2. Materials and Methods

This is a non-systematic review article using the following electronic sources: PubMed,
MEDLINE, Google Scholar, Ovid, Scopus, and Web of Science. We used the following
single terms “regression of liver fibrosis”, “liver fibrotic process regression”, “reversibility
of cirrhosis”, “cellular and molecular mechanisms of fibrosis reversion” or in combination
search terms: “regression of fibrosis”, “liver”, “antifibrotic therapies”. We examined all
the articles reporting in vitro research, animal models and human related data in English
language (inclusion criteria) excluding papers with unavailable full text, abstracts, book
chapters and articles published before 1990 (exclusion criteria). Finally, we evaluated
supplementary references in papers examined in the first search round.

3. Removal of Causative Agent(s)

Clinical evidence has recently demonstrated that compensated cirrhosis caused by
chronic HBV or HCV infection is reversible following viral suppression or eradication [11,12].
These findings indicate that removal of the causative agent not only leads to interruption of
fibrogenic signals, but also induces fibrolytic/restorative pathways, resulting in regression
of fibrosis. However, a certain fraction of patients does not regress, suggesting a potential
involvement of genetic/epigenetic mechanisms [13].

In experimental studies performed in mice treated with CCl4 to develop a pre-cirrhotic
stage of liver injury and then allowed to spontaneously recover upon toxin withdrawal,
resumption of CCl4 exposure rapidly induced profibrogenic features in HSCs, indicating
that an “epigenetic memory” can be induced in these and, possibly, other cells [14,15].
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Genetic/Epigenetic Signatures

Several genetic diseases predispose to liver fibrosis and in some cases to cirrhosis.
These could potentially impair reversal of the fibrogenic process [16]. Many of the genes
such as ABCB4, ASL, ALDOB, GBE1, SLC25A13, FAH, and SERPIN1 are highly expressed
in the liver and therefore mutations of these genes mainly affect this organ [17]. Most
genetic aberrations triggering cirrhosis appear in childhood and are the main cause of
pediatric liver cirrhosis, apart from childhood obesity [18]. In addition to the genetic alter-
ations leading to hepatic fibrosis in the childhood, mutations of the PNPLA3 gene represent
a major predisposing factor in non-alcoholic fatty liver disease (NAFLD) patients [19].
PNPLA3, encoding for patatin-like phospholipase domain-containing protein 3, is mainly
found in hepatocytes, adipocytes, and HSCs. PNPLA3 is endowed with triacylglycerol (TG)
lipase and acylglycerol transacylase activities and the TG hydrolase function is reduced
by about ∼80% in the presence of the I148M mutation/substitution [20,21]. The PNPLA3
I148M variant has been associated with steatosis, NAFLD, NASH, and hepatocellular
carcinoma [20,22,23]. The loss of PNPLA3-mediated TG hydrolase activity in this vari-
ant is not sufficient to induce hepatic steatosis, since Pnpla3−/− mice did not show fatty
liver disease [24]. Therefore, other mechanisms may underlie the development of hepatic
steatosis. In mammalian cells, PNPLA3 accumulation in lipid droplets [25–28] is regulated
by fasting/feeding cycles, whereas the mutated PNPLA3 (148M) accumulates into lipid
droplets evading ubiquitin and/or autophagy protein degradation [29–31]. BasuRay et al.
showed that the excess of PNPLA3 into the lipid droplets induce per se fatty liver disease
and depletion of the mutant form could resolve the excess of hepatic fat accumulation [30].

HSCs contain droplets of retinoic acid, which, by inducing retinoic acid receptor
(RAR) expression, inhibits the fibrogenic process [32,33]. It has been observed that PN-
PLA3 mutations decrease the amount of retinoic acid in HSCs leading to the reduction of
RAR-mediated control on fibrogenesis [34]. PNPLA3 might therefore represent a good ther-
apeutic target to control NAFLD-associated fibrosis, steatosis, and disease progression [17].

Epigenetic modifications and changes in expression/activity of epigenetic enzymes
regulate many processes involved in fibrosis development, including cell activation, re-
sponse to injury, and immune reaction. Epigenetic changes, mainly represented by DNA
methylation and histone post-translational modifications (mostly methylation and acetyla-
tion) act as dynamic modulators of HSCs, repressing or inducing genes and transcription
factors implicated in the fibrogenic process, and influencing the response of HSCs to
changes in the microenvironment. DNA methylation, as well as changes in methylation
enzymes, has been associated with changes in transcription of genes involved in nucleotide
metabolism, signaling pathways (e.g., Wnt [35,36]), cell proliferation and apoptosis (e.g.,
Pten [37]), extracellular matrix (ECM) synthesis/degradation (Actg2, Col4A1/2, Loxl1/2,
Adamts9, matrix metalloprotease-MMP15 [38]). Of note, altered expression of enzymes that
regulate DNA methylation DNA methyltransferases (DMNTs) and ten-eleven translocation
methylcytosine dioxygenases (TET) has been observed in fibrotic livers from different
animal models and in patients [35,39].

Epigenetic events may serve as adaptive mechanisms. In a pivotal study on multi-
generational influences on hepatic fibrogenesis in rats, Zeybel et al. demonstrated that
epigenetic adaptation to liver injury could be passed on to F1 and F2 progeny. This adap-
tation, which consists of a reduced number of myofibroblasts, decreased expression of
TGF-β1 and increased expression of PPAR-γ, was mediated by changes in DNA methyla-
tion and histone acetylation. Moreover, DNA hypomethylation of the PPAR-γ promoter
correlated with milder fibrosis in NAFLD patients [40].

A better understanding of the complex epigenetic mechanisms regulating the fibro-
genic process could be helpful to identify epigenetic signatures as diagnostic/prognostic
markers and to develop novel therapeutic strategies. Selective inhibitors of histone modify-
ing enzymes (histone deacetylases (HDACs) and histone methyltransferases) have been
shown to inhibit proliferation and to induce apoptosis in HSCs [41–43], to reduce fibrogenic
factors, and to reverse myofibroblast differentiation in various organs [43–48].
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4. Myofibroblast Clearance or Inactivation

The role of activated myofibroblasts in the development of liver fibrosis is well estab-
lished. Different cell types can contribute to the myofibroblast population, including HSCs,
portal fibroblasts, bone marrow-derived collagen producing cells (fibrocytes) and, possibly,
parenchymal cells undergoing epithelial-mesenchymal transition (EMT) [49]. Although
the origin of activated myofibroblasts may vary depending on the different etiologies
of disease [50], HSCs can be considered their major source, as demonstrated by studies
showing that HSCs depletion improves fibrosis in models based on both CCl4 intoxication
and bile duct ligation [51]. Even in biliary fibrosis, where portal fibroblasts have been
suggested to be the primary cell type initiating the fibrogenic response, giving rise to more
than 70% of myofibroblasts, activation of HSCs becomes crucial after the initial phases [50].

During fibrosis regression, in response to a decrease of fibrogenic stimuli, the number of
myofibroblasts drops, due to multiple mechanisms, that include restraint of activation, apopto-
sis, senescence, immune clearance, and reversal to a quiescent-like phenotype [14,15,52–54].

4.1. Limitation of HSC Activation

HSC activation is markedly influenced by changes in cellular microenvironment. Apart
from soluble mediators, ECM components, matrix stiffness and interactions with neighboring
cells, such as injured hepatocytes, immune cells (particularly macrophages), and activated
sinusoidal endothelial cells, play an essential role in sustaining HSC/myofibroblast activa-
tion [55]. During recovery, changes in the microenvironment consequent to injury cessation
contribute to create a milieu unfavorable to HSC activation. Moreover, high levels of
intracellular energy are required by HSCs to retain their activated phenotype, and factors
interfering with intracellular energy metabolism can hold HSCs in a less secretory and
active state [56]. Along these lines, HSCs undergo a metabolic reprogramming during
activation, consisting in induction of aerobic glycolysis and reduction of gluconeogenesis
and lipogenesis. This metabolic rearrangement, mediated by Hedgehog (Hh) and hypoxia-
inducible factor (HIF)1α, leads to an accumulation of lactate that further sustains the
transactivation process, inducing the expression of proliferative and profibrogenic genes.
Interestingly, the amount of stromal glycolytic cells was found to correlate with the severity
of liver fibrosis in patients and experimental models. According to these findings, inhibitors
of Hh signaling, HIF1α, glycolysis and lactate accumulation could be helpful to limit HSC
activation and revert aHSCs to a quiescent state. Costunolide, a natural compound with
anti-inflammatory, anti-oxidant and anti-tumor actions [57], has been recently shown to
negatively modulate HSC activated phenotype, through inhibition of hexokinase 2, a rate-
limiting glycolytic enzyme [58], which maintains glucose inside the cells as a source of
energy metabolism [57]. Glutaminolysis is also essential to providing high levels of energy
required by HSCs to maintain the activated phenotype [59]. Glutamine synthetase (GS), as
well as other enzymes implicated in glutamine metabolism (glutaminase (GLS), aspartate
transaminase (AST) and glutamine dehydrogenase (GDH)), was found to be upregulated
during HSC activation both in vitro and in experimental fibrosis [59]. Accordingly, the
expression of GLS, GDH1, AST1 and AST2 genes was significantly enhanced in the liver of
fibrotic patients [60]. Hh and its downstream effectors, as Hippo, Yes-associated protein
(YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), are crucial for the
increase in glutamine metabolism, as demonstrated by the fact that blocking Hh cascade
with specific inhibitors (cyclopamine or verteporfin) reduced glutaminolysis, mitochondrial
respiration, cell proliferation and collagen synthesis in HSCs [61].

4.2. Apoptosis

Apoptosis, a form of programmed cell death, regulates the balance of proliferating
and dying HSCs during the fibrogenic process. This phenomenon contributes to reduce
the amount of myofibroblasts but is not sufficient to restore the integrity of the liver tissue.

Clearance of HSCs is induced by the cytotoxic action of natural killer (NK) cells after
the removal of the injurious agent [62], due to the increase of ligands of NK receptors
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such as MICA, NKG2D, and ULBP2 in senescent aHSCs. Moreover, during fibrosis res-
olution, increased collagen degradation by MMPs induces HSC apoptosis by activation
of death receptor-mediated signaling, including Fas and TNFR-1 receptors, increase in
pro-apoptotic proteins (e.g., p53, Bax, caspase 9), and decrease of anti-apoptotic proteins,
including Bcl-2 [63,64].

In addition, in response to reduced levels of profibrogenic factors, the expression of
Fas or TNFR1 and of the cognate ligands increases in HSCs, stimulating caspase 8/cas-
pase 3 activation and apoptosis [62]. Tumor necrosis factor-related apoptosis inducing
ligand (TRAIL) has been recently identified as an additional inducer of apoptosis in HSCs,
both in experimental fibrosis [65] and in vitro [66], and its effect involves NF-κB and
miR145 [67]. Additional mechanisms of programmed cell death in aHSCs are mediated by
cyclooxygenase-2 (COX-2), which metabolizes the endogenous cannabinoid 2-arachidonoyl
glycerol (2-AG) leading to the production of the pro-apoptotic prostaglandin D2-glycerol
ester (PGD2-GE) [68]. On the other hand, caspase-9-dependent apoptotic pathways are
elicited by increased expression of Bcl-2, Bax and p53 [62]. A recent report showed that
mitophagy, a mechanism that eliminates damaged mitochondria to maintain mitochon-
drial homeostasis, is increased in HSCs during the regression of fibrosis, in parallel with
enhanced apoptosis. Mitophagy contributes to apoptosis inducing an increase in Bcl-B, a
member of the Bcl-2 family [69].

4.3. Senescence

Senescence is a passive and irreversible mechanism of cell death contributing to my-
ofibroblast clearance during fibrosis regression [52]. Senescent cells stop proliferating due
to cell-cycle arrest associated with telomere shortening [52] or other alterations, includ-
ing chromatin modifications [70], DNA damage [70], oncogene activation, loss of tumor
suppressors [70] and cellular stress, such as abnormal nutrient/O2 levels, altered ECM,
oxidative stress [70–72]. Through a senescence-associated secretory phenotype (SASP),
senescent myofibroblasts promote reversal of fibrosis preventing further proliferation of
fibrogenic cells, upregulating ECM-degrading enzymes, and downregulating ECM pro-
teins, including collagens [73]. Recruitment and function of immune cells involved in
the clearance of activated HSCs, such as NK cells, is also involved in this process [52].
A variety of proteins, such as the matricellular protein CCN1/CYR61 [74], insulin-like
growth factor I (IGF-I) and interleukin (IL)-10, IL-22 have been identified as inducers of
senescence in aHSCs. This process is also stimulated by different drugs [75,76], such as the
celecoxib derivative, OSU-03012 [77], nuclear receptor agonists (PPARγ, RAR and retinoic
X receptor (RXR)) [70], or phytochemicals as curcumin, which promotes HSC senescence
via PPARγ/p53 [78]. Soluble egg antigens (SEA) of schistosoma japonicum were also
reported to induce senescence in activated HSCs via FoxO3a/SKP2/p27 [77].

4.4. Immune Clearance

Clearance of myofibroblasts is also triggered by the immune system. Besides macrophages,
that can promote aHSC apoptosis [79], activated NK and liver-specific natural killer T cells
induce rapid killing of HSCs, secreting a wide range of cytokines [80–82].

Both senescent and activated, but not quiescent, HSCs can be eliminated by NK
cells through retinoic acid early inducible 1/natural killer group 2 member D (NKG2D)-
dependent and TRAIL-dependent pathways [81], whereas NKT cells selectively target
activated HSCs by release of IL-30 [83] and IFN-γ [84]. Li et al. recently showed that acti-
vated NK cells require the p38/PI3K/Akt pathways to promote TRAIL-induced cytolytic
effects on aHSCs [85]. NK cells also induce HSC apoptosis through FasL [84], due to high
Fas expression in aHSCs, and TRAIL [86], and restrain HSC activation via IFNγ release [87].
Of note, as the fibrogenic process progress, NK cell activation tends to diminish, impairing
the protective function of this system [88].

CD4+ T (Th1, Th2, Th17) and regulatory T cells (Treg) are major modulators of immune
response, with direct or indirect effects on fibrosis regression [89]. Activated T lymphocytes
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were reported to induce aHSC senescence through IL-22/IL-10R2 and IL-22R1 [90]. γδT
cells, that represent 3–5% of liver lymphocytes, were recently shown to promote fibrosis
regression. Using a CCl4-induced model of fibrosis in γδT cell-deficient mice, Liu et al.
demonstrated that these cells suppress liver fibrosis by at least two mechanisms, a direct
cytotoxic effect on aHSCs, triggered by NKp46, and an indirect action, involving the
crosstalk with NK cells. The IFN-γ releasing subset (γδT1) was found to be more active
against aHSCs than the IL-17 secreting subtype (γδT17) [91].

The role of B lymphocytes in hepatic fibrogenesis is mediated by direct or indirect
actions on different cell types, including HSCs, NK cells or CD4+ T lymphocytes [83].
Faggioli et al. showed that in a mouse model of chronic fibrosing cholangitis, ablation of
B lymphocytes and consequent downregulation of the TNF-α/NF-κB pathway suppresses
HSC activation and induces HSC senescence [92].

4.5. HSC Inactivation

Development of promoters selectively driving transgenes in HSCs, to achieve cell-
specific gene expression, revealed that aHSCs can revert to an inactive/quiescent-like
phenotype during regression of liver fibrosis [14,15]. In an elegant study performed using
the Cre-LoxP-based genetic labeling technique, Kisseleva et al. investigated the fate of HSCs
in alcohol- or CCl4-induced experimental fibrosis. During recovery from fibrosis, about
50% of hepatic myofibroblasts escape apoptosis and revert to a quiescent-like phenotype,
downregulating fibrogenic genes and upregulating the survival factors Hspa1a/b [14]. An
interesting study by Song et al. showed that upon ectopic expression of the transcription
factors FOXA3, GATA4, HNF1A, and HNF4A, mouse myofibroblasts transdifferentiate into
hepatocyte-like cells. The transcriptional reprogramming was achieved both in vitro and
in vivo, in fibrotic mice, resulting in amelioration of liver fibrosis [93]. Recently, transcrip-
tion factor 21 (Tcf21) has also been identified as a deactivation factor for myofibroblastic
HSCs. TCcf21 levels decrease during the fibrogenic process both in humans and mice and
return to normal levels upon regression of murine fibrosis. TCf21- overexpressing aHSCs
reverted to a quiescent phenotype with consequent regression of fibrosis and amelioration
of hepatic structure and function. Of note, HSCs overexpressing TCf21 failed to store vita-
min A, indicating that this transcription factor is unable to modulate the whole program of
HSC deactivation [94].

The above findings are in agreement with in vitro studies showing that aHSCs can
revert to a quiescent-like status, acquiring a novel phenotype, similar but distinct from
the original quiescent cells, and characterized by low proliferation rate and elevated
metalloproteinase activity [95,96]. Gene expression analysis revealed that inactivated (i)
HSCs display reduced levels of fibrogenic genes such as collagens, LOX and α-smooth
muscle actin (α-SMA), and increased expression of adipogenic, quiescence-associated
genes, such as PPARγ. Of note, the expression of glial fibrillary acidic protein, adiponectin
receptor1, Adpf, and D site of albumin promoter binding protein, typical of the quiescent
status of HSCs, remain absent [96]. Functionally, iHSCs are more sensitive to fibrogenic
stimuli and rapidly reacquire profibrogenic features [14]. Interestingly, in vitro studies
performed on a gradually softening hydrogel mimicking microenvironmental changes
occurring during fibrosis progression and regression, proved that mechanical stimuli
are crucial for activation and reversion of HSCs [97]. Accordingly, a recent study by
Dou et al. showed that substrate stiffness in vitro or liver stiffness in vivo induced post-
translational changes in histones, transcription factors and coactivators in HSCs, leading to
their activation. These events were mediated by the histone acetyltranferase p300. Indeed,
stiffness induced, via RhoA/Akt, the phosphorylation and nuclear translocation of p300,
resulting in transcription of several genes associated with the HSC profibrogenic phenotype,
as α-SMA, CTGF, PDGFA and B, VEGFA, IL-11, IL-6, CXCL12 [98]. From a translational
point of view, these findings suggest the possibility to induce fibrosis regression by affecting
specific signals that trigger this response [99].
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5. Modulation of Inflammatory Processes

Inflammation represents a main feature of chronic liver diseases and plays a key role in
any stages of the fibrogenic process, even during fibrosis regression. Inflammatory response
involves multicellular interactions, dynamically regulated by a plethora of factors (e.g.,
soluble mediators, ECM components, pathogen-associated molecular patterns-PAMPs,
damage-associated molecular patterns-DAMPs), acting in cell-specific fashion and aimed
to restore liver architecture and function, but also leading to liver fibrosis when the noxious
agent persists.

Cell death is an early and primary inducer of chronic inflammation and fibrosis.
Hepatocyte-derived apoptotic bodies stimulate the secretion of pro-inflammatory and
profibrogenic cytokines from macrophages and promote activation of HSCs through in-
duction of autophagy [100–102]. In addition, injured hepatocytes release DAMPs, such as
ATP, phormyl peptides, High Mobility Group Box 1(HMGB1) [103] and cytokines such as
IL-33 [104], which triggers HSC activation directly or indirectly, by promoting IL-13 release
by innate lymphoid cells (ILC2). At the same time, inflammatory mediators secreted by
infiltrating immune cells contribute to cell death, amplifying hepatic injury [104].

As major effectors of fibrosis, activated HSCs play a central role in inflammation,
receiving a wide variety of stimuli from inflammatory cells and from hepatocytes, cholan-
giocytes and activated sinusoidal endothelial cells (SECs). Activated HSCs are highly
responsive to inflammatory mediators which induce inflammatory pathways (such as
NF-κB and AP-1) [105,106] and consequent secretion of cytokine/chemokines that act in
autocrine and paracrine fashion. Inflammatory signals exert specific roles on HSCs, main-
taining survival (IL-1β, TNFα, CXCL12) and the activated state (ILs and chemokines) [107],
providing chemotactic stimuli for HSCs themselves or inflammatory cells (CCL2, CCL5,
CXCL9, CXCL10, CX3CL1) and mediating the gut-liver axis crosstalk (toll like receptors
(TLRs)) [105]. All these processes can contribute to positively or negatively modulate
inflammatory responses and fibrogenesis, promoting fibrosis progression or regression.

As modulators of liver fibrosis, immune cells exhibit a dual role, being able to con-
tribute to both fibrosis progression and regression [108,109]. Danger signals generated
in the site of injury lead to infiltration of circulating inflammatory cells (T lymphocytes,
neutrophils, dendritic cells and monocytes) and activation of Kupffer cells (KCs) [108,109].
The release of a wide range of soluble mediators amplifies inflammation and stimulates
the fibrogenic process. Upon removal of the cause of injury, the balance switches from
pro- to anti-inflammatory/restorative pathways, promoting fibrosis resolution. This shift
is achieved by rearrangements in the type of immune cell populations recruited, with a
marked drop in intrahepatic T cells and blood-derived cells (NKT cells, monocytes) [110],
and phenotypic modifications of certain cell types, mainly macrophages.

5.1. Neutrophils

Neutrophils have been recently shown to play an important role in the resolution of
the inflammatory response in various tissues [111–113]. Mice with neutrophil depletion
during the recovery phase of liver inflammation showed impaired hepatic fibrosis and
altered liver architecture. A similar outcome was observed in mice with deletion of the
granulocyte-specific miR-223 gene, a negative post-transcriptional regulator of NLRP3
inflammasome. A complete recovery of liver function could be achieved restoring miR-223
levels or with adoptive transfer of wild-type neutrophils. These findings indicate a potential
restorative phenotype of neutrophils expressing miR-223, able to promote the resolution of
the inflammatory process [114]. High polymorphonuclear (PMN) cell infiltration in liver
biopsies of patients with alcoholic hepatitis has been associated with better prognosis, fur-
ther supporting a regenerative function of neutrophils, and suggesting that sustaining liver
regeneration could be more appropriate than inhibiting the inflammatory process [115].
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5.2. Macrophages

Hepatic macrophages derive from both circulating monocytes, recruited to the injured
liver via growth factors and chemokine signals, or from self-renewing embryo-derived resi-
dent macrophages, called KCs [116]. Macrophages are a highly plastic and heterogeneous
population with multiple functions, according to injury kinetics and environmental settings.
Recent reports on single-cell mRNA sequencing of liver cell populations highlighted the
heterogeneity and plasticity of the macrophage compartment in both rodent models and
human disease [116–118]. Macrophage heterogeneity and plasticity are characterized by
different cell surface markers and transcriptional profiles, and different stimuli can induce
the polarization of macrophages [119]. In most cases, a classification in two main subsets:
M1 (classically activated) and M2 (alternatively activated) is widely used [120].

Classically activated macrophages differentiate into M1 macrophages producing pro-
inflammatory cytokines such as IL-6, TNF-a, IL-1, IL-12, IL-15, and IL-18 [121], whereas
alternatively activated macrophages modulate inflammatory reactions and mediate tissue
repair. Alternatively activated macrophages can be further distinguished in diverse sub-
types, each induced by different molecules and eliciting different signals. In particular,
M2a macrophages are stimulated by IL-4 and IL-13, and mainly induce a Th2 response.
M2b macrophages are stimulated by immune complexes and are involved in Th2 activation
and immune regulation, and M2c macrophages are stimulated by IL-10 or TGF-β and are
involved in immune suppression, tissue repair and matrix remodeling [119]. However, this
traditionally classification based on induction of in vitro polarization does not well describe
the phenotypic heterogeneity of hepatic macrophage in vivo [109]. In murine models, Ly6c
expression is used to characterize populations of circulating monocytes and macrophages
in pathology [119,122]. Circulating Ly6c+/high and Ly6c−/low monocytes have been well
characterized. Their counterparts in humans are classically activated (CD14+ CD16+) mono-
cytes expressing CCR2, CD64, and selectin L and non-classical (CD14+ CD16−) monocytes
which do not express CCR2, respectively [123]. Ly6c high monocytes are considered pre-
cursors to Ly6chigh and Ly6clow macrophages. Ly6chigh mirror M1 macrophages exhibiting
pro-inflammatory phenotype, while Ly6clow macrophages exhibit an M2-like phenotype
that play an anti-inflammatory role during liver damage [124].

In the healthy liver the number of KCs remains constant, and they are the predominant
macrophage population in the liver; following liver damage the intrahepatic macrophages
are massively expanded, due to the influx of peripheral monocytes [125].

5.2.1. Embryologically-Derived/Resident Macrophages

KCs express specific markers useful for their characterization, such as F4/80, CD11b+/low,
CD68 and, C-type lectin domain family 4 member F (CLEC4F) in mice [122]. In the early
stages of liver damage, KCs exert proinflammatory and protective actions, through the
release of cytokines and chemokines, which further recruit other immune cells. Simultane-
ously, KCs play a relevant role in the fibrogenic process, via TGF-β and PDGF-mediated
activation of HSCs [81]. After removal of injury, hepatic macrophages contribute to fibrosis
resolution by secreting MMPs [15,95]. In addition, they also interact with NKT cells that,
as reported above, contribute to aHSC elimination [81].

5.2.2. Bone-Marrow/Monocyte-Derived Macrophages

During injury, activated KCs and HSCs induce the recruitment of Ly6Chi expressing
monocytes, which rapidly convert to Ly6Chi macrophages characterized by high phagocytic
activity [126], through CCL2/CCR2 and other chemokine systems. These cells can secrete
a variety of mediators (e.g., TNF, IL-6, IL-1β or TGF-β) that can act in a proinflammatory
or anti-inflammatory/profibrogenic fashion, depending on the timing of release and the
immune/ECM microenvironment [79,124].

During fibrosis regression, macrophages undergo phenotypic conversion to a restora-
tive Ly6Clow subset, able to secrete MMPs like MMP9 and MMP12, growth factors such
as VEGF and cytokines, and express phagocytosis-associated receptors [124]. This shift is
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induced by phagocytosis of apoptotic myofibroblasts and/or injured hepatocytes and is me-
diated by the fractalkine receptor CX3CR1 [127]. As mentioned above, MMPs secreted by
restorative macrophages may vary during the regression process, being influenced by solu-
ble mediators released in the milieu. Thus, VEGF-induced CXCL9 release in macrophages
results in MMP13 secretion [128], whereas the IL-4/IL-13/IL-4Rα axis mainly stimulates
MMP2, through STAT6 [129]. Interestingly, IL-4Rα is a key player in macrophage polar-
ization toward the anti-inflammatory/restorative M2 phenotype but is also involved in
hepatic inflammation and fibrosis during the fibrogenic process [129].

In cirrhotic patients, [130], Cardoso et al. observed an increase in circulating inter-
mediate monocytes (CD14+ CD16+), distinguished from the classical monocytes (CD14++

CD16−) and from nonclassical monocytes (CD14−/low CD16+) [131]. They detected al-
terations in the proportions of circulating monocytes, particularly in patients with more
advanced liver disease. Moreover, the cytokine profile analyzed in this study showed
elevated plasma levels of IL-6 and IL-10, particularly in patients with acute decompen-
sation of cirrhosis. Taken together, these findings indicate in cirrhosis the presence of
systemic effects that influence the immune–hematopoietic system. Interestingly, a distinct
population of scar-associated macrophages deriving from recruitment and differentiation
of circulating monocytes has been identified, following liver damage. This macrophage
subtype has an important role in resolution of liver fibrosis, representing one of the sources
of MMP13 in fibrotic niches in livers of cirrhotic patients [132]. During the early stages
of liver injury, scar-associated macrophages differentiate into inflammatory macrophages,
and subsequently switch to an anti-inflammatory phenotype, which secretes a wide variety
of MMPs to facilitate fibrosis resolution [133,134].

6. ECM Degradation

Liver fibrosis is a dynamic process characterized by an unfavorable balance between
ECM deposition and degradation. Degradation of ECM represents one of the most relevant
aspects of fibrosis regression and requires activation of MMPs, macrophage phagocytic
activity and downregulation of MMP-inhibitory molecules, such as tissue inhibitors of
MMPs, TIMPs [7,10]. MMPs are the main matrix-degrading enzymes [62] and, according
to substrate specificity, can be grouped in collagenases (MMP8, MMP1 and MMP13) which
cleave native fibrillar collagens to gelatin, gelatinases (MMP2, MMP9), degrading a wide
range of substrates including gelatin, collagens and, in some extent, elastin, metalloelastases
(MMP12) and others (Table 1).

Table 1. Classification of human metalloproteinases (MMPs) and their function.

MMPs GROUP FUNCTION

MMP1, MMP8, MMP13 Collagenases Cleavage of native fibrillar
collagens to gelatin

MMP2, MMP9 Gelatinases
Degradation of a wide range

of substrates, including
gelatin, collagens and elastin

MMP12 Metalloelastases Elastin degradation

They are secreted by various cell types, including aHSCs, hepatocytes, endothelial
cells, and inflammatory cells, such as neutrophils and macrophages. MMP release and
activity are finely regulated during the different phases of fibrogenic process, as well
as during fibrosis regression. In this context, a relevant role in matrix degradation is
played by “restorative” macrophages that, besides a role in phagocytic digestion of matrix
fragments, represent a major source of MMP12, MMP13, and MMP9 [124]. In a recent study,
Feng et al. showed that in thioacetamide (TAA)-induced fibrosis, depletion of KCs delayed
resolution following toxin withdrawal and this was mainly ascribed to a marked decrease
in MMP9 [135]. Because activated HSCs display high TIMP levels, ECM degradation
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strictly correlates with HSC clearance and the subsequent shift in MMPs/TIMPs balance,
creating the conditions for a milieu favoring parenchymal regeneration.

7. Reversibility of Cirrhosis

ECM remodeling is crucial in determining reversibility of fibrosis. In recent years,
clinical and experimental studies have provided evidence that matrix remodeling and at
least partial restitution towards a normal architecture may be observed even in advanced
liver fibrosis or cirrhosis [136–140]. The amount of elastin and cross-linked proteins in
fibrotic scars is critical in this process. Protein cross-linking, which is mediated by cellular
transglutaminases and lysyl oxidases, stabilizes ECM, enhancing its resistance to enzyme
degradation and, together with elastin, increases matrix stiffness, that further sustains
HSC activation via integrin-mediated mechanisms [62]. In this setting, MMP12 released
by macrophages can still promote matrix turnover acting not only on elastin but also on
collagens [141]. However, ECM remodeling in cirrhotic scars is also influenced by vascular
remodeling that can hamper matrix degradation [142]. Thus, even when restitution to
normal liver architecture is achieved, cirrhosis-associated derangements in the vascular
system and in other organs persist. By using two different models of cirrhosis induction
and reversal (TAA and BDL), Hsu et al. demonstrated that, despite a complete regression of
fibrotic scars, portal hypertension was only partially reduced, due to persisting alterations
in splanchnic and collateral circulation [143].

These biologic considerations have clear clinical implications. Regression of fibrosis
represents a major clinical goal, since it can lead to a recovery of liver function and reduc-
tion in portal pressure, which decrease the incidence of portal-hypertensive complications
and of hepatocellular carcinoma (HCC) [144–147]. It is well known that mild and moderate
fibrosis can be reversible, but the same concept is not always true for cirrhosis. In this
respect, the identification of a “point of no return” in the natural history of liver disease
can be very difficult, despite its utmost relevance in clinical practice. This may be viewed
as a condition beyond which even causal therapy (e.g., viral eradication) does not deter-
mine a significant regression of fibrosis and/or has limited impact on the appearance of
complications and prognosis of the patient. As indicated above, the degree and amount of
structural damage, in particular the development of extensive matrix crosslinking [148]
and accumulation of elastin fibers in long-standing cirrhosis, have been indicated as a
major element to identify the “point of no return” [141].

From a clinical standpoint, the ‘model’ of HCV eradication has provided relevant
data in this context. Patients with compensated cirrhosis (Child-Turcotte-Pugh class A)
achieving viral eradication with direct-acting antivirals (DAAs), show regression of fi-
brosis in a relevant percentage of cases (88%) [149] and a consequent decrease of portal
hypertension [150]. When patients with cirrhosis Child-Pugh class B and C are considered,
long-term data about the effects of sustained virologic response (SVR) after DAA treatment
on fibrosis and liver-related complications and survival are less abundant. However, data
from other contexts (e.g., HBV or alcohol-related decompensated cirrhosis) indicated that
Child C class could represent a “point of no return” in terms of fibrosis decrease even
after removal of the etiologic factor [151,152]. Other clinical predictors of the lack of fi-
brosis regression include age (>65 years), albumin (<3.5 g/dL), high MELD score (>20),
alcohol habit and presence of metabolic disorders. However, none of them are satisfactory
consistent to be used in clinical practice [153].

Advanced liver fibrosis and cirrhosis are major risk factors for HCC [154,155]. In
particular, fibrosis and cancer-associated fibroblasts (CAF,) can influence the onset of HCC
modulating the cancer microenvironment [156,157]. Considering these assumptions, HCV
eradication should determine a decrease of both HCC occurrence and recurrence. In
recent years, this has been a very debated issue since some studies suggested that SVR
due to DAA, differently from interferon-based therapies, could increase the risk of both
occurrence and recurrence of liver cancer [158]. It is now accepted that there is no such
risk on a population basis and, as recently demonstrated [159], SVR due to DAAs leads
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to a drop in all-cause mortality, hepatic decompensation, and HCC. Nevertheless, on
an individual basis, DAAs might favor the HCC development in subjects who already
have a predisposing hepatic condition such as activated neo angiogenesis [160]. More-
over, subjects with severe metabolic impairment may have a risk of HCC despite viral
eradication [161]. DAA-induced modifications in VEGF, epidermal growth factor, and
inflammatory factors have been proposed for the detection of subgroups at risk of HCC,
and some authors have proposed these as possible determinants of the susceptibility to
cancer development [162,163].

8. Vascular Remodeling

As anticipated above, angiogenesis and vascular remodeling represent additional
mechanisms involved in both fibrosis development and regression. Although the role
of angiogenesis in promoting liver fibrosis is fully accepted, new lines of evidence indi-
cate that angiogenic factors may also induce scar degradation and tissue repair during
fibrosis resolution. Using murine models of fibrosis reversal, Yang et al. showed that
the VEGF/VEGFR2 pathway is essential to maintaining sinusoidal permeability and the
subsequent monocyte infiltration and macrophage fibrinolytic activity [128]. Moreover,
VEGF release by macrophages was shown to be critical for fibrosis resolution. In fact,
VEGR2-mediated activation by VEGF induced ECM degradation through upregulation of
MMPs and downregulation of TIMPs in sinusoidal endothelial cells [164].

Capillarization of the sinusoids and changes in liver sinusoidal endothelial cells
(LSECs) represent key events in liver fibrogenesis, triggering HSC activation and impairing
hepatocyte polarization. These consist in LSEC dedifferentiation with loss of fenestrae
and deposition of a continuous basement membrane that hampers normal exchanges
between blood circulation and hepatocytes. Restoration of differentiated LSEC is crucial
for recovery from hepatic fibrosis, as proved by the fact that depleting factors implicated in
sinusoidal permeability, such as VEGF or CXCL9, results in delayed recovery [128]. In a
thioacetamide-induced rat model of cirrhosis, administration of BAY 60-2770, an activator
of soluble guanylate cyclase (sGC), promoted a complete reversal of sinusoid capillariza-
tion, by restoring normal levels of cGMP, fenestrae, and porosity in LSECs. Restitution
to differentiated LSECs resulted in reversal of HSC activation and regression of fibrosis.
Moreover, maintenance of physiological levels of cGMP in LSECs was essential to prevent
fibrosis progression [165]. Liver X Receptor (LXR) α, which mediates multiple antifibro-
genic actions interfering with the activation of HSCs, the release of inflammatory mediators
and the synthesis of profibrogenic factors [56,166–168], was hypothesized to play a role
in reverting capillarization of the sinusoids, through inhibition of Hedgehog-dependent
signaling in LSECs [169]. In a mouse model of biliary fibrosis induction and reversal,
Lee et al. identified AKAP12, a scaffold protein expressed in various cell types regulat-
ing cyclic adenosine monophosphate (cAMP) compartmentalization, as a novel mediator
of fibrosis resolution, through mechanisms affecting LSEC dedifferentiation/activation
and angiogenesis [170]. In an elegant study, Xu et al. identified leukocyte cell-derived
chemotaxin 2 (LECT2) as a ligand of Tie1 (an orphan receptor expressed by endothelial
cells) and LECT2-Tie1 as a novel profibrogenic pathway involved in vascular remodeling,
that enhances sinusoid capillarization and reduces portal angiogenesis. They showed
that knockdown of LECT2 (in both LECT2 KO mice and AAV9-LECT2 shRNA- treated
mice) attenuates fibrosis development and ameliorates established fibrosis in different
experimental models, reducing sinusoid capillarization and increasing portal angiogenesis.
Notably, serum levels of LECT2 were significantly increased in patients with advanced
fibrosis, indicating LECT2-Tie1 signaling as a promising therapeutic target [171].

9. Potential Strategies to Accelerate Fibrosis Reversal in Preclinical and
Clinical Studies

It is well known that liver fibrosis and even cirrhosis may reverse after removing
the underlying chronic disorder. This concept is consolidated for subjects with controlled
hepatitis B virus replication and for patients with chronic hepatitis C infection achiev-
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ing sustained virological response, while solid evidence for patients with alcoholic and
non-alcoholic steatohepatitis is still lacking [148,172–174]. Consequently, a deeper knowl-
edge of the mechanisms underlying fibrosis regression is needed to develop potential
therapeutic approaches.

9.1. Targeting ECM Remodeling and Sinusoidal Permeability

Targeting ECM remodeling represents an effective strategy. Induction of macrophage-
mediated ECM degradation via MMPs may be helpful. Feng et al. demonstrated that in
a mouse model of liver fibrosis, resolution was delayed by KC depletion and accelerated
by adoptive transfer of KCs from WT animals, compared to KCs from MMP9−/− mice,
suggesting that KC-derived MMP9 is essential in fibrosis reversal [135]. Selective lysyl
oxidase-like 2 (LOXL2) inhibitors reduce ECM stabilization and resistance to MMP degrada-
tion by interfering with collagen and elastin cross-linking [175]. However, targeting LOXL2
in clinical trials with humanized anti-LOXL2 has shown no clinical benefit so far [176,177].
In order to reduce collagen 1 (Col1), Hsp47, a Col1 chaperone, was blocked in models
of liver fibrosis by Hsp47 siRNA contained in vitamin A-coupled liposomes, which are
predominantly taken up by HSCs, reporting anti-fibrotic actions [178]. A trial conducted
with an HSP47 siRNA delivering lipid nanoparticle did not show any toxicity in healthy
subjects (Soule B. et al. safety, tolerability, and pharmacokinetics of BMS-986263/ND-L02-
s0201, a novel targeted lipid nanoparticle delivering HSP47 siRNA, in healthy participants:
a randomized, placebo-controlled, double-blind, phase 1 study-unpublished raw data).
Negative modulators of LSEC dedifferentiation and activation, such as LXRα agonists, that
also display other protective actions could be effective to revert LSEC capillarization, a
prerequisite for fibrosis resolution [169,170].

9.2. Agents That Reduce the Activation of HSCs

cAMP, a second messenger involved in several cellular responses, has been shown to
promote fibrosis regression and could be a potential target to slow down fibrosis [179]. High
levels of cAMP inhibit the activation of HSCs and fibroblasts, reduce their proliferation
and survival, and decrease ECM synthesis [180,181]. Cilostazol is a semi-selective inhibitor
of phosphodiesterase III, which increases intracellular cAMP leading to increased concen-
trations of the active form of protein kinase A (PKA) [182]. The use of this drug was first
approved by the FDA as a treatment for intermittent claudication in 1999 [183], and it has
been studied in other clinical settings displaying pleiotropic biomolecular mechanisms, in-
cluding platelet inhibition, vasodilation, anti-proliferation, neuroprotection and reduction
of ischemic-reperfusion injury [184–188]. This agent has also displayed antifibrotic actions
in experimental nonalcoholic fatty liver disease [189] and was shown to suppress HSC
activation, reducing CCl4-induced liver fibrosis [190]. Recently, cilostazol was reported to
promote fibrosis regression in a TAA-induced model, through the up-regulation of hepatic
cAMP and modulation of inflammation, oxidative stress, and apoptosis [191]. Amelio-
ration of fibrosis was also observed in an alcohol-induced rat model, in which cilostazol
decreased α-SMA, collagen I and III, TGF-β1 and connective tissue growth factor (CTGF)
expression [192]. These results suggest that cilostazol could be a potential anti-fibrotic
agent, although further studies are necessary to better understand its mechanisms of action.
Moreover, despite its many beneficial effects, the treatment of patients with this drug
must be cautious. Due to their vasodilator properties, in patients with class III to IV heart
failure phosphodiesterase inhibitors have been associated with reduced survival compared
with placebo. In addition, patients with history of ischemic heart disease could have a
higher risk for worsening of angina pectoris or myocardial infarction [193]. Cilostazol
contraindications may include tachycardia, tachyarrythmia, and/or hypotension [194].
Therefore, attention is necessary in prescribing cilostazol to patients affected by atrial or
ventricular ectopy and/or by atrial fibrillation or flutter [195].

Activated HSCs increase their contractile properties in response to endothelin-1 (ET-1)
via autocrine mechanisms and paracrine crosstalk with LSECs and damaged hepato-
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cytes [196]. A current clinical trial is examining the potential effect of an ET-1 receptor in-
hibitor in patients with cirrhosis (NCT03827200). It is well known that the renin-angiotensin
system is up-regulated in cirrhotic livers [197,198]. Agents targeting this system are ef-
fective to reduce TGF-β1 levels and the extent of fibrosis, with good safety outcomes,
in fibrotic patients [199]. An undergoing clinical trial is testing the angiotensin receptor
blocker, candesartan, in cirrhotic patients (NCT03770936).

Other targets include the Wnt/-catenin signaling, which plays an important role in
HSC activation driving to liver fibrosis [200–202]. PRI-724, a cyclic AMP-response element
binding protein (CBP)/beta-catenin inhibitor, has been observed to inhibit HSC activation
and collagen production in HCV transgenic mice [203]. In addition, in a CCl4 murine model
of liver fibrosis, PRI-724 ameliorated fibrosis owing to an increase in of F4/80+ CD11b+,
and Ly6Clow CD11b+ macrophages [124]. The CBP/beta-catenin-dependent mechanism
of action of PRI-724 was well outlined in CBP KO mice [204]. A phase I clinical trial with
PRI-724 conducted in HCV-associated liver cirrhosis patients showed a dose dependent
histological improvement only in a few patients. NCT03620474, a phase I/II clinical trial
with PRI-724 in HCV or HBV- associated liver cirrhosis patients, will be completed in 2022
and will further clarify the safety and effectiveness of PRI-724 as anti-fibrotic agent.

Farnesoid X receptor (FXR), a bile acid activated nuclear receptor mainly expressed
in liver and intestine, is a key regulator of hepatic bile acid homeostasis, lipoprotein,
and glucose metabolism, inflammatory responses, and liver regeneration [205–207]. FXR
has been shown to exert inihibitory effects on HSCs activation [208–210]. Obeticholic
acid (OCA), the first small molecule to target FXR to be approved by FDA in 2016 as a
second-line treatment for primary biliary cholangitis [205], has also been used in clinical
trials of patients with fibrosis. In a 2015 phase II clinical trial study (FLINT), a short-term
treatment with OCA (72 weeks) improved fibrosis in NASH patients [211]. In a recent
phase III clinical trial (REGENERATE) with long-term OCA treatment in NASH patients
(NCT02548351) obeticholic acid 25 mg significantly improved fibrosis and key components
of NASH disease activity among patients with NASH [212].

Hepatocyte cell death triggers HSC activation [213]. The pan-caspase apoptosis
inhibitor emricasan has been used in preclinical [214] and clinical studies [215,216]. While
in a fibrotic rat model this agent ameliorated portal hypertension and liver fibrosis [214],
the clinical trials conducted so far have not been successful [215,216]. Another apoptosis
inhibitor tested as anti-fibrotic agent is selonsertib. This agent inhibits the activation of
signal–regulating kinase 1 (ASK1), a serine/threonine signaling kinase, implicated in the
activation of stress response pathways that exacerbate hepatic inflammation, apoptosis,
and fibrosis (Budas G et al. reduction of liver steatosis and fibrosis with an ASK1 inhibitor
in a murine model of NASH is accomplished by improvements in cholesterol, bile acid,
and lipid metabolism -unpublished raw data). In a murine model of NASH, selonsertib
significantly ameliorated not only metabolic parameters associated with NASH but also
decreased hepatic steatosis, inflammation and fibrosis and in a DMN-induced fibrosis
rat model it could reduce collagen deposition and the expression of α-SMA, fibronectin,
and collagen type I (Budas G et al. reduction of liver steatosis and fibrosis with an ASK1
inhibitor in a murine model of NASH is accomplished by improvements in cholesterol, bile
acid and lipid metabolism -unpublished raw data), [217]. Based on a successful phase II
clinical study enrolling NASH patients [218], two phase III clinical trials have examined
the safety, and anti-fibrotic efficacy of selonsertib in NASH patients with bridging fibrosis
(STELLAR-3 trial) or compensated cirrhosis (STELLAR-4 trial). While selonsertib did
not show any adverse effects both trials failed to reach the primary endpoint of fibrosis
improvement at week 48 [219].

9.3. Therapeutic Targeting of Hepatic Macrophages

There are different possible approaches for targeting hepatic macrophages for the
treatment of liver diseases, including the reduction of circulating monocyte recruitment,
the inhibition of KC activation and the modulation of macrophage polarization [220]. As



Cells 2021, 10, 2759 14 of 26

previously mentioned, recruitment of proinflammatory monocytes in the injured liver is
mediated by chemokines secreted by various activated liver cells that mediate a chemotactic
action. Among therapeutic approaches, the modulation of chemokine signaling models
using monoclonal antibodies, receptor antagonists, aptamer molecules and small molecule
inhibitors has proven efficacy in various experimental models, as reported in the session of
this review dedicated to CC chemokine receptor antagonists.

Another possible targeting strategy to treat liver diseases is to modulate KC activation,
e.g., acting on surface molecules on KCs that have an important role in the fibrogenic pro-
cess [221]. In rodent models it has been observed that galectin-3 inhibitors (GR-MD-02 and
GM-CT-01) significantly decreased septal galectin-3 positive macrophages with reduction
of fibrosis levels and portal pressure [222]. Galectins are carbohydrate-binding proteins in
glycoproteins components of the ECM. Galectin-3 is highly expressed on KCs and plays a
vital role in cell adhesion, inflammation, and fibrogenesis. GR-MD-02, a galectin-3 inhibitor,
is safe and well-tolerated in subjects who had a definite histological diagnosis of NASH
with advanced fibrosis, and these data provided support for a development program in ad-
vanced NASH fibrosis [223]. Recently, a phase II clinical trial of GR-MD-02 was conducted
in 162 patients with NASH, cirrhosis, and portal hypertension. Although levels of fibrosis,
NAFLD activity scores and liver-related outcomes did not vary significantly among groups,
a subgroup analysis in patients without esophageal varices showed that GR-MD-02 therapy
reduced the hepatic venous pressure gradient and development of varices. Spasmodic
cough was the only adverse event related to the study drug (NCT02462967) [224]. A phase
III trial has been initiated to evaluate the safety and efficacy of GR-MD-02 in patients with
NASH cirrhosis without esophageal varices (NCT04365868).

Promotion of a switch from a pathogenic to a restorative phenotype is an interesting
strategy to accelerate fibrosis regression and promote liver regeneration [225]. This can
be achieved by using pharmacological regulators that promote macrophage polarization.
Steroids (e.g., dexamethasone), IL-4, IL-10, secretory leukocyte protease inhibitor (SLPI),
prostaglandin E2 (PGE2) and colony-stimulating factor 1 receptor (CSF-1R) agonists have
been explored for macrophage reprogramming in liver diseases [220]. Moreover, nanopar-
ticles [226] represent a new approach that can selectively reprogram macrophages to a
restorative phenotype [220].

Different types of nano systems have been developed for the recognition and targeting
of macrophages, such as liposomes, solid-lipid, polymeric or metal nanoparticles. In order
to design various nanoparticle systems, it is necessary to understand their mechanism of
recognition by macrophages. Another controversial issue is the possible toxicity of non-
degradable nanoparticles, which in many cases accumulate in the macrophages elimination
organs such as the liver, spleen, and kidneys [226].

9.4. Exosome-Based Treatments

Exosomes are vesicles released by cells in both physiological and pathological condi-
tions. They can contain distinct RNAs, proteins, lipids, and metabolites depending on the
cell type of origin. Following their release into the intercellular milieu, exosomes bind to
recipient cells and deliver their information which is then converted into epigenetic repro-
gramming driving phenotypic modifications [227]. Upon liver injury, exosomes released
by epithelial cells deliver information able to activate fibroblasts, resulting in increased
expression of α-SMA and type I collagen [228]. Endothelial cells release exosomes with
LOXL2 located on the exterior side which increases collagen contraction [229]. Even aHSCs
release exosomes containing CCN2, that contributes to the progression of fibrogenesis [230].

On the other hand, exosomes can be also involved in the regression of fibrosis [227].
Quiescent HSCs release exosomes which reduce HSC activation, while healthy hepatocytes
secrete vesicles that can reduce the expression of profibrogenic genes. Alhomrani et al.
identified human amnion epithelial cells secretoma as a negative modulator of liver fibro-
sis in CCl4 treated mice, acting on macrophage polarization, HSC activation and matrix
deposition [231]. Mesenchymal stem cells (MSC)-derived exosomes are emerging as a
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potential tool to achieve liver fibrosis regression [232–234]. Exosomes released from human
cord MSCs were found to ameliorate CCl4 -induced hepatic fibrosis in mice, while vesicles
secreted by adipose tissue-derived MSCs were able to decrease the activation and prolifer-
ation of rat HSCs [233,234]. Along these lines, exosomes released in the serum could be
employed as antifibrotic agents, as it was recently reported that circulating exosomes from
healthy mice could reduce liver fibrosis in both CCl4- and TAA- mouse models [234]. In
conclusion, “healthy exosomes”, containing “therapeutic factors”, emerge as a potential
and powerful instrument for fibrotic liver treatment [234].

9.5. Mesenchymal Stem Cell Transplantation

Transplantation of stem cells, including MSCs, endothelial progenitors and haemopoi-
etic stem cells, has proven to be effective in repairing fibrotic livers in experimental mod-
els, stimulating hepatocyte proliferation, inhibiting aHSCs, increasing MMP activity and
inducing neovascularization [235]. MSCs have high proliferative capacity and multilin-
eage potential and, when transplanted, migrate to fibrotic areas, and differentiate into
hepatocyte-like cells or fuse with hepatocytes to restore liver function [235]. Human pala-
tine tonsil-derived MSCs were shown to migrate to damaged livers but not to healthy
livers. These cells, differentiating into hepatocyte-like cells, stimulated autophagy and
decreased TGF-β signaling pathways, hampering liver fibrosis [236]. MSC transplantation
was shown to improve hepatobiliary fibrosis, by inhibiting activation of HSCs, reducing
collagen deposition, and increasing ECM degradation through an increase in MMP13 and
a decrease of TIMP-1 [237,238].

Clinical trials have been conducted to test the efficacy of MSC transplantation, with
controversial results. In cirrhotic patients MSCs were found to exert protective effects by
increasing the amount of Treg cells and decreasing Th17 cells, leading to diminished serum
levels of TGF-β, IL-17, TNF-α, and IL-6 [239]. In HBV-induced cirrhosis, MSC transfusion
demonstrated to be clinically safe and to decrease ascites [240]. In other studies, MSC
transplantation had no beneficial effects [241,242]. These discrepant results are probably
due to the restricted number of patients enrolled and the short-term of follow up. Further
investigation is warranted to elucidate the efficacy and the safety of this therapy for the
treatment of fibrotic and cirrhotic patients. The main therapeutic approaches aimed to
achieve the regression of fibrosis are summarized in Table 2.

Table 2. Major therapeutic approaches aimed to promote fibrosis regression.

THERAPY TARGET(S) MECHANISM(S) OF
ACTION

PRE-CLINICAL OR
CLINICAL STUDIES STUDIES

LOXL2 inhibitors Collagen and elastin
cross-linking

Reduction of ECM
stabilization and resistance

to MMP degradation
Pre-clinical and clinical

studies [175–177]

Cilostazol Phosphodiesterase III

Increase in intracellular
cAMP with consequent
inhibition of HSC and
fibroblast activation

Pre-clinical studies [189–192]

ET-1 receptor inhibitor Endothelin-1 (ET-1)

Decrease in the contractile
capacity of aHSCs mediated

by interaction with LSEC
and damaged hepatocytes

Pre-clinical and clinical
studies

[196]
(NCT03827200)

RAS inhibitor therapy
(Candesartan) TGFβ1 Reduction of liver fibrosis Pre-clinical and clinical

studies
[199]

(NCT03770936)

Exosome-based treatments Profibrogenic factors
(α-SMA, TGFβ1)

Modulation of macrophage
polarization, suppression of
HSC activation and matrix

deposition

Pre-clinical studies [227,231–234]

Mesenchymal stem cell
transplantation

Promote MSC migration
into the fibrotic areas and
their differentiation into
hepatocyte-like cells to
restore liver function

Stimulation of hepatocyte
proliferation, reduction of
HSC activation, increase in

MMP activity and
promotion of

neovascularization

Pre-clinical and clinical
studies [232,235–242]



Cells 2021, 10, 2759 16 of 26

9.6. CC Chemokine Receptor Antagonists

Chemokines coordinate inflammatory responses within different organs and induce
the migration of fibrogenic cells to the sites of injury, thereby boosting fibrogenesis [110]. It
has been observed that CCL5/RANTES, a ligand of chemokine receptor CCR5 induced by
NFκB signaling, increased HSC migration and proliferation [243]. In experimental models
of liver fibrosis (CCl4 and bile duct ligation), CCR1- and CCR5-knockout mice showed
decreased hepatic fibrosis and macrophage infiltration [244]. An oral dual CCR2/CCR5
inhibitor, Cenicriviroc (CVC), showed anti-fibrotic effects in a thioacetamide-induced
rodent model [245]. A phase II study using CVC, was conducted in NASH patients with
liver fibrosis showing a beneficial effect of this agent even if not accompanied by anti-
inflammatory action. Of note, treatment benefits were mostly shown in patients who
showed higher fibrosis stage at baseline [246]. A phase III study (AURORA) in NASH
patients with more advanced fibrosis was concluded early due to lack of efficacy of CVC
based on the results of part I of the trial.

10. Conclusions

As well as fibrosis development, fibrosis regression is a complex and tightly regulated
process that involves various cell types and several molecules, differently acting according
to the changes in the ECM/inflammatory-driven microenvironment. Although reversal of
fibrosis appears an encouraging approach to the treatment of chronic liver diseases, further
studies are necessary to better understand the mechanisms underlying this process and
to identify novel therapies for chronic liver disease. This could imply a decreased risk of
developing hepatocellular carcinoma in patients affected by chronic liver disorders. In
addition, while current therapies aimed to promote regression of fibrosis mainly focus
on the removal of the noxious agents, there is need to deeper investigate on anti-fibrotic
treatments able to positively modulate the mechanisms favoring fibrosis regression to
confirm the long-term impact and strength of these findings. Indeed, even if some therapies
or agents could represent promising tools to resolve hepatic fibrosis, none of the ones
already used in human studies have been approved for clinical treatment.
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Abbreviations

HSCs hepatic stellate cells
ECM extracellular matrix
NK natural killer
CCl4 carbon tetrachloride
TAA thioacetamide
BDL bile duct ligation
EMT epithelial-mesenchymal transition
MMPs matrix metalloproteases
KCs Kupffer cells
TIMPs tissue inhibitors of metalloproteases
LSECs liver sinusoidal endothelial cells
LOXL2 lysyl oxidase-like 2
RAS renin-angiotensin system
MSCs mesenchymal stem cells
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cAMP cyclic adenosine monophosphate
PKA protein kinase A
CTGF connective tissue growth factor
OCA obeticholic acid
α-SMA α-smooth muscle actin
SLPI secretory leukocyte protease inhibitor
PGE2 prostaglandin E2
CSF-1R colony-stimulating factor 1 receptor
TG triacylglycerol
DAAs direct-acting antivirals
Hh Hedgehog
HIF hypoxia-inducible factor
IL interleukin
HCC hepatocellular carcinoma
VEGF vascular endothelial growth factor
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