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Abstract: Stem cell therapy improves memory loss and cognitive deficits in animal models with
Alzheimer’s disease. The underlying mechanism remains to be determined, but it may involve
the interaction of stem cells with hippocampal cells. The transplantation of stem cells alters the
pathological state and establishes a novel balance based on multiple signaling pathways. The new
balance mechanism is regulated by various autocrine and paracrine cytokines, including signal
molecules that target (a) cell growth and death. Stem cell treatment stimulates neurogenesis and
inhibits apoptosis, which is regulated by the crosstalk between apoptosis and autophagy—(b) Aβ

and tau pathology. Aberrant Aβ plaques and neurofibrillary tau tangles are mitigated subsequent to
stem cell intervention—(c) inflammation. Neuroinflammation in the lesion is relieved, which may be
related to the microglial M1/M2 polarization—(d) immunoregulation. The transplanted stem cells
modulate immune cells and shape the pathophysiological roles of immune-related genes such as
TREM2, CR1, and CD33—(e) synaptogenesis. The functional reconstruction of synaptic connections
can be promoted by stem cell therapy through multi-level signaling, such as autophagy, microglial
activity, and remyelination. The regulation of new balance mechanism provides perspective and
challenge for the treatment of Alzheimer’s disease.

Keywords: Alzheimer’s disease; stem cell therapy; neurogenesis; synaptogenesis; astrocyte; mi-
croglia; autophagy; apoptosis; immunoregulation; neuroinflammation

1. Alzheimer’s Disease and Stem Cell Therapy

Alzheimer’s disease (AD) is a neurodegenerative disorder, characterized by mem-
ory decline and cognitive impairment. In pathology, AD is manifested with Aβ peptide
plaques, neurofibrillary tau tangles, neuronal death, synaptic alterations, and cerebral
atrophy [1,2]. The etiology of AD is complicated by the diversity of risk factors, such as
heredity, aging, infection, immunity, medicines, environmental pollutants, and sociopsy-
chological factors [3–5]. Certain diseases have been considered as predisposing factors
for AD, such as hypothyroidism, immune-related disease, virus infection, epilepsy, de-
pression, and schizophrenia. The early onset AD locus is located on chromosomes 21, 14,
and 1, while the late-onset AD locus is on chromosome 19 [6]. The expression of typical
genes such as APP, S182, STM-2 and APOE is linked with the pathogenesis of AD [7,8].
Most sporadic AD may be the result of the interaction between genetic susceptibility and
environmental factors. The development of AD is associated with the comprehensive
effects of various mechanisms such as oxidative stress, apoptosis, autophagy, immunity,
inflammation, cholesterol metabolism, and angiogenesis [9]. Aberrant Aβ deposits and
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neurofibrillary tau aggregates induce neuronal death and synaptic loss. Some genes such as
APOE4, ABCA7 and SLC24A4 are related to cholesterol metabolism that is implicated with
P-tau trafficking [10,11]. Hence, statin drugs can decrease neurofibrillary tangle burden
by competitively inhibiting HMG-CoA reductase [12]. The disturbance of neurotransmit-
ters is connected with the clinical manifestations of AD, including acetylcholine system,
monoamine system, and neuropeptides [13,14]. Immunoregulation plays an important
role in the neuronal loss of patients with AD. The allelic variants of microglial TREM2
cannot control the balance between the formation and phagocytosis of Aβ proteins in the
brain, increasing the risk of AD by nearly three times [15,16]. Free radical generation and
oxidative stress cause neuronal apoptosis, which are related to the onset of AD as well [17].

The medical treatment of AD remains a challenge. Presently, only a few medicines
have certain effects, including (a) acetylcholinesterase inhibitors such as donepezil, galan-
tamine, rivastigmine, and tacrine [18]. They can compensate for the cholinergic decline
by inhibiting acetylcholine turnover, (b) NMDA receptor antagonist memantine, and
(c) Aβ-directed monoclonal antibody aducanumab. They target Aβ peptides to reduce
their accumulation in the brain [19]. Other compounds that can reduce amyloid plaques,
neurofibrillary tangles and neuroinflammation have been evaluated in clinical trials as
well [20,21]. So far, no medications have been demonstrated surely to stop or delay the
progression of AD. Stem cell therapy as a novel strategy has also been explored in animal
models with AD (Figure 1). Research results prove that the transplantation of stem cells
can improve memory and learning abilities, which can function in the AD-like animal
models as reflected by extended effectiveness or longer life expectancy [9,22]. Despite
the encouraging progress, therapeutic effect is expected to continue for the remaining life.
Therefore, significant improvements are needed to enhance efficiency. The transplanted
stem cells can proliferate and transdifferentiate, which compensate for neuronal loss and
restore synaptic connection. The therapeutic mechanisms are essentially associated with
neurogenesis and synaptogenesis. The source of stem cells may be autologous, allogenic,
or iPS-derived [9,23–26]. Autologous stem cells can be isolated and purified from brain,
fat, dental pulp, or bone marrow. In contrast, allogenic stem cells may be prepared from
placenta, umbilical cord, or embryonic tissue. Additionally, the delivery methods affect
the therapeutic effect of stem cells [9]. Different approaches have been compared based on
feasibility and accessibility, but their therapeutic efficiency remains under investigation. It
is confirmed that the transplanted stem cells can repair cognitive impairment and improve
behavioral performance in AD-like animal models as demonstrated by Morris water maze
test, Y-maze alternation test, plus-maze discriminative avoidance task, social recognition
test, and open-field evaluation [24,27,28].
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Figure 1. Stem cell therapy for animal models with Alzheimer’s disease. The transplantation of stem cells can stimulate 
the secretion of autocrine and paracrine cytokinesis, which alters microenvironment and promotes neurogenesis as well 
as synaptogenesis. As a result, stem cell therapy alleviates neuropathology and improves behavioral performance in ani-
mal models with Alzheimer’s disease. 

2. Participant Cell Types of New Balance Mechanism 
In the human brain, there are approximately 86 billion neurons and about the same 

number of non-neuronal glia cells [29]. The ratios of neurons to glia vary from one region 
to another. The transplantation of stem cells affects a variety of cell types such as neurons, 
oligodendrocytes, astrocytes, and microglia in the hippocampus. Intercellular interactions 
are regulated by different signal pathways, which bring about a series of pathophysiolog-
ical changes and develop a novel balance. 
(1). Physical pressure. The local pressure of cerebral tissue can be increased after the stem 

cells are delivered through the intrahippocampal injection, but the same phenome-
non is not found via the peripheral delivery. Nonetheless, the local physical pressure 
caused by mechanical force is almost negligible, since a similar therapeutic effects 
can be obtained through tail vein delivery as well [9,30,31]. 

(2). Signaling molecules. The transportation of stem cells alters the microenvironment of 
cerebral tissue and stimulates the secretion of autocrine and paracrine cytokines, 
such as chemokines, leucocyte chemoattractant factors, transcription factors, inflam-
matory cytokines, fibrogenic cytokines, and growth factors (Table 1). Some factors 
are general products that can be secreted by all types of stem cells, whereas other 
cytokines are only produced by specific stem cells [32]. Those pragmatic cytokines 
participate in the establishment of new balance mechanisms. The secretion of autocrine 
and paracrine cytokines plays important roles in neurogenesis and synaptogenesis. 

Figure 1. Stem cell therapy for animal models with Alzheimer’s disease. The transplantation of stem cells can stimulate the
secretion of autocrine and paracrine cytokinesis, which alters microenvironment and promotes neurogenesis as well as
synaptogenesis. As a result, stem cell therapy alleviates neuropathology and improves behavioral performance in animal
models with Alzheimer’s disease.

2. Participant Cell Types of New Balance Mechanism

In the human brain, there are approximately 86 billion neurons and about the same
number of non-neuronal glia cells [29]. The ratios of neurons to glia vary from one region
to another. The transplantation of stem cells affects a variety of cell types such as neurons,
oligodendrocytes, astrocytes, and microglia in the hippocampus. Intercellular interactions
are regulated by different signal pathways, which bring about a series of pathophysiological
changes and develop a novel balance.

(1). Physical pressure. The local pressure of cerebral tissue can be increased after the stem
cells are delivered through the intrahippocampal injection, but the same phenomenon
is not found via the peripheral delivery. Nonetheless, the local physical pressure
caused by mechanical force is almost negligible, since a similar therapeutic effects can
be obtained through tail vein delivery as well [9,30,31].

(2). Signaling molecules. The transportation of stem cells alters the microenvironment of
cerebral tissue and stimulates the secretion of autocrine and paracrine cytokines, such
as chemokines, leucocyte chemoattractant factors, transcription factors, inflammatory
cytokines, fibrogenic cytokines, and growth factors (Table 1). Some factors are general
products that can be secreted by all types of stem cells, whereas other cytokines are
only produced by specific stem cells [32]. Those pragmatic cytokines participate in the
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establishment of new balance mechanisms. The secretion of autocrine and paracrine
cytokines plays important roles in neurogenesis and synaptogenesis.

(3). Changes in various cell types (Figure 2, Table 2).

(a) Functional neurons play a central role in the brain. There are roughly 20 billion
neurons in the human cortex. Each neuron has an average 7000 synaptic
connections [33]. The number of synapses is relatively stabilized in adulthood.
Neuronal synapses may decrease with aging, but they can also increase due to
brain plasticity. The transplanted stem cells can stimulate neurogenesis and
synapse formation. Newborn neurons may be from (i) the transdifferentiation
of stem cells; and (ii) the activation of specialized multipotent stem cells in the
brain. At present, stem cell therapy has overcome the concerns of uncertainty
and safety, and its effectiveness has been validated as well.

(b) Oligodendrocyte is a specific subtype of neuroglia. In the central nervous
system, their branch structures wrap around the neuronal axons to form an
insulating myelin sheath. The physiological function of oligodendrocytes is
to maintain neuronal insulation during the excitement of nerve signals. The
complete structure of the myelin sheath provides a safety measure for signal
transmission among neuronal synapses. Stem cell therapy restores neuronal
networks by way of synaptogenesis that is protected by the myelin sheaths
from oligodendrocytes [34,35].

(c) Astrocytes, also called astroglia, have projections covering local neurons. As-
trocytes are the support system in the cerebral tissue to hold neurons in the
position. Additionally, they can produce cytokines and interact with other
cell types. For example, astrocytes participate in microglia-mediated inflam-
matory and immune processes [36]. Astrocytes are responsible for substance
exchange. In the CNS, astrocytes contact both capillaries and neurons to trans-
port nutrients. Moreover, the phagocytosis of astrocytes is implicated in the
amyloid load of Alzheimer disease [37]. In the process of stem cell therapy, the
precise roles of astrocytes are still unclear. After exposure to MSC-conditioned
medium, the expression of pro-inflammatory factors such as IL-1β, TNF-α and
IL-6 was attenuated in cultured astrocytes [38]. The transplanted stem cells
acted on astrocytes to modify neuroimmune and relieve neuroinflammation
in vivo [39].

(d) Microglia are resident immune cells in the brain, equivalent to macrophages.
Functional microglia take part in the neuroinflammation, immunomodulation,
the elimination of Aβ proteins, and tau pathology. As the first line of the neu-
roimmune system, microglia remove cerebral debris and protect neurons from
harmful invasion. In contrast, the inflammatory factors released by microglia
can cause receptor-induced neuronal apoptosis [40]. Fortunately, microglial
activity can be modulated by the transplanted stem cells. So, stem cell ther-
apy suppresses neuroinflammation and controls neuroimmune overreaction.
Furthermore, microglia can detect neuronal injury and play a critical role in
the maintenance of neuronal health. As immune cells, microglia have duality
in the pathogenesis of AD. They can not only protect neurons by engulfing
detrimental Aβ proteins, but also damage neurons by secreting inflammatory
cytokines [41–43]. The consequence may be beneficial or pernicious, which is
determined by the comprehensive effect of multi-level signaling crosstalk.
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Table 1. Autocrine and paracrine cytokines secreted by stem cells.

Types Examples Function References

Inflammatory
cytokines

TNFα, IL-1, IL-2, IL-6,
IL-10

To regulate
inflammatory and
immune responses, to
participate in the
regulation of cell
growth and apoptosis,
etc.

J. Clin. Endocrinol.
Metab. 1998
Jun;83(6):2043–51;
Immunotherapy. 2018
Sep;10(12):1053–1064;

Fibrogenic cytokines FGF, TIMP-1

Proliferation of
fibroblasts, collagen
synthesis and
extracellular fibrosis,
immune mediators.

PLoS ONE. 2019 Apr
22;14(4):e0215678;
Brain Res. 2004 Apr
16;1005(1–2):21–8.

Chemokines CCL5, CXCL-10,
CXCL-12,

Chemo-attractants, to
guide the migration
of cells, to regulate
immunity,
inflammation,
angiogenesis, etc.

Stem Cells. 2012
Jul;30(7):1544–55;
Cancer Res. 2011 Jun
1;71(11):3831–40;
J. Cell Physiol. 2019
Aug;234(10):18707–
18719

Leucocyte
chemoattractant

factors

CINC-1, G-CSF, SCF,
GM-CSF

To participate in im-
mune/inflammatory
cascade.

PLoS ONE. 2019 Apr
22;14(4):e0215678;
Blood. 2000 Nov
15;96(10):3422–30.

Transcription factors GATA-4, Nkx2.5,
MEF2C

Response to
intercellular and
extracellular signals,
transcriptional
regulation in
development, cell
cycle, and
pathogenesis.

Mol. Med. Rep. 2015
Aug;12(2):2607–21;
Tissue Eng. Part A.
2011
Jan;17(1–2):45–58.

Growth factors HGF, IGF-1

Signaling molecules
promote cell
differentiation and
maturation.

Stem Cells Dev. 2010
Jul;19(7):1035–42;
Int. J. Stem Cells.
2009 May;2(1):59–68.

Vascular endothelial
growth factor VEGF

To stimulate the
formation of blood
vessels.

Int. J. Stem Cells.
2009 May;2(1):59–68;
Brain Res. 2004 Apr
16;1005(1–2):21–8.

Other MCP-1, OPG

Selectively recruiting
monocytes, to
regulate bone
metabolism.

Int. J. Stem Cells.
2009 May;2(1):59–68;
J. Interferon Cytokine
Res. 2009
Jun;29(6):313–26;
Cell. 1997 Apr
18;89(2):309–19.
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Table 2. New balance mechanism in the hippocampus involves multiple signaling pathways.

Mechanisms Cell Types Signaling Pathways References

Immunoregulation
Neurons, Microglia,
Astrocytes,
Oligodendrocytes

To facilitate
microglial M1/M2
polarization; to
regulate the crosstalk
between T cells and
microglia; to mediate
synaptic plasticity.

Neuroscience. 2019
Dec 1;422:99–118;
Proc. Natl. Acad. Sci.
USA. 2006 Mar
28;103(13): 5048–5053;
Front. Synaptic
Neurosci. 2018 Jun
13;10:14.

Inflammation
Neurons, Microglia,
Astrocytes,
Oligodendrocytes

To decrease the level
of NF-κB in
astrocytes; to reduce
the levels of TNF-α,
IL-6, and MCP-1; to
regulate cell growth
and apoptosis.

Neuropathol. Appl.
Neurobiol. 2017
Jun;43(4):299–314;
Sci. Rep. 2020 Jul
1;10(1):10772;
DOI:10.1186/s13024-
015-0035-6.

Neurogenesis
Neurons, Microglia,
Astrocytes,
Oligodendrocytes

To increase IGF-1
expression in the
hippocampus; to
increase
N-acetylaspartate and
Glutamate; to induce
the expression of
synaptophysin.

Exp. Ther. Med. 2017
Nov; 14(5): 4312–4320;
Transl. Neurodegener.
2020 May 27;9(1):20;
Hippocampus. 2017
Dec;27(12):1250–1263

Autophagy
Neurons, Microglia,
Astrocytes,
Oligodendrocytes

To increase cellular
viability and LC3-II
expression; to
upregulate
BECN1/Beclin 1
expression; to
enhance mitophagy.

Autophagy. 2014
Jan;10(1):32–44;
Mol. Neurobiol. 2019
Dec;56(12):8220–8236;
Autophagy. 2021 Jan
19;1–20.

Apoptosis
Neurons, Microglia,
Astrocytes,
Oligodendrocytes

To regulate
expression of
hippocampal SIRT1,
PCNA, p53, ac-p53,
p21, and p16; to target
caspase pathway;
Ca2+ signaling.

Behav. Brain Res.
2018 Feb
26;339:297–304;
Front. Neurosci. 2018
May 22;12:333;
Curr. Alzheimer Res.
2010 Sep;7(6):540–8;
Sci. Rep. 2016 Aug
12;6:31450.

Angiogenesis
Neurons, Microglia,
Astrocytes,
Oligodendrocytes

BMSCs secrete VEGF,
BDNF, NT-3, IGF-1,
bFGF, GDNF and
TGF. VEGF is the
most important
mitogen in the
process of
angiogenesis.

Brain Res. 2011 Jan 7;
1367:103–113;
Int. J. Mol. Med. 2013
May;31(5):1087–96;
Neuroreport. 2015
May 6;26(7):399–404.

Synaptogenesis
Neurons, Microglia,
Astrocytes,
Oligodendrocytes

To stimulate the
production of BDNF
and NGF for
remyelination;
peptide FG loop
(FGL) amplifies
remyelination and
modulates
neuroinflammation.

Cell Biol. Int. 2021
Feb;45(2):432–446;
J. Neuroimmune.
Pharmacol. 2016
Dec;11(4):708–720;
Front. Cell Dev. Biol.
2021 Jul 2;9:680301.
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cretion of autocrine and paracrine cytokines in the hippocampus. The remodeling process 
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essential mechanism to improve the neuropathology and recognitive deficits of Alz-
heimer’s disease, which has been validated by regulating representative pathways. 

3.1. The Transplantation of Stem Cells Mediates Cell Growth and Death 
The transplanted stem cells can survive in the hippocampus and further transdiffer-

entiate into neurons as demonstrated in APP/PS1 transgenic mice [24,26]. Meanwhile, 
some newborn neurons may be derived from endogenous progenitors, which have been 
detected in C57BL/6 mice as well as in the tissue culture of a patient’s cortex [44,45]. More 
details of in vivo conditions still need to be verified on the patient. Further, the beneficial 
cytokines produced by MSCs can stimulate proliferation through the indirect regulation 
of neurotrophic factors such as NGF, FGF2 and BDNF [46]. The comprehensive effect of 
transplanted stem cells is to promote neuronal growth or neurogenesis. Generally, the 
development of DA is presented with long-term and gradual characteristics, accompany-
ing neuronal apoptosis/necroptosis/necrosis. Apoptosis is an important way of neuronal 

Figure 2. Participant cell types of a new balance mechanism. The transplantation of stem cells alters the pathological state
and establishes a novel balance in the brain, which involve multiple signaling pathways such as neurogenesis, autophagy,
apoptosis, inflammation, immunoregulation, the removal of aberrant proteins, neuroglial interaction, and angiogenesis. All
cell types in the hippocampus participate in the establishment of the new balance mechanism. The therapeutic benefit of
stem cells depends on the comprehensive effect of multi-level signaling crosstalk.

3. Representative Signaling Pathways of New Balance Mechanism

The transplantation of stem cells alters the pathological state and stimulates the
secretion of autocrine and paracrine cytokines in the hippocampus. The remodeling
process establishes a novel balance related to multiple signaling pathways. The new
balance is an essential mechanism to improve the neuropathology and recognitive deficits
of Alzheimer’s disease, which has been validated by regulating representative pathways.

3.1. The Transplantation of Stem Cells Mediates Cell Growth and Death

The transplanted stem cells can survive in the hippocampus and further transdiffer-
entiate into neurons as demonstrated in APP/PS1 transgenic mice [24,26]. Meanwhile,
some newborn neurons may be derived from endogenous progenitors, which have been
detected in C57BL/6 mice as well as in the tissue culture of a patient’s cortex [44,45]. More
details of in vivo conditions still need to be verified on the patient. Further, the beneficial
cytokines produced by MSCs can stimulate proliferation through the indirect regulation
of neurotrophic factors such as NGF, FGF2 and BDNF [46]. The comprehensive effect of
transplanted stem cells is to promote neuronal growth or neurogenesis. Generally, the
development of DA is presented with long-term and gradual characteristics, accompany-
ing neuronal apoptosis/necroptosis/necrosis. Apoptosis is an important way of neuronal
death, especially at the early stage of AD. Apoptosis is initiated in a controlled environment.



Cells 2021, 10, 2757 8 of 21

Apoptotic body may be promptly removed via phagocytosis. Thereupon, histopathological
changes are slight or insignificant. Tissue biopsy may be the only way to confirm the apop-
tosis in most cases. Perhaps, this is the reason that the low rate of apoptosis is observed
in some stages. Apoptotic cell death rarely exhibits acute features such as inflammatory
necrosis caused by microbial infection or thrombosis. The transplanted stem cells stimulate
neurogenesis and inhibit apoptosis-related neuron death [9,47]. Besides, stem cell therapy
decreases the generation of ROS and alleviates ROS-induced neuronal damage. Interest-
ingly, short-term ROS exposure promotes the proliferation of neural progenitors whereas
persistent ROS stimulation aggravates oxidative stress and neuronal apoptosis [48]. The
transplanted stem cells may control the dynamic equilibrium between ROS generation
and elimination, thereby regulating neurogenesis. In clinical, the oxidative damage in
the advanced AD is very severe, leading to neuronal loss and cognitive decline [49]. The
transplanted stem cells activate autophagy in AD-like animal models. The activation of
autophagy is reflected by the upregulation of BECN1/Beclin 1 and the increased number
of LC3-II-positive autophagosomes in the hippocampus, which boosts the clearance of Aβ

peptides and the relief of oxidative stress [17]. Autophagy is a key mechanism to promote
neurogenesis as demonstrated by the expression levels of signal molecules such as Beclin-1,
atg5, LC3-II, and mTOR. The proliferation of neural progenitor cells in adult hippocampus
is regulated by the PI3K/AKT/mTOR and ERK1/2 signaling pathways [50–52]. There is
a crosstalk between autophagy and apoptosis (Figure 3). The induction of autophagy is
begun while Beclin-1 is dissociated at the BH3-only domain of Bcl-2 proteins subsequent
to the phosphorylation of Bcl-2. Activated autophagy alleviates neuronal apoptosis by
altering the levels of IAPs, Bcl-2, caspase-8 and so forth. The autophagic response can be
balanced by caspase activation. Activated caspase-8 cleaves Beclin-1 into C-terminal and N-
terminal fragments to trigger apoptosis [53]. The cell fate is modified by the interaction of
diverse BH3 proteins with Beclin-1 and caspase-8 [54]. The beneficial effect of transplanted
stem cells may be through the upregulation of BECN1/Beclin-1, the modulation of Bcl-2
family, and the inhibition of caspase activity [22,55]. The crosstalk between autophagy and
apoptosis modulates the therapeutic effect of transplanted stem cells. A synergistic effect
may be acquired when the transplanted stem cells is combined with autophagic and/or
apoptotic mediators.
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p62. Bcl-2 family involves both autophagy and apoptosis by regulating signal molecules such as Beclin1 and BAX/BAK 
dimer. The activation of autophagy can degrade IAPs to facilitate apoptosis. Activated caspase-3 causes apoptosis but 
suppresses autophagy. The red line represents the inhibitory effect. 
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their degradation. The Aβ peptides form plaques to deposit in the brain of patients with 
AD. Genetic modification demonstrated that the down-regulation of Becn-1 increased ex-
tracellular Aβ deposition, whereas the high expression of Beclin-1 decreased the Aβ pa-
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nistic link between autophagic Beclin-1 expression and cytotoxic Aβ deposits. Aβ proteins 
is derived from γ-secretase-hydrolyzed APP [58,59]. Simultaneously, γ-secretase also ac-
tivates Notch receptors for Aβ metabolism [60,61]. Aging weakens the activation of the 
Notch signaling pathway and leads to the accumulation of hydrolyzed APP, which is 
closely related to the pathogenesis of AD. In addition, there is evidence that aberrant Aβ 
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Figure 3. Crosstalk between autophagy and apoptosis. Cell fate is regulated by the interaction between autophagy and
apoptosis. There is a crosstalk between apoptosis and autophagy by sharing common regulators, such as p53, Atg5,
caspase-8, Beclin-1/Bcl-2, and IAPs. Cellular FLIP inhibits caspase 8 and autophagosome formation that is mediated by LC3
conjugation. Autophagosome promotes the activation of caspase 8 through the platform consisting of ATG5, LC3 and p62.
Bcl-2 family involves both autophagy and apoptosis by regulating signal molecules such as Beclin1 and BAX/BAK dimer.
The activation of autophagy can degrade IAPs to facilitate apoptosis. Activated caspase-3 causes apoptosis but suppresses
autophagy. The red line represents the inhibitory effect.

3.2. The Transplanted Stem Cells Regulate the Production and Removal of Aberrant Proteins

There are aberrant Aβ proteins and tau aggregates in the brain. Both Aβ plaques
and tau tangles are increased with advanced age and/or genetic factors. The buildup
of two proteins is associated with the pathogenesis of Alzheimer’s disease, although the
causal connection remains to be determined. Owing to the hindrance of Aβ metabolic
pathway with aging, the production of Aβ proteins, especially insoluble Aβ proteins, is
more than their degradation. The Aβ peptides form plaques to deposit in the brain of
patients with AD. Genetic modification demonstrated that the down-regulation of Becn-1
increased extracellular Aβ deposition, whereas the high expression of Beclin-1 decreased
the Aβ pathology in APP transgenic mice [54,56,57]. The reversal relationship provides the
mechanistic link between autophagic Beclin-1 expression and cytotoxic Aβ deposits. Aβ

proteins is derived from γ-secretase-hydrolyzed APP [58,59]. Simultaneously, γ-secretase
also activates Notch receptors for Aβ metabolism [60,61]. Aging weakens the activation
of the Notch signaling pathway and leads to the accumulation of hydrolyzed APP, which
is closely related to the pathogenesis of AD. In addition, there is evidence that aberrant
Aβ proteins can inhibit the PI3K/Akt signaling pathway and autophagic activity [62,63].
Cytotoxic Aβ proteins can induce the apoptosis of primary cultured neurons. Furthermore,
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the injection of Aβ proteins into the hippocampus produces AD-like manifestations in
animal models, showing similar changes to AD patients [64]. The accumulated Aβ proteins
launch apoptotic, necroptotic, and necrotic mechanisms. Aβ-mediated cytotoxicity causes
irreversible damage during cell maturation, which impairs neurogenesis by decreasing
the survival rate of newborn neurons [65,66]. As a consequence, the integration of newly
generated neurons into the hippocampal circuitry is decreased, resulting in the decline
in learning and memory capabilities. Immunotherapy with antibodies targeting Aβ pro-
teins have been explored in clinical trials [67]. Obviously, aberrant Aβ deposits and weak
neurogenesis are related to the pathogenesis of AD. Aging as a risk factor complicates the
metabolism of AD-associated Aβ proteins [66]. Meta-analysis revealed that the transplanta-
tion of stem cells could decrease Aβ plaques in the hippocampus of APP/PS1 mice, which
promoted the functional improvement of AD-like animals [9]. Sometimes, stem cell therapy
cannot significantly decrease Aβ plaques in certain studies. Furthermore, certain drugs
diminish Aβ protein load but may not ameliorate memory loss and cognitive deficits. Thus,
the theory of Aβ pathology is controversial. Neurofibrillary aggregates are formed by the
hyperphosphorylation of microtubule-associated protein tau. Tau tangles are composed of
tubular filaments, paired helical filaments, and hyperphosphorylated tau protein, which
are associated with the decreased autophagy [68–70]. The intracellular accumulation of
tau tangles can cause ER stress-induced apoptosis, but tau hyperphosphorylation may
also induce apoptotic escape and initiates neurodegeneration [48,68,71]. The expression
of JNK in the hippocampus and cortex of AD patients was exceedingly increased [72,73].
In rapidly aging mice with AD, the JNK cascade was dramatically higher than that in
normal mice [74]. JNK may involve the regulation of tau protein via oxidative stress. The
inhibition of JNK phosphorylation can decrease the level of phospho-tau proteins. AD-like
tau pathology and cognitive impairment are exacerbated by reducing insulin/GSK-3β
signaling activity [75]. Tau hyperphosphorylation and the CaM-CaMKIV signal pathway
participate in the recovery of memory ability in AD-like rats [76]. The transplantation of
stem cells can lower tau aggregates and inhibit neuronal apoptosis. Moreover, reduced tau
tangles are beneficial to both young and aged AD-like animals [9,77,78]. The improvements
of the aforementioned neuropathology are related to the enhancement of autophagy [79,80].
Clearly, stem cell therapy not only facilitates the elimination of aberrant proteins, but also
prevents their formation. These are two different aspects that transplanted stem cells can
deal with.

3.3. The Transplanted Stem Cells Can Produce Pro- and Anti-Inflammatory Cytokines

Inflammation is a response to a variety of stimuli such as infection, toxic metabolites,
and autoimmunity. The initiation of neuroinflammation may be a protective action, but
the actual consequence leads to harmful tissue damage. The triggers of neuroinflamma-
tion can be cytokines, metabolites, or aberrant Aβ proteins. A lot of evidence supports
that neuroinflammation is an independent factor affecting the different stages of AD. In-
flammatory cytokines, small molecular proteins secreted by glial cells in the brain, are
key factors by binding to corresponding receptors on the cell surface. It was found that
thirteen pro-inflammatory cytokines in patients with AD, including IL-1β, IL-6, IL-18,
TNF-α and so on, were significantly higher than those in the normal control [81,82]. Con-
versely, some anti-inflammatory cytokines play a protective effect in the pathogenesis of
AD. For instance, IL-10 is the primary product of active monocytes. Its functions include
phagocytosis, the expression of Th1 cytokines, the regulation of costimulatory molecules,
and MHC class II antigen presentation [83]. IL-10 can inhibit inflammation by blocking
the cytotoxicity of pro-inflammatory cytokines. The IL-10/STAT3 signal pathway can be
regulated to rebalance the natural immunity in the brain, which may bring about beneficial
effects on neuroinflammation [84]. The signal components in the classic IL-10 pathway
are up-regulated in the hippocampus of AD patients. Besides, the cytokines IL-2 and IL-4
have anti-inflammatory effects similar to IL-10 [40,85]. Distinctly, inflammatory cytokines
have protective and harmful effects. The NF-κB signal pathway is related to inflammation,
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oxidative stress, and apoptosis in the brain [86]. The cerebral levels of BACE1 and NF-κB
p65 are markedly enhanced in patients with AD. Anti-inflammatory drugs or stem cell
therapy can block the transcription of BACE1 as well as the production of Aβ, suggesting
that the inhibition of NF-κB-mediated BACE1 expression is the plausible target of AD treat-
ment [87]. There are complicated interactions among hippocampal cells such as astrocytes,
neurons, and microglia (Figure 4). Neurons are functional carriers in the brain, implicated
in the inflammatory response by producing Aβ deposits and tau tangles [88]. Meanwhile,
neurons are also targets that need to be protected during neuroinflammation. Astrocytes
provide support, protection, and nutrient supply to neurons under physiological condi-
tions. Active astrocytes can secrete inflammatory cytokines, such as RANTES, MIP-1α,
MCP-1 and complement, to participate in the neuroinflammation [36,89]. The transplanted
stem cells may suppress inflammation caused by astrocytes [90]. Pro-inflammatory factors
such as IL-1β, TNF-α, and IL-6 was decreased in cultured astrocytes following exposure
to MSC-conditioned medium [38]. Microglia are the innate immune cells of the central
nervous system. There are fine-tuning mechanisms for microglia to protect cerebral neu-
rons. They can remove aberrant Aβ protein plaques. Additionally, microglia are able
to maintain neuronal connections as well as modulate the electrical activity. Microglial
activity regulates neuronal function and vice versa. However, the above-mentioned rela-
tionship is interrupted in the pathogenesis of AD. The dysfunction of neuronal conduction
is a prominent feature, leading to cognitive deficits. The pathogenic role of microglia in
development of AD is demonstrated by genetic mutations [91]. The abnormal interaction
between neuronal and microglial activities is engaged in the active cycle that deteriorates
cognitive impairment. Microglial activation has a duality in the pathogenesis of AD. They
protect neurons by engulfing detrimental substances and attack neurons by secreting
inflammatory cytokines. The dual role of microglia may be due to the polarization of
M1/M2 phenotype [92,93]. The classic M1 state can be activated by Aβ deposits to produce
pro-inflammatory factors such as TNF-α, IL-1β, IFN-γ, thereby exacerbating inflammatory
cell death [42,43]. The M2 phenotype may generate anti-inflammatory factors such as
IL-2, IL-4 or IL-10, facilitating cell repair and neuroprotection [94–96]. In the APP/PS1
transgenic models, the profiles of gene expression are overlapped between microglial M1
and M2 types. Accordingly, the exact role of microglia has not yet been determined. Both
the beneficial and detrimental effects of microglia can be fulfilled in the pathogenesis of
AD. Available data demonstrate that the transplanted stem cells take part in the regulation
of immune and inflammatory processes. After the administration of stem cells, microglial
activation stimulates the removal of Aβ deposits and neuroinflammation is thereupon
alleviated. Consequently, stem cell therapy can suppress inflammation. Furthermore,
stem cells can recruit peripheral monocytes across blood–brain barrier into the lesion. The
activation of the newly recruited monocytes can further accelerate the clearance of Aβ

peptides as well as apoptotic bodies. This phenomenon seems contradictory, but it does
happen. Still, many intermediate details need to be clarified through future research. Nev-
ertheless, the comprehensive effect of stem cell therapy is conducive to the improvement
of neuropathology as well as cognitive impairment in Alzheimer’s disease.
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3.4. Immunoregulation Is Modulated by the Transplanted Stem Cells

The CNS is immunologically privileged, since peripheral immune cells are usually
blocked by the blood–brain barrier composed of astrocytes and endothelial cells. Patho-
logical studies have revealed that viral, bacterial, and fungal infections are related to the
pathogenesis of Alzheimer’s disease. For example, HSV-1 DNA was found within amyloid
plaques [97]. Borrelia burgdorferi bacterium caused Lyme neuroborreliosis and dementia [98].
The diffuse mycosis was related to the development of Alzheimer’s disease. Further studies
proved that fungal infections could occur in different brain regions of patients with AD,
but are absent in the control individuals [99]. The pathogenesis of Alzheimer’s disease
may be partly explained by the microbial infection of CNS due to immunodeficiency, but
this pathogen hypothesis needs more evidence to confirm the causality. It is well known
that APOE4 and TREM2 variants associated with the development of AD may be sus-
ceptible to HSV-1 infection [100,101]. Another possibility is that both gene variants and
HSV-1 infection are related to the pathogenesis of AD. In addition, the immune system
decreases its protective capacity with aging. Advanced age (e.g., over 59 years old) sig-
nificantly increased the mortality in patients with Alzheimer’s disease after SARS-CoV-2
infection [102,103]. Therefore, aging is a predominant risk factor related to AD [104]. The
dysfunction of the immune system in the brain is demonstrated by the partial mutations of
TREM2 and CD33 genes [15,105]. In patients with AD, aberrant Aβ proteins activate T cells,
perpetuating the cycle of immune-mediated cell injury and repair [106]. The neuroimmune



Cells 2021, 10, 2757 13 of 21

and immunoregulation are the basic targets of understanding the pathogenesis of AD. The
activation of microglia participates in immunoregulation in the pathogenesis of AD. As
innate immune cells in the brain, microglia have functions similar to macrophages and
can be activated in response to microbial infections and toxic metabolites. Their effects on
immunoregulation had been verified using the CRISPR knockout method [107]. Microglia
protect the brain and maintain neuronal health by removing aberrant Aβ plaques as well
as apoptotic bodies. Microglia contain the M1/M2 phenotype, playing a dual role in the
pathogenesis of AD. Therefore, only immunosuppression or immunoenhancement cannot
acquire beneficial effects on the development of AD. Perhaps, the damaged neuroimmune
in the AD brain needs to be rebalanced. The IL-10/JAK1/STAT3 signaling pathway can
regulate the establishment of immunobalance in the brain [84,108]. When bone marrow
stem cells were transplanted into immunodeficient mice with AD, the transfused stem
cells could restore missing immune cells for the elimination of Aβ plaques [109,110]. The
transplanted stem cells can (a) inhibit microglial activation and neuroinflammation and
(b) recruit peripheral monocytes across the blood–brain barrier into the lesion. These
monocytes may switch the microglial M1/M2 phenotype to accelerate the removal of Aβ

plaques in the AD brain [111–113] and (c) secret cytokines. Certain cytokines released by
MSCs can facilitate cell survival and proliferation through the regulation of NGF, FGF2
and BDNF [46]. The transplanted stem cells promote neurogenesis and inhibit neurodegen-
erative cell death. Of note, a variety of autocrine and paracrine factors produce distinct
functions. Some cytokines take part in relevant pathways to relieve neuropathology, but
other factors are competitors or bystanders. Therefore, the pathophysiological roles of
autocrine and paracrine factors should be scrutinized in future studies. Moreover, the
expression of immune-related genes is modulated by transplanted stem cells, including
TREM2, CR1, HLA-DRB5, CD33, MS4A, INPP5D, EPHA1, and CLU (Table 3). These
genes influence the different stages of AD and play a crucial role in the pathogenesis
of AD. The dysfunction of immune-related genes can be corrected by stem cell therapy,
which has been demonstrated in AD-like models [9,109,110]. Microarray analysis and
high-throughput gene sequencing have confirmed the gene profiles. Evidently, immune
factors do participate in the pathogenesis of Alzheimer’s disease. The immunoregulation
can effectively alleviate neuropathology and improve cognitive function. Noticeably, the
transplanted stem cells are neither immunosuppressant nor immunostimulant, but they
function as a regulator or controller that balances the neuroimmune response to maintain
neuronal health.

3.5. The Transplanted Stem Cells Participate in Synaptic Plasticity

The change of neuronal synapses is pivotal pathway to the new balance mechanism.
Patients with AD show a decrease in the number of synapses. After stem cell treatment,
the favorable improvement is verified by increasing the number of synapses [23,26,114].
Moreover, the synthesis of neurotransmitters is also enhanced, which is consistent with
the effect of neurotransmitter drugs. The enhancement of the quantity and quality of
neuron synapses may explain why stem cell therapy can improve the cognitive symptoms
of AD-like animal models. The formation of synapses (synaptogenesis) in the nervous
system covers the lifespan of healthy individual. This process is an essential requirement
for maintaining the normal function of nerve activity. There is a certain degree of synaptic
pruning between neurons and synapses through competition for neural growth factors.
Therefore, synaptogenesis is regulated by autocrine and paracrine cytokines. The secretion
of cytokines establishes a precise relationship between synaptogenesis and microglial activ-
ity. Microglia play an important role in protecting neuronal connections and maintaining
the integrity of neural circuits. Microglia have a direct role in modulating the electrical
activity of neurons. The presence of aberrant proteins and/or toxic factors can damage mi-
croglial function. The protective effect of microglia may thus be impaired. At this moment,
dysfunctional microglia can hurt synaptic connections. The dysfunction of synaptic net-
works incur cognitive deficits in Alzheimer’s disease. Canonical Wnt signal transduction



Cells 2021, 10, 2757 14 of 21

involves the early neurodevelopment in the brain and the maturation of the blood–brain
barrier. Wnt/β-catenin signaling regulates synaptic plasticity and the development of
acetylcholine receptors, which may be related to the pathophysiology of AD [115,116].
Meanwhile, Aβ proteins can activate GSK3, thereby promoting the phosphorylation of tau
protein as well as reducing the activity of Wnt [117–119]. Previous studies demonstrate
that WASP-1 may significantly improve memory and synaptic transmission. The trans-
plantation of stem cells can decrease aberrant Aβ peptides and tau aggregates to facilitate
synaptogenesis. As proved in the iPS cells of AD patient, synaptogenesis is associated with
lysosomal vacuolar-type H-ATPase and intracellular Ca2+ concentration. The impairment
of autophagy inhibits synaptogenesis and neurogenesis [120]. The transplantation of neural
stem cells stimulates cellular changes and improves behavioral performance, which may
be attributed to the recovery of synaptic connectivity through neurotrophin release (i.e.,
GAP-43, BDNF) [121]. In addition, endogenous neural regeneration is enhanced by mobi-
lizing the NCAM-derived peptide FG loop to amplify remyelination as well as modulate
neuroinflammation [122,123].

Table 3. Immune-related genes are implicated in the pathogenesis of Alzheimer’s disease.

Names Function References

TREM2
Transmembrane glycoprotein. To
mediate immune and inflammatory
responses as microglial receptor.

Neurobiol. Dis. 2020
Nov;145:105072;
Neurobiol. Dis. 2019
Jul;127:432–448.

CR1
To regulate complement cascade
and mediate immune adherence as
well as phagocytosis.

Stem Cell Res. 2016
Nov;17(3):560–563.

HLA-DRB5
To encode major histocompatibility
complex class II protein involved in
immune responses.

Neurol. Genet. 2018 Jan
18;4(1):e211;
JAMA Neurol. 2015 Jan;72(1):15–24.

CD33 Microglial receptor converged on
immune-inflammatory pathways.

Neurobiol. Dis. 2019
Jul;127:432–448;
Gerontology. 2019;65(4):323–331

MS4A
Belonging to a class of
four-transmembrane spanning
proteins.

Aging Cell. 2019 Aug;18(4):e12964.

INPP5D

At the plasma membrane, the
protein hydrolyzes the 5′ phosphate
and regulates multiple signaling
pathways.

EMBO Mol. Med. 2020 Mar
6;12(3):e10606.

EPHA1 To regulate the developmental of
nervous system.

Int. J. Comput. Biol. Drug Des.
2020;13(1):58–70;
J. Immunol. 2020 Sep
1;205(5):1318–1322.

CLU
Diverse functions such as protein
chaperoning, apoptosis,
complement activation, etc.

Mol Neurodegener. 2015 Jul
16;10:30;
Turk J Med Sci. 2015;45(5):1082–6.

4. Perspective
4.1. Therapeutic Efficiency and Synergistic Effect

The synergistic effect between neurotrophic cytokines and stem cells may increase
therapeutic efficiency. The transplantation of stem cells can enhance neurotrophic factors
such as BDNF and NGF [34,124–126]. Neurotrophic BDNF is related to the canonical nerve
growth in the brain. NGF is a prototypical growth factor, involved in numerous biological
processes such as the survival of target neurons, and the regulation of proliferation and
neuroimmune. Therefore, the application of therapeutic stem cells may be pretreated with
neurotrophic factors to produce synergistic effects.
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4.2. Stem Cell Viability

There is a low survival of transplanted stem cells in the recipients, which is a real
problem in therapeutic practice. Anyway, it can be improved by activating autophagy in
stem cells. Novel strategy may consider that the transplanted stem cells are combined with
the nanoparticles of autophagy-enhancing agents and/or apoptosis regulators, especially
for the treatment of advanced AD.

4.3. The Improvement of Delivery Methods

Clinically, mannitol infusion is often applied to reduce intracranial pressure. The intra-
arterial infusion of mannitol can transiently open the blood–brain barrier by loosening
tight junctions. This technique can be utilized for stem cell delivery. After the blood–
brain barrier is opened, stem cells may be transfused through the peripheral vein instead
of intracranial injection. In addition, the intranasal delivery of stem cells can acquire
functional improvement in the APP/PS1 models of AD [127].

4.4. Exosomes

In the process of stem cell therapy, the details of exosomes produced by stem cells are
unknown [128–130]. It is possible that the exosomes of stem cells stimulate the secretion
of autocrine or paracrine cytokines to achieve therapeutic effects. Accordingly, the role of
exosomes needs to be clarified through future analysis.

5. Challenges

(1). The selection of surveillance biomarkers. Currently, monitoring markers (i.e., Aβ42,
T-tau and P-tau, or exosomes in cerebrospinal fluid and/or peripheral bloodstream)
need to be optimized for the evaluation of therapeutic effects.

(2). The timeline of the new balance mechanism. Following the transplantation of stem
cells, the pathological state is altered and then a new balance is developed. However,
it is unsure how long the dynamic reconstruction can be maintained. Perhaps, it is
necessary to repeatedly transplant stem cells to obtain reliable therapeutic effects. At
this time, it is important to optimize the relevant parameters of stem cell transplanta-
tion, including cell concentration, time interval, inoculation position, and delivery
method.

(3). Uncertainty and perplexity. The therapeutic effect of transplanted stem cells involves
multiple mechanisms, such as immunomodulation, inflammation, apoptosis, neu-
rogenesis, autophagy, and angiogenesis. The integration of various mechanisms
establishes a new balance and brings about beneficial improvements. Nowadays,
most of the above-mentioned mechanisms have been investigated and their roles
have been elucidated. Nevertheless, the details of relevant mechanisms still need to
be explored, such as autophagy and immunomodulation, the interaction between
astrocytes and microglia, microglial activation and synaptic remodeling, etc.

In summary, stem cell therapy is beneficial to the improvement of animal models with
AD, which is demonstrated by the alleviation of neuropathology and the amelioration of
cognitive impairment. The transplantation of stem cells alters regional microenvironment
by stimulating the secretion of autocrine and paracrine cytokines, which promotes neuro-
genesis as well as synaptogenesis. Potential mechanisms are associated with autophagy,
apoptosis, the elimination of aberrant proteins, the interaction of different neuroglia, in-
flammation, and immunoregulation. Those functional activities alter the pathological state
and establish a novel balance by integrating multiple signal pathways. The new balance
mechanism is the comprehensive effect of multi-level signaling crosstalk in the brain, which
not only lays a theoretical foundation for stem cell therapy but also provides perspectives
and challenges for the treatment of Alzheimer’s disease.
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