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Abstract: The survival rates for breast cancer (BC) have improved in recent years, but resistance,
metastasis, and recurrence still remain major therapeutic challenges for BC. The acidic tumor microen-
vironment (TME) has attracted attention because of its association with tumorigenesis, metastasis,
drug resistance, and immune surveillance. In this study, we evaluated natural compounds from
traditional herbal medicine used to treat cancer that selectively target genes regulated by extra-
cellular acidosis. We integrated four transcriptomic data including BC prognostic data from The
Cancer Genome Atlas database, gene expression profiles of MCF-7 cells treated with 102 natural
compounds, patterns of gene profiles by acidic condition, and single-cell RNA-sequencing from BC
patient samples. Bruceine D (BD) was predicted as having the highest therapeutic potential, having
an information gain (IG) score of 0.24, to regulate reprogrammed genes driven by acidosis affecting
the survival of BC patients. BD showed the highest IG on EMT (IG score: 0.11) and invasion (IG
score: 0.1) compared to the other phenotypes with the CancerSEA database. BD also demonstrated
therapeutic potential by interfering with the tumor cell–TME interactions by reducing the amyloid
beta precursor protein and CD44 expression. Therefore, BD is a potential candidate to target the
acidic TME induced metastatic process in BC.

Keywords: acidic tumor microenvironment; breast cancer; natural compound; Bruceine D

1. Introduction

In 2020, breast cancer (BC) was the most diagnosed cancer at 24.5% and was the
leading cause of death at 15.5% among women with cancer [1]. Advances in surgical
techniques, radiation therapy, and systemic therapies for BC contributed to an increase in
the 5-year relative survival rate [2,3]. Although BC mortality has continued to improve
over the past decades, radiation resistance, drug resistance, and metastatic recurrence
still remain major therapeutic challenges for BC [4–6]. Solid tumors produce and export
excessive levels of lactic acid due to reprogrammed cancer cell metabolism, and when
combined with poor vascular perfusion, it eventually leads to an acidic extracellular pH
(pHe) microenvironment [7,8]. The adaptation of cancer cells to acidic pHe within the
tumor microenvironment (TME) is an important factor in increasing tumor aggressiveness
such as invasion and metastasis [9–12]. In acidic regions, tumor cells perform niche
engineering that results in extracellular matrix degradation, normal cell death, and local
invasiveness [13,14]. Tumors with higher metastatic potential showed lower pH values,
dispersedly, in peritumoral regions [15]. Additionally, distant metastasis was associated
with enhanced tumor acidity [16]. In BC, exposure to acidic pHe increased cell migration
and drug resistance in MCF-7 cells [17]. Drug-resistant MCF-7 cells showed lowered pHe
compared to parent BC cells [18]. Comparison between metastatic 4T1 and less metastatic
TUBO cells showed that pHe correlated with distant lung metastasis [19].
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Traditional herbal medicine has long been used to treat cancer, as some herbs con-
tain natural compounds with anticancer effects that target proliferation, angiogenesis,
metastasis, and apoptosis [20]. Natural compounds, such as epigallocatechin gallate,
curcumin, berberine, artemisinins, ginsenosides, and silibinin, have been reported to regu-
late autophagy, drug resistance, immunity balance, and chemosensitization in vitro and
in vivo [20]. In this study, we analyzed the transcriptomic expression patterns of genes by
acidic condition, the BC prognostic data from The Cancer Genome Atlas (TCGA) database,
and the gene expression profiles of MCF-7 cells treated with 102 natural compounds from
herbal medicine (Figure 1). Moreover, we predicted potential cancer-associated pathways
that could be improved by compounds with therapeutic potential for acidic pHe. Finally,
we investigated how compounds would affect receptor–ligand interactions in the TME
using single-cell sequencing of BC patient samples (Figure 1).
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2. Materials and Methods
2.1. Data Collection

We downloaded GSE152345 transcriptomic (Illumina HiSeq platform) and survival
data of a BC database from Xena TCGA (https://xenabrowser.net/hub/, accessed on 27
May 2021). The GSE152345 with a previous study contains whole gene expression levels
through high-throughput sequencing with BGISEQ-500 between pH 6.5 and pH 7.6 condi-
tions of the MCF-7 cell line [21]. In addition, we downloaded GSE85871, which contains
gene expression profiles of the MCF-7 cell line microarray (Affymetrix human genome
U133A 2.0 array) treated with 102 traditional Chinese medicine-related compounds [22].
The gene list with 14 different functional states of tumor cells was downloaded from
CancerSEA (http://biocc.hrbmu.edu.cn/CancerSEA/home.jsp, accessed on 10 August
2021) [23]. Finally, we downloaded GSE161529, which contains single-cell sequencing data
of tissues from each ER+, HER2+, and triple-negative (TN) BC patient [24].

2.2. Data Processing

GSE152345, which contains expression profiles between acidic (pH 6.5) and normal
(pH 7.6) conditions within the MCF-7 BC luminal type, was normalized with the DESeq2
package of R (https://bioconductor.org/packages/release/bioc/html/DESeq2.html, ac-
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cessed on 24 May 2021) and transformed log2(x + 1) [25]. GSE85871 was downloaded by
the GEOquery package of R, and duplicated gene symbols were matched according to
probe IDs.

2.3. Acidosis-Dependent Prognosis-Related Genes

To analyze acidosis-dependent prognosis-related genes, we performed survival analy-
sis with Cox-regression and a t-test for extracting differential expressed genes with TCGA
BC and GSE152345 data, respectively. After that, genes that were commonly significant in
both analyses were classified into 4 types according to hazard ratio and fold change. The
4 types were risk effect to prognosis and up-regulated in acidic condition (RU), protective
effect to prognosis and up-regulated in acidic condition (PU), risk effect to prognosis and
down-regulated in acidic condition (RD), and protective effect to prognosis and down-
regulated in acidic condition (PD).

2.4. Selection Method to Identify Compounds with Therapeutic Potential against
Acidosis-Dependent Prognosis-Related Genes

Information gain (IG) was considered as an evaluation parameter to select compounds
with therapeutic potential in association with expression patterns of the acidosis-dependent
prognosis-related genes. According to the fold change value 0, among the up- or down-
regulation genes, the proportion of RU or PD was calculated based on Shannon’s entropy,
and the IG score was calculated.

Let us assume probability (P) and i contain a number of RU (ru) and PD (pd); therefore,
Shannon’s entropy was calculated as follows:

Entropy = − ∑
i={ru, pd}

P(i)·log2P(i)

Let us assume T as the population of targets such as RU or PD before splitting
according to the fold change 0, and s contains up-regulated (u) and down-regulated (d).
The IG of each compound was calculated as follows:

IG(T, X) = Entropy(T)− ∑
s={u,d}

s
T
·Entropy(s)

2.5. Evaluation of Compound Effect on 14 Different Functional States from CancerSEA Database

We performed logistic regression and calculated IG values between those up- or down-
regulated by the compound treated group and directions such as positive or negative
against 14 different functional states from the CancerSEA database, including angiogenesis,
apoptosis, DNA damage, DNA repair, epithelial mesenchymal transition (EMT), invasion,
differentiation, proliferation, cell cycle, metastasis, hypoxia, stemness, inflammation, and
quiescence. The IG was obtained by the calculation formula described above.

Let us assume probability (P) and i contain a number of positives (p) and negatives
correlated (n) with each 14 different functional states; the Shannon’s entropy was calculated
as follows:

Entropy = − ∑
i={p, n}

P(i)·log2P(i)

Let us assume the T as a population of the targets such as RU or PD before splitting
according to the fold change 0, where s contains up-regulated (u) and down-regulated (d).
The IG of each compound is calculated as follows:

IG(T, X) = Entropy(T)− ∑
s={u,d}

s
T
·Entropy(s)
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The logistic regression was performed with directions for each 14 different functional
states as a dependent variable and up- and down-regulated in compound treated states as
an independent variable.

2.6. Single-Cell Sequencing Analysis

We downloaded 3 single-cell RNA sequencing (scRNA-seq) data of ER+ (GSM4909299,
GSM4909307, and GSM4909315), HER2+ (GSM4909289, GSM4909290, and GSM4909294),
and TN (GSM4909281, GSM4909282, and GSM4909288), each from GSE161529. Tumor cells
in each subtype including ER+, HER2+, and TN were extracted according to their specific
markers: KRT5−, KRT18+, and ESR1+ (ER+); KRT5−, KRT18+, and ERBB2+ (HER2+); and
KRT5+ and KRT18+ (TN). After extracting tumor cells from the single-cell population, we
calculated the percentage of cells expressing each marker within the extracted tumor cells.
All of the processes were performed by Seurat (https://satijalab.org/seurat/, accessed on
3 August 2021) [26].

2.7. Cell-to-Cell Interaction Analysis with scRNA-seq

We downloaded scRNA-seq data from normal (GSM4909262) samples, and ER+ tu-
mor (GSM4909313) paired samples were downloaded from GSE161529. Clustering and
annotation of cell types of normal and ER+ tumors were performed by Seurat [26] with
default options, and cell-to-cell communication analysis was conducted with the CellChat
(http://www.cellchat.org/, accessed on 19 August 2021) package of R [27]. The interaction
database was retrieved from CellChatDB, which contains a total of 2,021 molecular interac-
tions including paracrine/autocrine (60%), ECM-related (21%), and cell–cell contact (19%)
interactions [27].

2.8. Statistical Analysis

We performed t-test, Cox-regression, and logistic regression analyses in this study.
The threshold of the p-value is < 0.05 with a t-test and Cox-regression without adjusting
for multiple comparisons. With logistic regression, we applied Bonferroni corrections for
adjusting multiple comparisons. All of the statistical analyses were performed by Rstudio
(Version 1.41106) and Python (Version 3.9).

3. Results
3.1. Identification of Acidosis-Dependent Prognosis-Related Genes

To identify acidosis-dependent prognosis-related genes, a Cox-regression and t-test
were performed between acidic (pH 6.5) and normal (pH 7.6) conditions with GSE152345
based on whole gene expression for the overall survival from TCGA, respectively (Figure 2A,
Tables S1 and S2). According to the hazard ratio and fold change, we classified the data into
four types such as RU, PU, RD, and PD (Figure 2B). As a result, 2148 (Table S1) and 2328
(Table S2) significant genes were extracted with the Cox-regression for extracting prognosis-
related genes and the t-test to identify differential expressed genes (DEGs), respectively
(Figure 2C). Among these significant genes, 307 genes were significant in both statistical
analyses (Figure 2C and Table S3). According to the hazard ratio and fold change, 35, 70,
163, and 39 genes were defined as RU, PD, PU, and RD, respectively (Figure 2C).

3.2. Evaluation of Therapeutic Compounds against an Acidosis-Dependent Manner in BC

For this study, 102 traditional herbal medicine-related compounds were evaluated
against acidic conditions. We focused on RU- or PD-type genes that cause an acidosis-
related risk effect by up-regulating risk genes or down-regulating protective genes, respec-
tively. Among the 102 compounds, Bruceine D (BD) had the highest IG score (0.24) with RU
and PD (Figure 3A). Among the 27 up-regulated probes in the BD-treated group, 24 probes
were PD type, which indicates a better prognosis and is down-regulated by acidic (pH
6.5) conditions (PDU) (Figure 3B,C). In addition, among the 15 down-regulated probes in

https://satijalab.org/seurat/
http://www.cellchat.org/
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the BD-treated group, 10 probes were RU type, which indicates a poor prognosis and is
up-regulated by acidic (pH 6.5) conditions (RUD) (Figure 3B,C).
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3.3. Effect of BD on 14 Different Cancer-Related Functional States with the CancerSEA Database

To evaluate the effect of BD on tumor cell-related functional states, we downloaded
genes and directions with each of the 14 different BC-related functional states including
angiogenesis, apoptosis, DNA damage, DNA repair, EMT, invasion, differentiation, prolif-
eration, cell cycle, metastasis, hypoxia, stemness, inflammation, and quiescence (Figure 4).
In addition, with the nine total patients, including ER+, HER2+, and TN, cancer cells
from a single cell population were segmented (Figures S1–S3), and percentages of positive
cells from each of the 14 different tumorigenesis-related functional states were calculated
(Figure 4B,D and Figure S4). As a result, EMT and invasion showed higher IG values > 0.1
compared to the other phenotypes (Figure 4A). Interestingly, the genes that positively
correlated with EMT and invasion were highly expressed in the cancer cell populations
(Figure 4B,D). Our data showed that BD up-regulated genes had negative correlations with
EMT, whereas down-regulated genes had positive correlations with invasion(Figure 4C,E).

3.4. Effect of BD on Cell-to-Cell Interaction Analysis with scRNA Resolution

At the single-cell level, we investigated the effect of BD on ligand–receptor interactions
within the TME. The scRNA-seq dataset of the normal and ER+ paired sample was used for
cell-to-cell interaction analysis. As a result, the ER+ cancer sample was clustered with ER+

tumor cells (ESR1+, KRT18+, and KRT5−), KRT5+/EPCAM+ double-positive cells, cancer-



Cells 2021, 10, 2673 6 of 13

associated fibroblasts (CAFs) (DCN+), macrophages (CD68+), KRT5+/EPCAM− cells, and
endothelial cells (VWF+) (Figure 5A,B). In addition, the normal sample was clustered
with epithelial cells (KRT18+ and EPCAM+), KRT5+ cells (KRT5+), and fibroblasts (DCN+)
(Figure S5A,B). Since DEGs analysis for BD was performed in MCF-7 cells, we analyzed the
ligand–receptor relationship based on ER+ cells (Figure 5C,E). The three ligands including
MIF (encodes macrophage migration inhibitory factor), MDK (encodes midkine), and
APP (encodes amyloid precursor protein) were expressed in ER+ cells (Figure 5D) and
interacted with receptors including CD74, CXCR4, CD44, SDC4 (encodes syndecan 4), and
SDC2 (encodes syndecan 2) expressed in various cell types (Figure 5C and Figure S6A).
The two receptors including SDC4 and CD44 were expressed in ER+ cells (Figure 5E,F)
and interacted with ligands such as the collagen family (COL1A1, COL1A2, COL4A1,
COL4A2, COL6A1, COL6A2, and COL6A3), FN1 (Fibronectin 1), the laminin family (LAMC1
and LAMB3), MDK, PTN (Pleiotrophin), SPP1 (Osteopontin), THBS1 (Thrombospondin
1), THBS2 (Thrombospondin 2), and TNC (Tenascin C) expressed in various cell types
(Figure 5E and Figure S6B). Among these ligand–receptor relationships, APP and CD44
were significantly down-regulated by BD in the MCF-7 cell line (Figure 5G). As a ligand,
APP was down-regulated by BD and interacted with various cell types in ER+ TME via
CD74 (Figure 5C,H). In addition, BD down-regulated CD44, which interacted with several
collagen types such as FN1, laminins, and SPP1 (Figure 5E,I). These findings were not
detected in normal scRNA-seq data (Figure S5).

Cells 2021, 10, 2673 6 of 14 
 

 

 

Figure 3. Evaluation of therapeutic potential of the 102 compounds for acidosis-dependent prognostic genes. (A) Evalua-

tion with IG score, (B) defined effect of BD on RU and PD genes, and (C) distribution and patterns of the genes which 

were affected by BD within acidosis-dependent prognostic genes. 

3.3. Effect of BD on 14 Different Cancer-Related Functional States with the CancerSEA 

Database 

To evaluate the effect of BD on tumor cell-related functional states, we downloaded 

genes and directions with each of the 14 different BC-related functional states including 

angiogenesis, apoptosis, DNA damage, DNA repair, EMT, invasion, differentiation, pro-

liferation, cell cycle, metastasis, hypoxia, stemness, inflammation, and quiescence (Figure 

4). In addition, with the nine total patients, including ER+, HER2+, and TN, cancer cells 

from a single cell population were segmented (Figures S1–S3), and percentages of positive 

cells from each of the 14 different tumorigenesis-related functional states were calculated 

(Figures 4B,D and S4). As a result, EMT and invasion showed higher IG values > 0.1 com-

pared to the other phenotypes (Figure 4A). Interestingly, the genes that positively corre-

lated with EMT and invasion were highly expressed in the cancer cell populations (Figure 

4B,D). Our data showed that BD up-regulated genes had negative correlations with EMT, 

whereas down-regulated genes had positive correlations with invasion(Figure 4C,E). 

 

Figure 3. Evaluation of therapeutic potential of the 102 compounds for acidosis-dependent prognostic genes. (A) Evaluation
with IG score, (B) defined effect of BD on RU and PD genes, and (C) distribution and patterns of the genes which were
affected by BD within acidosis-dependent prognostic genes.



Cells 2021, 10, 2673 7 of 13Cells 2021, 10, 2673 7 of 14 
 

 

 

Figure 4. Evaluations with 14 cancer cell-associated functional states. (A) Forest plot and table with logistic regression and 

IG score. (B) Patterns of EMT associated DEGs with BD genes, and percentages of positive cells within segmented tumor 

cells from scRNA-seq data. (C) Mosaic plot with Chi-square test and Pearson residuals between EMT and DEGs with BD 

genes. (D) Patterns of invasion-associated DEGs with BD genes and percentages of positive cells within segmented tumor 

cells from scRNA-seq data. (E) Mosaic plot with Chi-square test and Pearson residuals between invasion and DEGs with 

BD genes. 

Figure 4. Evaluations with 14 cancer cell-associated functional states. (A) Forest plot and table with logistic regression and
IG score. (B) Patterns of EMT associated DEGs with BD genes, and percentages of positive cells within segmented tumor
cells from scRNA-seq data. (C) Mosaic plot with Chi-square test and Pearson residuals between EMT and DEGs with BD
genes. (D) Patterns of invasion-associated DEGs with BD genes and percentages of positive cells within segmented tumor
cells from scRNA-seq data. (E) Mosaic plot with Chi-square test and Pearson residuals between invasion and DEGs with
BD genes.
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Figure 5. Cell-to-cell interaction analysis with scRNA-seq data from the ER+ patient (GSM4909313). (A) Dim plots with
markers of each cell type. (B) Dim plot of classified cell types according to the markers of each cell type. (C) Dot plot
of ligand–receptor interactions based on ligands expressed in ER+ cells. (D) Violin plots of three ligands which were
expressed in ER+ cells. (E) Dot plot of ligand–receptor interactions based on receptors expressed in ER+ cells. (F) Violin
plots of two receptors which were expressed in ER+ cells. (G) Heatmap plot of significantly down- or up-regulated
genes by BD. (H) Ligand–receptor interaction network based on the APP signaling pathway as a ligand in ER+ cells, and
(I) ligand–receptor interaction network based on four pathways as ligands on the CD44 receptor in ER+ cells.
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4. Discussion

Solid tumors adapt and survive in acidic TME through pH-regulating proteins such
as the sodium/proton exchanger 1 (NHE1), sodium bicarbonate cotransporter (NBC),
monocarboxylate transporters (MCT), and carbonic anhydrase [28,29]. The acidic TME has
received attention due to its association with tumor development, progression, metastasis,
drug resistance, and escape from immune surveillance [28,30]. The advances in modern
technology have increased our understanding of the pharmacology and molecular mecha-
nisms of traditional herbal medicine and its active compounds [31]. Natural compounds
exert anti-cancer effects on the TME that consists of tumor cells, stromal cells, immune
cells, and non-cellular components such as collagen and fibronectin either directly or in-
directly [20,32]. In this study, we used a computational approach to evaluate 102 major
TCM-related natural compounds for an acidic pHe environment in human BC.

After evaluation between 102 compounds and BC cells under an acidic pHe, BD was
suggested as the candidate with the most potential to treat BC against an experimental
acidic condition with the highest IG value (IG value: 0.24) (Figure 3A and Table S5). BD
is a major active quassinoid in Brucea javanica (L.) Merr., which has anti-cancer properties
such as anti-proliferative and pro-apoptotic effects via c-Jun N-terminal kinase (JNK),
mitogen-activated protein kinases (MAPK), phosphatidylinositol 3-kinase (PI3K)/protein
kinase B (AKT)/mammalian target of Rapamycin (mTOR), and canonical Wnt signaling
pathways against many cancers including BC [33,34]. Our data showed that 10 probes
defined as RUD and 24 probes defined as PDU in BC cells were potential therapeutic
targets of BD. Moreover, the number of genes defined by PDUs was higher than those
defined by RUDs (Figure 3C). This suggests that BD exhibits a pattern to prevent cancer
progression by up-regulating the protective genes (NFKBIE, LIFR, SERPINB9, etc.), which
were down-regulated due to acidification, rather than down-regulating the risk genes
(FAM114A1, PLAC8, SCUBE2, etc.), which were up-regulated due to acidification.

We used the CancerSEA database aimed at identifying the correlation between BD
and 14 functional states. The DEGs for BD were evaluated by the IG method, with the
highest discrimination powers being against EMT and invasion with an IG score of >0.1
(Figure 4A). Our segmented scRNA-seq data originating from ER+, HER2+, and TN BC fur-
ther supported that higher proportions were seen in cell populations that express positive-
related genes compared to negative-related genes against EMT or invasion (Figure 4B,D).
Prior studies have proposed the regulatory effect of BD on EMT, invasion, and apopto-
sis. BD inhibited STAT3 (Signal Transducer and Activator of Transcription 3) activation
that attenuated the cell proliferation, migration, invasion, and stem cell-like properties
of osteosarcoma cells [35]. BD dose-dependently increased E-cadherin, whereas BD de-
creased vimentin and β-catenin expression that resulted in the reduced migration and
invasion abilities of MDA-MB-231 cells [36]. BD increased oxidative stress and inhibited
the PI3K/Akt signaling pathway, inducing apoptosis in human pancreatic cancer cells [37].
Interestingly, we found that BD regulated genes with positive (ANXA2, HSP90B1, TGFBI,
FN1) and negative (FRK) correlation with EMT, invasion, and metastasis. Overexpressed
ANXA2 (Annexin A2) exhibits poor prognosis and correlates positively with invasion and
metastasis in BC [38]. Annexin A2 interacts with STAT3 and mediates EGF (Epidermal
growth factor) induced EMT [38]. ANXA2 knockdown suppressed β-catenin expression
and inhibited EMT and invasion in ovarian cancer cells [39]. GRP94 (Glucose-regulated
protein 94, HSP90B1) expression highly correlates with brain metastatic BC, and autophagy
mediated the adaption and survival at metastatic sites [40]. FN1 (Fibronectin 1) is upregu-
lated in various tumors and mediates cell proliferation and migration [41]. FN1 knockdown
showed decreased cell migration and invasion by modulating EMT-related proteins such
as E-cadherin, N-cadherin, and vimentin in MCF-7 cells [42]. In silico analysis showed that
TGFBI (Transforming growth factor beta induced protein) is associated with poor prognosis
and aggressive BC subtypes [43]. An in vivo study showed that TGFBI affected hypoxia
and metastasis in BC [43]. Previous studies have shown the tumor suppressive role of
FRK (Fyn-related kinase) by inhibiting cell proliferation, PTEN (Phosphatase and tensin
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homolog) degradation, and EGF receptor signaling in BC [44–46]. Overexpression of FRK
inhibited STAT3 activation, which suppressed the EMT process and cell migration in BC
cells [47]. BD treatment may induce ANXA2, TGFI, FN1, HSP90B1 down-regulation, and
FRK up-regulation to inhibit tumor metastasis by regulating autophagy, hypoxia, β-catenin,
and STAT3 signaling pathways (Figure 6).
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We next determined whether BD interferes with the tumor cell–TME interactions. The
cellular heterogeneity in the TME includes immune cells, fibroblasts, and stromal cells [48].
For this reason, we performed cell-to-cell interaction analysis with single-cell resolution. As
a result, among the various ligand–receptor relationships in ER+ TME, BD decreased APP
and CD44 expression (Figure 5G). The APP as a ligand interacted with CD74, which was
mainly expressed in CD68+ macrophages in the cell-to-cell interaction analysis (Figure 5C
and Figure S6A). APP encodes an amyloid beta precursor protein and is strongly linked
to Alzheimer’s disease [49]. Interaction between APP and CD74 reduces the production
of beta amyloid in Alzheimer’s disease [50]. Unfortunately, there is no evidence of a con-
nection between APP and CD74 in cancer. However, APP is up-regulated in BC cells and
tissues, which promotes tumor formation and progression [51,52]. CD44 is a member of the
cell adhesion molecules that have been proposed as having conflicting functions, i.e., either
being tumor-promoting or tumor-suppressing in BC [53]. CD44 promotes cancer cell mi-
gration and invasion by directly interacting with MMP-9, which degrades collagens [54,55].
CD44 stimulates multidrug resistance protein (P-glycoprotein) expression and leads to
chemoresistance in BC cells [56]. Our results demonstrated that CD44 within ER+ tumor
cells interacted with SPP1, also known as osteopontin (OPN) with macrophages (Figure 5E
and Figure S6B). A previous study revealed that the tumor-associated macrophages in-
teracted with CD44+ cancer stem cells and enhanced tumorigenesis via the OPN/CD44
axis [57]. Additionally, OPN induced radiation resistance by activating the CD44 signaling
pathway in glioma [58].

In summary, we used in silico methodology to select the most potent compound to
target genes characterized by acidic pHe that influence the survival of BC patients. Among
the 102 natural compounds, BD showed the highest potential to regulate reprogrammed
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genes driven by acidosis, affecting the prognosis of BC. BD down-regulated genes that
positively correlate with EMT and invasion, while it up-regulated genes that negatively
correlate with EMT and invasion. BD showed therapeutic potential by changing the TME
condition by reducing APP and CD44 expression. Taken together, BD may be an effective
natural compound for treating BC metastasis driven by extracellular acidity. More research
is needed to fully understand the mechanism of the action of BD in acidic TME.
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between pH 6.5 and pH 7.6, Table S3: Significant genes with prognosis and differential expressed
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