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Abstract: Nucleotides are essential to cell growth and survival, providing cells with building blocks
for DNA and RNA, energy carriers, and cofactors. Mitochondria have a critical role in the production
of intracellular ATP and participate in the generation of intermediates necessary for biosynthesis of
macromolecules such as purines and pyrimidines. In this review, we highlight the role of purine
and mitochondrial metabolism in cancer and how their intersection influences cancer progression,
especially in ovarian cancer. Additionally, we address the importance of metabolic rewiring in cancer
and how the evolving landscape of purine synthesis and mitochondria inhibitors can be potentially
exploited for cancer treatment.
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1. Purine Metabolism

Nucleotides, beyond forming the fundamental building blocks of the genetic code
and its expression, serve a variety of active biochemical roles in the biology of the cell.
Consisting of either a single-ring pyrimidine or a fused-ring purine carbon–nitrogen
nucleobase and a ribose/deoxyribose-phosphate moiety, nucleotides and their derivatives
act as energy carriers to drive enzymatic reactions, mediate signaling within and between
cells, and play numerous vital roles in the regulation of metabolism beyond their own
homeostasis [1,2]. Due to the central nature of nucleotides in cellular function, it is critical
that cells maintain an uninterrupted supply of both pyrimidines and purines. In mammals,
this is achieved for purines by two main pathways, salvage from existing bases and
de novo biosynthesis, with significant activity occurring in the liver [3]. Under normal
physiological conditions, most of the purine pool is generated by the salvage pathway
with the nucleic acid breakdown process, leading to the release of free purine nucleobases
in the form of adenine, guanine, and the hypoxanthine base of inosine monophosphate
(IMP) [4]. These free bases are attached to phosphoribosyl pyrophosphate (PRPP) to form
purine nucleoside monophosphates by either adenine phosphoribosyltransferase (APRT),
which mediates adenosine monophosphate (AMP) formation, or hypoxanthine-guanine
phosphoribosyltransferase (HGRT), which acts on hypoxanthine to form IMP and guanine
to form guanosine monophosphate (GMP) (Figure 1) [5]. As a critical precursor of de novo
biosynthesis, PRPP plays an important role in maintaining both de novo biosynthetic and
salvage pathways, with the distribution and balance of the nucleotide pool in each cell
type being vital for regular cellular activities [6].
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Figure 1. Purine metabolic pathways. The schematic representation shows the de novo and salvage pathways and their 
crosstalk with mitochondria. The conserved de novo biosynthesis pathway to generate IMP consists of 10 chemical steps 
catalyzed by 6 gene products in humans. These include the trifunctional enzyme TGART, composed of GAR synthetase 
(GARS), GAR transformylase (GARTfase), and AIR synthetase (AIRS) domains; the bifunctional enzymes PAICS, com-
posed of CAIR synthetase/AIR carboxylase (CAIRS) and SAICAR synthetase (SAICARS), and ATIC, composed of AICAR 
transformylase (AICART) and IMP cyclohydrolase (IMPCH); and three monofunctional enzymes, phosphoribosyl ami-
dotransferase (PPAT), formylglycinamidine ribonucleotide synthetase (FGAMS), and adenylosuccinate lyase (ADSL). 
Downstream IMP is converted to (1) GMP through stepwise reactions of IMP dehydrogenase (IMPDH) followed by GMP 
synthetase (GMPS) and (2) AMP via adenylosuccinate synthetase (ADSS) followed by ADSL. The salvage pathway re-
quires PRPP to generate IMP and GMP through one-step reactions mediated by hypoxanthine phosphoribosyltransferase 
(HPRT) utilizing hypoxanthine and guanine bases. AMP is generated by adenine phosphoribosyltransferase (APRT) uti-
lizing adenine base and PRPP as substrates. Mitochondria supply precursors for purine de novo biosynthesis including 
glycine, N10-formyl THF, and aspartic acid through their one-carbon cycle (1C cycle) and tricarboxylic acid cycle (TCA). 

Under high cellular purine demands exceeding the capacity of salvage, the nucleo-
tide requirement is met by upregulation of the de novo biosynthetic pathway [4]. This is 
a highly conserved pathway that produces AMP and GMP using metabolic precursors 

Figure 1. Purine metabolic pathways. The schematic representation shows the de novo and salvage pathways and their
crosstalk with mitochondria. The conserved de novo biosynthesis pathway to generate IMP consists of 10 chemical
steps catalyzed by 6 gene products in humans. These include the trifunctional enzyme TGART, composed of GAR
synthetase (GARS), GAR transformylase (GARTfase), and AIR synthetase (AIRS) domains; the bifunctional enzymes PAICS,
composed of CAIR synthetase/AIR carboxylase (CAIRS) and SAICAR synthetase (SAICARS), and ATIC, composed of
AICAR transformylase (AICART) and IMP cyclohydrolase (IMPCH); and three monofunctional enzymes, phosphoribosyl
amidotransferase (PPAT), formylglycinamidine ribonucleotide synthetase (FGAMS), and adenylosuccinate lyase (ADSL).
Downstream IMP is converted to (1) GMP through stepwise reactions of IMP dehydrogenase (IMPDH) followed by GMP
synthetase (GMPS) and (2) AMP via adenylosuccinate synthetase (ADSS) followed by ADSL. The salvage pathway requires
PRPP to generate IMP and GMP through one-step reactions mediated by hypoxanthine phosphoribosyltransferase (HPRT)
utilizing hypoxanthine and guanine bases. AMP is generated by adenine phosphoribosyltransferase (APRT) utilizing
adenine base and PRPP as substrates. Mitochondria supply precursors for purine de novo biosynthesis including glycine,
N10-formyl THF, and aspartic acid through their one-carbon cycle (1C cycle) and tricarboxylic acid cycle (TCA).

Under high cellular purine demands exceeding the capacity of salvage, the nucleotide
requirement is met by upregulation of the de novo biosynthetic pathway [4]. This is a
highly conserved pathway that produces AMP and GMP using metabolic precursors in-
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cluding PRPP, several amino acids (glutamine, aspartic acid, and glycine), small molecule
cofactors N10-formyl Tertrahydrofolate (THF) and Nicotinamide Adenine Dinucleotide
(NAD+), and existing adenosine triphosphate (ATP) and guanosine triphosphate (GTP). In
humans, de novo biosynthesis requires a sequence of ten distinct reactions catalyzed by six
enzymes. Three of these are multifunctional enzymes catalyzing multiple steps in the path-
way, comprising the two bifunctional enzymes phosphoribosylaminoimidazole carboxylase
(PAICS) and AICAR transformylase/inosine monophosphate cyclohydrolase (ATIC) and
the trifunctional enzyme glycinamide ribonucleotide transformylase (TGART) [7,8]. When
active, the pathway is limited both by substrate availability and by the reaction rate of its
initial step, the conversion of PRPP to phosphoribosylamine (PRA) by phosphoribosylpy-
rophosphate amidotransferase (PPAT) [9]. The final product of the de novo biosynthesis
pathway, IMP, is the precursor for both AMP and GMP, which are formed via two further
enzymatic reactions; in total, the energy from hydrolysis of six ATP molecules to adenosine
diphosphate (ADP) is required to synthesize one molecule of IMP from PRPP, whereas
nucleotide salvage is not dependent on stored phosphate bond energy.

As the presumed primary rate-limiting step of purine biosynthesis, PPAT activity is
tightly regulated. PPAT possesses two nucleotide-binding sites near the active site, allowing
for feedback control by downstream purine nucleotides via allosteric inhibition [10,11].
Furthermore, there is a growing body of evidence that signaling pathway enzymes such as
protein kinase B (PKB) and ribosomal protein S6 kinase (S6K) influence IMP production
directly through the phosphorylation of purine biosynthetic enzymes [12]. One such modi-
fication is the Thr397 phosphorylation of PPAT by PKB, detected in purine supplemented
conditions only and affecting downstream inosine monophosphate (IMP) production [13].
Similarly, as the limiting metabolic input, regulation of PRPP levels affects the rate of
purine synthesis. Analysis of PRPP in different growth stages in HTC116 colon cancer cells
demonstrated that rates of purine synthesis via both salvage and the de novo pathways
increased by 5 and 3.3 fold, respectively, from the end of the G1 phase to the beginning of
the S phase, with the de novo increase attributed to an increase in intracellular phosphate
stimulating PRPP synthetase activity [14]. More broadly, high-throughput global proteomic
studies have revealed 174 post-translational modifications within the six enzymes across
the purine de novo biosynthetic pathway [13].

In an additional mechanism of pathway regulation, still incompletely understood,
purine de novo synthesis enzymes cluster into large complexes termed purinosomes, pre-
sumably to increase pathway efficiency and isolate reactive intermediates. A purinosome
core of PPAT, TGART, and formylglycinamidine ribonucleotide synthetase (FGAMS) inter-
acts with PAICS, adenylosuccinate lyase (ADSL), and ATIC, which also transiently interact
with each other, suggesting the possibility of association-dependent regulation of the path-
way as a whole [15]. Furthermore, super-resolution microscopy studies demonstrate that
these purinosomes colocalize with mitochondria, potentially positioning them in areas of
high ATP and metabolite concentrations to promote forward flux through the pathway [16].

2. Purine Metabolism in Cancer

The defining distinction between neoplastic cells and their normal counterparts is the
unregulated and increased rate of growth of the former [17]. This requires their metabolism
to be altered by oncogenes and loss of tumor suppressors to support the synthesis of avail-
able nutrients into cellular biomass [18]. The first historical evidence that cancer cells adapt
their metabolism to support cell growth was the so-called “Warburg effect”, reporting
increased aerobic glycolysis in cancer cells with a corresponding increase in glucose uptake
and lactate excretion [19,20]. Similar behaviors are observed in other anabolic pathways,
with upregulation of nucleotide, protein, and lipid uptake and biosynthesis associated with
increased cell growth [17]. In particular, nucleotide synthesis is a frequently limiting factor
of proliferation: de novo nucleotide biosynthesis is an energy-intensive process, is depen-
dent on sources of carbon and nitrogen, and requires multiple inputs distributed between
multiple pathways and organelles, especially mitochondria [21,22]. As such, nucleotide
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biosynthesis and its associated mitochondrial pathways have been targeted by chemother-
apeutic regimens for decades. The typical approach is by direct inhibition of this pathway
using purine antimetabolites, analogs of nucleotides, or their precursors acting as competi-
tive inhibitors. These have proven to be effective treatments acting to stall DNA replication
or cause apoptosis via DNA damage, and they reflect a significant percentage of currently
available cancer treatments [23]. Historically, 6-mercaptopurine and 6-thioguanine, both
purine analogs, were the first drugs to be used clinically for the treatment of leukemias [24].
Another class of purine antimetabolites, the purine deoxynucleoside analogs fludarabine,
cladribine, clofarabine, nelarabine, and pentostatin, are US Food and Drug Administration
(FDA)-approved agents for the treatment of cancers (Table 1) [23]. Notably, however, none
of these currently approved treatments target purine biosynthesis directly; instead, they tar-
get upstream input availability and downstream utilization of synthesized purines. While
several biosynthetic inhibitors are in development, a better understanding of the precise
molecular mechanisms of these agents and identification of new enzyme and metabolite
targets is crucial for improving options for treatment [25].

Table 1. Antimetabolites and mitochondria metabolic-targeting drugs to treat malignancies.

Drug Class Drug Name Target(s) Example Indications Reference

Folate antagonists

Aminopterin Dihydrofolate reductase (DHFR) Leukemias [26,27]

Methotrexate

DHFR
Thymidylate synthase (TS)

Bifunctional purine biosynthesis
protein PURH (ATIC)

Amido
phosphoribosyltransferase

(PPAT)

Acute lymphoblastic
Leukemias (ALL)

Lymphoma
Brain tumors
Osteosarcoma
Breast cancer

[26,27]

Pemetrexed

DHFR
TS

ATIC
Trifunctional purine biosynthetic

protein adenosine-3 (GART)

Lung cancer
Ovarian cancer
Head and neck

Liver cancer
Mesothelioma

Advanced cancers

[26–28]

Pralatexate DHFR
TS Multiples Myeloma (MM) [26,27]

Purine antagonists

6-mercaptopurine

Hypoxanthine-guanine
phosphoribosyltransferase

(HGPRTase)
PPAT

Leukemias
ALL [23,24]

6-thioguanine HGPRTase Leukemias
ALL [23,24]

Fludarabine
Cladribine

DNA synthesis
DNA repair

Leukemias
MM
ALL

[23,24]

Pentostatin Adenosine deaminase (ADA)
DNA synthesis

Leukemias
ALL

Renal cancer
[23,24]

Clofarabine
Nelarabine DNA elongation

Leukemias
ALL

Recurrent neoplasm
[23,24]
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Table 1. Cont.

Drug Class Drug Name Target(s) Example Indications Reference

Mitochondria

Metformin ETC complex I

Ovarian cancer
Breast cancer

Prostate cancer
Endometrial
Lung cancer

[29–31]

CPI-613 α-ketoglutarate Dehydrogenase
(α-KGDH)

Pancreatic cancer
AML [32]

CB-839 Glutaminase (GLS) Lung cancer [32]

Purine Metabolic Enzymes and Intermediates

In accordance with the expected increased rate of nucleobase synthesis, elevated
concentrations of purine metabolites are common to most if not all forms of cancer, an
observation leading to the use of purine antimetabolites as early treatments to inhibit cell
growth. Similarly, the activity of the de novo purine biosynthetic enzymes are typically dys-
regulated in cancers, including PPAT in lung cancer; GART, ATIC, and GMP synthase (GMPS)
in liver cancer; PAICS in bladder, prostate, colon, lung cancer, and neuroblastoma; ADSL
in endometrial cancer and in triple-negative breast cancer; and inosine-5′-monophosphate
dehydrogenase (IMPDH) in glioblastoma and liver and lung cancer [33–43]. At the clinical
level, analyses studying large-scale patient cohorts and different cancer types identify the
regulation of purine biosynthetic enzymes as a predictor of clinical outcome. Notably, a
meta-analysis of multiple cancer cohorts identified elevated expression levels of PPAT as a
strong predictor of tumor malignancy, altering nitrogen metabolism to favor purine biosyn-
thesis for cell proliferation [33]. A similar cohort study of hepatocellular carcinoma (HCC)
identified dysregulation of IMPDH expression as a key contributor to cancer progression
and predictor of clinical outcome [43].

As potential additional targets for treatment, the effects of elevated purine metabolites
are not limited to increasing the rate of DNA and RNA synthesis. While the complex
roles played in regulation by purine nucleotide triphosphates are too numerous to detail
here, two key examples have particular relevance to oncogenesis. Signaling by small
G-proteins is sensitive to intracellular GTP/GDP levels, the reduction of which inhibits the
mechanistic target of rapamycin C1 (mTORC1) activity via its regulator Rheb and hence
decreases tumor growth in mice bearing non-small-cell lung cancer (NSCLC) xenografts
model [44]. Similarly, the production of GMP is crucial for generating cyclic guanosine
monophosphate (cGMP) to promote cGMP-dependent protein kinases to activate the
mitogen-activated protein kinase (MAPK) pathway, resulting in the characteristic increase
in stem cell gene expression that leads to breast cancer lung metastasis [45].

With respect to metabolic intermediates, N-succinocarboxyamide-5-aminoimidazole
ribonucleotide (SAICAR) is of particular interest as an allosteric regulator of pyruvate
kinase, isoform 2 (PKM2), a glycolytic enzyme also commonly upregulated in oncoge-
nesis [4,46]. Together with serine, SAICAR induces protein kinase activity of PKM2 for
sustained proliferative signaling of cancer cells as a response to their inherent glucose
limitation [47,48]. Notably, SAICAR accumulation is not observed in normal epithelial cells
and fibroblasts [49]. The immediately downstream metabolite, AICAR, forms the AMP ana-
log 5-Amino-1-βD-ribofuranosylimidazole-4-carboxamide monophosphate (ZMP) when
phosphorylated. This has multiple downstream effects, including, interestingly, activa-
tion of AMP-activated protein kinase (AMPK). AMPK is a sensor of ATP levels, acting
pleiotropically to increase energy storage and reduce energy usage when the ATP:AMP
ratio is excessively low, though its role in cancer progression is complicated by its action in
both inhibitions of growth and protection against stressors [50].
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3. Intersections of Purine Metabolism with Broader Cancer Pathways

Nucleotide synthesis is only one of many biosynthetic pathways on which a cell
depends for growth. Incoming substrates must be directed toward protein, lipid, and small
molecule synthesis as well and are consumed for energy production by one of several path-
ways, and the cell possesses sophisticated biochemical circuitry to up- and down-regulate
all of these various pathways according to its current needs. As cancer cells depend on alter-
ing this regulation to support abnormally rapid growth, restoring or replicating inhibitory
pathways is an alternative to the direct competitive inhibition of intermediate substrates
described previously [51]. With respect to purine biosynthesis, crosstalk in the form of
substrate generation and enzyme regulation exists to balance this pathway with glycolysis,
amino acid metabolism and associated single-carbon intermediates, and mitochondrial
metabolism, all of which represent potential therapeutic targets (Figure 2) [21,52].
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Figure 2. Interconnectivity of purine metabolism. The schematic representation illustrates how proliferative cells use
nutrient availability and metabolic networks that feed into, are regulated by or otherwise integrated with purine metabolism.
Key reactions in central metabolism are shown, including how glucose, glutamine, serine/glycine, one-carbon, and
mitochondrial metabolism are involved in the de novo purine biosynthesis.

4. Glucose Metabolism and Purines

As previously noted, the increased uptake and metabolism of glucose underlying
the Warburg effect is a hallmark of oncogenesis [53]. As the primary carbon source for
biosynthesis, glucose metabolism is inherently linked to synthetic and metabolic pathways
by directly or indirectly supplying them with substrates, and purine biosynthesis depends
on the glycolytic intermediates glucose-6-phosphate (G6P), 3-phosphoglycerate (3PG), and
fructose-6-phosphate (F6P), as well as the glycolytic enzyme PKM2. The glycolytic inter-
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mediate G6P can be rerouted into the oxidative branch of the pentose phosphate pathway
(PPP), and the intermediates 3PG and F6P can be rerouted into the non-oxidative branch of
the PPP to generate the sugar component of nucleic acids, ribose 5-phosphate (R5P); the
latter pathway in particular is frequently upregulated in cancer lines [54]. R5P additionally
can go on to be converted to PRPP, as a donor of the ribose group required for nucleotide
biosynthesis. Regulation of glycolysis has been demonstrated to affect nucleotide synthesis
in vivo, with the glycolytic kinase enzyme PKM2, a rate-limiting enzyme in glycolysis,
supporting the process and the resulting cell proliferation in primary mouse embryonic
fibroblasts [55]. Under allosteric regulation by endogenous and exogenous activators and
inhibitors including the nucleotide intermediate SAICAR, inhibition of PKM2 markedly
decreases the glycolytic rate, allowing the generation of glycolytic intermediates that fuel
into purine biosynthesis [56]. While the pleiotropic effects of PKM2 make it difficult to
dissect its mechanisms of action in a given cancer line, thus making its suitability for cancer
treatment similarly difficult to determine [57,58], it and its associated pathways represent
an excellent target for further research.

4.1. Amino Acids, One-Carbon Metabolism, and Purines

Many of the interactions of cellular biosynthetic pathways are mediated by amino acid
intermediates acting as biochemical substrates in lieu of their incorporation into proteins.
The de novo purine biosynthetic pathway requires several amino acids as substrates of
the enzymatic process, including aspartate, serine, glycine, and glutamine, all subject to
multiple pathways that therefore require strict regulation of their competing demands.
Serine and glycine metabolism are closely linked and together provide essential precursors
for the synthesis of macromolecules: serine is the major donor of one-carbon units, and
glycine is a major source of methyl groups for the one-carbon pools required for nucleotide
synthesis, methylation, and reductive metabolism [59]. Each can be imported from the
extracellular space, scavenged from protein hydrolysis, or synthesized directly and can
be interconverted to meet cellular demand (Figure 2). De novo biosynthesis is primarily
driven by the glycolytic intermediate 3PG, which is converted to serine in a three-step
enzymatic reaction. This is followed by conversion to glycine by serine hydroxymethyl-
transferase isoforms 1 and 2 (SHMT1/2) in the cytosol and mitochondria, respectively.
Notably, the reactions of one-carbon metabolism occur in different cellular compartments.
The mitochondrial one-carbon cycle produces glycine from serine (via SMHT2) to release
the metabolite formate. This is exported to the cytoplasm using tetrahydrofolate (THF) as a
carrier to then participate in the cytosolic one-carbon cycle and enter the de novo purine
biosynthetic pathway [60,61]. This 10-fTHF cofactor transfers one carbon to purines and
regulates the activity of GART and ATIC. Furthermore, glycine serves as a substrate for the
conversion of PRA to glycinamide ribonucleotide (GAR) by the activity of phosphoribosyl-
glycinamide synthetase (GARS) [62,63]. In the end, the synthesis of one purine requires the
input of two one-carbon units and one further molecule of glycine to produce IMP.

In rapidly proliferating cancer cells, much of the intracellular serine is converted to
glycine to drive one-carbon metabolism and formate production [64], with the incorpo-
ration of a one-carbon unit from serine into nucleotides observed in cancer growth [65].
More recent studies have shown that numerous cancer cells require SHMT2 activity for
optimal proliferation and tumorigenicity [66] and that serine depletion inhibits cancer
cell proliferation and decreases purine levels [67]. In line with this, in vivo studies in a
mouse xenograft model indicate a therapeutic benefit of dietary depletion of serine [64].
Targeting one-carbon metabolism using anti-folates to deplete the THF cofactor is therefore
a common and effective anticancer therapy (Table 1). Folate analogs including aminopterin,
methotrexate, pemetrexed, and pralatexate are used for the treatment of cancers to in-
hibit cytosolic one-carbon metabolism enzymes including dihydrofolate reductase (DHFR)
and thymidylate synthase (TYMS), with an indirect effect on de novo purine biosyn-
thetic metabolism [27]. It must be noted, however, that folate inhibition on its own is not
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necessarily a panacea, given the variance seen in cancer response to dietary folate supple-
mentation [68,69], underscoring the need for a variety of available cancer treatments.

Like serine and glycine, glutamine and aspartate can be transported into the cells
via the activity of high-affinity transporters (SLC1A5, GLAST, and related proteins) or
synthesized de novo. Glutamine, beyond its role in proteins, is a major carrier of nitro-
gen in the body for multiple cellular processes, feeding into the tricarboxylic acid cycle
(TCA cycle) and directly providing nitrogen at several points in the purine biosynthetic
pathway [70]. Furthermore, glutaminolysis begins with the hydrolytic deamination of
glutamine to glutamate and inorganic ammonia via the activity of glutaminases (GLSs);
this glutamate can serve as a metabolic substrate to produce aspartate via the activity of
aspartate aminotransferase (GOT1/2) and phosphoserine via the activity of phosphoserine
aminotransferase 1 (PSAT1), with both aspartate and serine-derived glycine being essential
precursors for the de novo purine biosynthetic pathway (Figure 2). Aspartate itself can
be produced by transamination of oxaloacetic acid (OAA), either in the mitochondria via
GOT2 activity or in the cytoplasm via GOT1 activity, as part of its participation in the
malate redox shuttle.

Dysregulation of glutamine enzymes and reprogramming of glutamine metabolism
are characteristic of rapidly dividing cancer cells. Cancer cells under glutamine starvation
undergo cell cycle arrest, which can be rescued by exogenous nucleotides [71]. Alterna-
tively, cells can mitigate glutamine starvation via upregulating glutamine synthetase (GS)
to reverse GLS-mediated deamination and recover glutamine from glutamate (and hence
the TCA cycle) to promote nucleotide biosynthesis and support anabolic cell growth [72].
This metabolic reprogramming in cancer towards glutamine metabolism-regulating tumori-
genesis invasion and bioenergetics has also been reported in ovarian cancer (OvCa), where
highly invasive ovarian cancer cells are markedly glutamine-addicted [73]. Supporting this,
under hypoxia or mitochondrial electron transport chain (ETC) dysfunction, cancer cells
selectively prioritize the use of aspartate for the synthesis of nucleotides over asparagine
and arginine production, draining the components of the TCA pathway to drive glutamine
synthesis and hence nucleotide production [74,75]. Thus, de novo glutamine synthesis,
and GS in particular, is a primary link between glutamine and purine metabolism in cancer
and a potential therapeutic target.

4.2. The Master Regulators of Metabolism

To balance these various cellular needs during growth, as well as growth itself, the
cell requires the action of centrally coordinating proteins and pathways. One of the most
prominent is the Myc proto-oncogene protein (c-Myc) transcription factor, which directly
regulates the expression and activity of up to 15% of all genes in humans, including
multiple enzymes associated with de novo purine biosynthesis, glutamine metabolism,
serine-derived glycine pathway, and one-carbon metabolism [76–79]. With respect to de
novo purine biosynthesis, c-Myc binds to the bi-directional promoters of PPAT and PAICS
to increase pathway throughput and support cell proliferation [77]. As a proto-oncogene
and major regulator of cell proliferation, c-Myc in cancer reprograms glutamine metabolism
to maintain pools of available nitrogen carriers, an abundant supply of aspartate, and
usable energy exceeding the requirement for nucleotide biosynthesis promoting tumorige-
nesis [52,80]. Beyond c-Myc, mTOR as a central sensor of cellular reserves is also involved
in purine biosynthesis, among its many functions. The mTORC1-mediated activation
of transcription factor 4 (ATF4) regulates the expression of MTHFD2, which provides
one-carbon units for de novo purine biosynthesis; depleting these intermediate proteins
reduces incorporation of isotope-labeled glutamine nitrogen into purines [81]. Moreover,
mTOR has been shown to be involved in purinosome assembly, leading to the regulation
of purine metabolism by spatiotemporal control over protein association [16]. Similarly,
the AMP:ATP energy sensor AMPK, regulated by multiple factors including the purine
intermediate AICAR, in turn regulates a variety of energy-consuming cellular processes
including the PPP [82,83]. More recently, the metabolic intermediate formate has been
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shown to indirectly repress AMPK by inducing a metabolic reprogramming from low to
high adenine nucleotide levels, leading to an increase in glycolytic rate [84].

5. Purine Metabolism at the Mitochondria

With the heavy involvement of the TCA cycle and associated metabolites in purine
biosynthesis, as well as its energetic needs, it is perhaps unsurprising that mitochondria
as a whole are critical to the pathway. Mitochondria are the central metabolic organelle,
coordinating cellular energy production and the availability of building blocks required
for cell proliferation [85]. For de novo biosynthesis of purines, glutamine and aspartate
are required as nitrogen donors, and serine-derived glycine and formate are required for
backbone synthesis, and mitochondrial metabolic products such as formate, serine-derived
glycine, and TCA-cycle intermediates supply further requirements, especially in rapidly
proliferating cells.

Presumably due to the heavy molecular and energetic requirements of purine syn-
thesis, the enzymes of the pathway cluster near mitochondria and microtubules to form
purinosomes [15,16,86]. Purinosome assembly and disassembly are highly dependent
upon purine availability, with purinosomes forming in response to higher metabolic de-
mands and depleted cellular purine levels [2,15,87]. Collected next to the mitochondria,
the purinosome can take advantage of the high concentration of mitochondrially generated
ATP and substrates to promote flux through the pathway, as well as minimizing diffusion-
related loss of intermediates and throughput time. While the role of the purinosome in
cancer has yet to be fully explored, its central position in pathways critical to cell growth
makes it an attractive candidate as a potential therapeutic target, and its dependence on
mitochondria makes targeting mitochondria a potential means of inhibition of purine
biosynthesis. Indeed, disruption of purinosome formation via chaperone inhibition has a
synergistic effect with disruption of one-carbon metabolism by the well-established anti-
folate drug methotrexate [86]. Conversely, targeting the mitochondrial folate pathway via
MTHFD2 disrupts the production of purines needed for cell growth [62,81].

The demonstration of the presence of anti-apoptotic proteins in mitochondria sug-
gests another potential target for cancer therapy [88], as does evidence that mitochondrial
metabolism is required for tumor growth, indicating that targeting mitochondrial biosyn-
thetic, bioenergetic, and redox functions may be effective in treatment [89]. Many classes
of mitochondria metabolic-targeting drugs already exist and are not limited to cancer treat-
ments; these include antimicrobial agents, antidiabetic drugs, and classic anticancer agents.
As such, drugs targeting the mitochondria for other purposes may also act to suppress
cancer growth, and metformin (electron transport chain inhibitor), CPI-613 (TCA-cycle in-
hibitor), and CB-839 (glutaminolysis inhibitor) are currently in clinical trials. Both CPI-613
and CB-839 act by inhibiting anaplerotic restoration of TCA cycle intermediates (Figure 3).
With glutamine and aspartate generated from intermediates of mitochondrial TCA-cycle
metabolism and used as co-substrates of purine biosynthesis enzymes, inhibiting mito-
chondrial metabolism may potentially be effective to decrease the purine biosynthesis
levels in proliferating cancer cells [32]. Similarly, the biguanide metformin is a putative
mitochondrial ETC complex I inhibitor and has been shown to suppress nucleotide levels
in cancer cells [29]. However, there is a need for more comprehensive studies to determine
the direct effect of mitochondrial drugs on purine biosynthesis in cancers and how to
balance inhibition of cancer growth with the dependence of all cells, not just cancer cells,
on mitochondrial output [89].
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6. Mitochondria and Purine Metabolism in Ovarian Cancer

The microenvironment-dependent metabolism in OvCa plays an important role in
the tumor biology and progression of the diseases [90]. Increased fatty acid metabolism
and glycogen accumulation due to hypoxic conditions are metabolic hallmarks of chemore-
sistance in OvCa [91]. Notably, an important feature of OvCa phenotype is the marked
dependence of glutamine metabolism rather than glucose [73]. Mounting evidence shows
that highly invasive OvCa lines are glutamine-dependent, and high expression of genes
involved in glutaminolysis and mitochondrial TCA-cycle metabolism correlates with poor
patient survival rates. More recent work suggests that, as with other cancers, de novo
glutamine metabolism serves as a nitrogen donor for biosynthetic purposes through the
activity of GS and is necessary to drive OvCa growth: specifically, targeting stromal GS
activity and GLS activity in ovarian cancer cells reduced tumor growth and metastasis [92].
In the case of particularly chemoresistant ovarian cancers, this approach can be combined
with others, such as inhibition of PARP-dependent genome repair [93].

Metabolic reprogramming toward the mitochondrial Oxidative Phosphorylation
(mt-OxPhos) pathway rather than glucose metabolism suggests a therapeutic regimen
of treating OvCa with antidiabetic drugs such as metformin. Metabolomic analysis of
the mechanism of metformin in ovarian cancer using patient samples confirmed that
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the predominant anti-tumorigenic effect of metformin is driven by targeting tumor-cell-
intrinsic mitochondrial metabolism [30,32]. Moreover, a stage II clinical trial in ovarian
cancer demonstrated better overall survival in the metformin-treated group compared
with untreated [31]. The close connection between mitochondrial glutamine metabolism
and purine biosynthesis therefore suggests that manipulation of the latter may provide
an additional means of treatment of these difficult cancers. Recent work has demon-
strated that OvCa features altered nucleotide metabolism, treatable with a combination
of upstream inhibition of the MAP kinase master regulator, and downstream inhibition
of altered chromatin remodeling and resulting in reduced levels of nucleotide synthesis
enzymes and intermediates [94]. However, more comprehensive studies remain necessary
to characterize mechanisms connecting upregulation of purine biosynthetic proteins to
ovarian cancer prognosis.

7. Outlook on Novel Purine-Based Cancer Treatment Methodologies

We have discussed how antimetabolites and drugs otherwise targeting mitochondrial
metabolism act on different types of cancer as primary treatments. Enzymes involved in
the purine de novo biosynthetic pathway are among the most frequently overexpressed
proteins across cancers. Accordingly, purine antimetabolites are widely used as an effective
cancer therapy, acting to inhibit purine metabolism by inactivating purine biosynthesis
enzymes, thereby disrupting nucleic acid synthesis and stalling the energy supply to the
cell [95]. However, the heterogeneity of individual cancers, tendency to acquire chemore-
sistance under selective pressure, and frequent toxic side effects highlight the need for
continued research and drug development. As an example to illustrate the latter point, the
GART inhibitor lomotrexol showed marked side effects in clinical trials and failed to gain
FDA approval for use in cancer treatment [96]. However, extensive work continues with
improving outlook. While side effects remain common, another GART inhibitor, AG2034,
showed improved inhibition of tumor growth [97], and more recently developed inhibitors,
PY873, PY899, and DIA have been under investigation [28,98,99]. To investigate other
enzymes in the pathway, a virtual ligand screen of the National Cancer Institute Diversity
compound set was used to identify a novel ATIC inhibitor, 326203-A. This compound was
demonstrated to be capable of binding a subunit AICAR transformylase (AICARFT) of
ATIC [100]. Similarly, significant growth inhibition by another novel AICARFT inhibitor,
LSN3213128 has been observed in xenograft breast and lung cancer models [101]. The
overexpression of PAICS is common to many forms of cancer and recognized as a potential
target for inhibition [34,102,103]. The small molecule MRT00252040 has shown potential
early promise as an inhibitor [104] (Figure 3).

TGART, ATIC, and PAICS, of course, are only a fraction of the targetable purine biosyn-
thetic pathway. Clinical and experimental work has shown that that the overexpression of
other pathway enzymes, notably PPAT and FGAMS, is associated with poor liver cancer
survival rates [105]. Furthermore, the colocalization of the purinosome with mitochondria
suggests an additional set of important interactions that may serve as targets for disrup-
tion, with the potential for a more tightly targeted effect on cancer cells with hyperactive
mitochondria relative to untransformed cells [16,106]. However, the characterization of
purinosome formation and localization is still in its early stages, and important questions
remain. The mechanisms of signaling and regulating the formation of the purinosome are
unclear, as are the means by which purinosomes localize to the mitochondria. Further-
more, effective treatment requires detailed knowledge of how this process varies between
different forms of cancer. There is still a need for the development of novel cancer treat-
ments with reduced side effects and different mechanisms of action, and the intersection of
mitochondrial respiration with purine biosynthesis is an attractive candidate for each.
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