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Abstract: Microglia are brain-dwelling macrophages and major parts of the neuroimmune system
that broadly contribute to brain development, homeostasis, ageing and injury repair in the central
nervous system (CNS). Apart from other brain macrophages, they have the ability to constantly
sense changes in the brain’s microenvironment, functioning as housekeepers for neuronal well-
being and providing neuroprotection in normal physiology. Microglia use a set of genes for these
functions that involve proinflammatory cytokines. In response to specific stimuli, they release these
proinflammatory cytokines, which can damage and kill neurons via neuroinflammation. However,
alterations in microglial functioning are a common pathophysiology in age-related neurodegenerative
diseases, such as Alzheimer’s, Parkinson’s, Huntington’s and prion diseases, as well as amyotrophic
lateral sclerosis, frontotemporal dementia and chronic traumatic encephalopathy. When their sentinel
or housekeeping functions are severely disrupted, they aggravate neuropathological conditions
by overstimulating their defensive function and through neuroinflammation. Several pathways
are involved in microglial functioning, including the Trem2, Cx3cr1 and progranulin pathways,
which keep the microglial inflammatory response under control and promote clearance of injurious
stimuli. Over time, an imbalance in this system leads to protective microglia becoming detrimental,
initiating or exacerbating neurodegeneration. Correcting such imbalances might be a potential mode
of therapeutic intervention in neurodegenerative diseases.
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1. Introduction

Microglia are brain-dwelling parenchymal macrophages [1] that are distinct from other
brain-dwelling non-parenchymal macrophagic populations and tissue macrophages [2,3].
Under healthy and normal conditions, microglia are self-maintained with no consider-
able contribution of peripheral myeloid cells [4]. In addition, ~5% of the total cells of
the neocortex are normally microglial [5]. These macrophages have a uniform distribu-
tion throughout the central nervous system (CNS) parenchyma, with a population of
approximately 10% of the total cells in the CNS. In addition, they can form a cellular grid
with their ramified and highly motile process [6]. During the developmental phase of
the brain, microglia help shape neural circuits by modulating the strength of synaptic
transmissions and sculpting neuronal synapses. When sensing any CNS injury, they be-
come phagocytic and eliminate microbes, cell debris, protein aggregates or any form of
CNS insult. However, microglial activation has been reported during several neurological
conditions [7,8], in which they have evidently been playing both beneficial and detrimental
roles, depending on disease progression.
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The correct functioning of microglia is necessary for neural circuit remodelling and
synaptic function, but their involvement in the pathogenesis of neurological diseases raises
the debate of whether microglial activation is beneficial or detrimental. In response to
CNS insults, microglia proliferate rapidly [9], but their proliferation and turnover rates
under homeostatic conditions have not been well documented. Filling this research gap
could differentiate them from disease-causing agents [10]. Several studies have shown
interesting but conflicting results, either very low or very high microglial turnover in mice
and the post-mortem brain [11–13], although the validity of these techniques has been
arguable and limited [14,15]. However, it is clear that understanding the regulation of
microglial populations in the brain is crucial to understanding their functioning at different
phases of age and age-related diseases. In one case, the mouse model of AD showed
that early priming of individual microglia can induce long-lasting functional changes in
life, whereas microglial senescence may have a role in age-related neurodegeneration [10].
For example, stimulation of the brain’s immune system during development can induce
long-lasting changes in microglial immune responses [16,17], and ageing and senescence
of microglia contribute to neurodegenerative disorders [18].

However, changes in microglial homeostasis and functioning during age and age-
related neurodegenerative diseases could be due to alterations in the brain’s microen-
vironment or to the longevity of microglia, possibilities that remain unclear. Therefore,
this article will discuss in detail microglia’s physiological role and changes due to exposure
to different insults in individual age-related neurodegeneration.

2. Molecular and Functional Background of Microglia

Microglia are the resident immune cells of the brain and cover almost 5–12% of CNS
cells [19]. In addition, microglia are involved in the homeostasis of host defence against
pathogens and consequent neurological disorders [20,21]. These cells are mesenchymal,
originating in the yolk sac, and do not require hematopoietic stem cells for renewal [13,22].
Their survival and maintenance depend on cytokines, including CSF1 and interleukin
(IL)-34 [23], and on transcription factors such as IRF8 [22]. However, microglia can be
simply defined as innate immune cells of the CNS that originate from myeloid cells
and express several genes, including Cx3cr1, CD11b, Iba1 and F4/80 [21]. Depending on
comprehensive knowledge of microglial gene expression and relevant functions [21,24],
this study attempted to determine microglial functions in accordance with their gene
expressions. There are three basic functions of microglia—sensing their environment,
maintaining physiological homeostasis and protecting against self-modified and exogenous
injurious agents. Furthermore, these normal functions are important regulators from a
human being’s embryonic stages through to old age.

Sensing is the primary requirement for microglia to function in housekeeping and
defending their host from injury (Figure 1). Microglia form a network that spans throughout
the CNS. Their thin processes are dynamic and in constant motion, allowing them to scan
the area surrounding their cell body every few hours and rapidly polarise toward focal
injury [8,19]. This network includes approximately 100 or more genes that consistently
scan surrounding cell bodies and sense any changes in their microenvironment [24–26].
The sensome mRNA is expressed uniformly in microglia of different regions of the brain,
indicating that all microglia are capable of sensing functions.

The second and most important part of microglial function is physiological homeosta-
sis. This function includes synaptic remodelling such as CNS development and mainte-
nance, neurodegeneration [27,28], phagocytosis of dead or malfunctioning neuronal cells
or cell debris [29,30], or myelin homeostasis [31] (Figure 2). In addition, microglia activate
several inflammatory pathways that cause neuroinflammation and possibly neurodegen-
eration. In this process, microglia interact with astrocytes, and their interaction is also
important in regulating homeostasis. Several chemokine and chemoattractant housekeep-
ing genes are involved in phagocytosis (Trem2), synaptic pruning and remodelling (C1q and
Cx3cr1) [24], and anomalies in these housekeeping genes may lead to neurodegeneration.
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Figure 1. Effectors of microglia function associated with neurodegeneration and how microglia damage or kills neurons.
Microglia have both host-defensive and detrimental actions, depending on the scenario. When they encounter aberrant
or misfolded proteins—such as Aβ, aggregated α-synuclein, oxidised or mSOD1, or PrPSc—they function as sentinels,
protective hosts. In response to these toxic stimuli, microglia attempt to clear aggregated Aβ, α-synuclein or mSOD1
via SRs and other PRRs. However, the nature of the aberrant proteins or their continued production disrupts microglial
housekeeping functions. Several pathways activate: NADPH oxidase produces superoxide and derivative oxidants;
iNOS produces nitric oxide derivatives, glutamate, cathepsin B and other proteases, and that produces stressed neurons.
These processes dysregulate the microglial host-defensive mechanism, leading to an exaggerated proinflammatory response,
neurotoxicity and neurodegeneration. Microglia also include tumour necrosis factor (TNF) as an indirect pathway to
damage or kill neurons via reducing brain-derived neurotrophic factor (BDNF) and insulin-like growth factor (IGF)
production. Neurodegenerative diseases such as AD, ALS and HD, furthermore, cause mutations in specific genes that lead
to self-autonomous dysregulation of host defence. This initiates or exaggerates proinflammatory responses, resulting in
neurotoxicity and neurodegeneration. In this way, when mutations in TDP-43, progranulin and Trem2 increase (↑), they affect
phagocytosis and associated degradation pathways. Similarly, mutations in mSOD and HTT (↑) also affect inflammasome
activation and neuronal killing pathways. On the other hand, mutations in C9orf72 can affect both phagocytosis and
inflammasome pathways. In normal physiology, a microglia-autonomous mechanism controls the scenario by clearing (↓)
mutant or aberrant proteins (adapted from ref. [8]).

As carriers of innate immunity, microglia defend their host against pathogens (Figure 1),
injurious proteins including Aβ, aggregated α-synuclein, mutant huntingtin (mHtt), mutant
prion (mPrPSc) and oxidised superoxide dismutase (SOD). Microglia activate several re-
ceptors to incite host defences, such as expressing Fc receptors, Toll-like receptors (TLRs),
and several antimicrobial peptides including Camp and Ngp [24]. Therefore, microglia ap-
proach the neuroinflammatory threshold by producing peripheral inflammatory cytokines
such as TNF-α and IL-1β [33,34]. In addition, this process involves chemokines (e.g., Ccl2)
that recruit additional cells and work together to clear pathogens and normalise the brain in
a homeostatic condition [35]. However, consistent microglia-induced neuroinflammation
leads to neurotoxicity and, eventually, neurodegeneration. In contrast to the anomalies
in this microglial functioning, healthy neural microglia are always actively functioning
through sensing, housekeeping and protecting their host.
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Figure 2. Microglial regulation of neuronal networks and CNS homeostasis. By playing a phagocytic role, microglia engulf
dead or degenerated neurons via TAM receptor-mediated recognition of GAS6-opsonised cells. Microglia control synaptic
plasticity by downregulating AMPA receptor activity through ROS secretion and by modulating BDNF/Trk receptor path-
ways. Beyond this, microglia can strip synapses through Cx3cr1-Cx3cl1 interactions and microglial major histocompatibility
complex II (MHCII) [32]. They can also affect neuronal circuitry via interacting with astrocytes through the TNF-mediated
pathway, which releases glutamate and ATP from astrocytes.

3. Microglia and Ageing

Ageing is inevitable, and several structural and functional changes occur in the brain
with advanced ageing. For instance, the brain loses a total mass of about 2 to 3% per
decade after the age of 50. This loss of mass with age specifically affects the volume of
grey and white matter in the prefrontal, parietal and temporal areas [36–38]. Therefore,
an individual gradually loses complex learning abilities and declines in cognitive func-
tion [38,39]. Several cellular-level changes also occur in ageing brains, such as genomic
instability, shortening of telomeres and activation of tumour suppressor genes, protein
mutation and accumulation, oxidative stress, reduced autophagy and mild to chronic
inflammation. It is imperative to maintain the balance between pro- and anti-inflammatory
cytokines. However, a brain undergoing advanced ageing shows an imbalance between
these cytokine levels in response to chronic exposure to physical, chemical or biological
agents, such as ionic radiation, pollutants and pathogens [40,41]. Studies have shown that
chronic exposure to endogenous or exogenous pathogens decreases the anti-inflammatory
cytokine IL-10 [42]. In contrast, such exposure also increases inflammatory cytokines such
as TNF-α and IL-1β in the CNS [43] and IL-6 in plasma [44]. Additionally, increased
systemic inflammation causes neuronal cell death and an imbalance between clearance and
production of ROS, severely damaging synaptic plasticity as well (Figures 2 and 3). Many
of these alterations in ageing brains include impairment in basal autophagy that begins
with cellular stress. Ageing human brain analysis has shown a reduction in autophagy
genes, including Atg5, Atg7 and Becn1 [45], and similar downregulation in Atg-proteins
has been evident in ageing mouse brains. In contrast, ageing has been found to upregulate
mTORC1 [45,46] and accelerated mTOR reduces macroautophagy and promotes aggre-
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gated protein and metabolic disturbances during ageing. These data have been supported
by the rapid development of neurodegeneration in Atg5- [47] and Atg7- depleted [48]
mice. Microglia, as the first line of host defence, selectively activate autophagy to entrap
threatening molecules into autophagosomes and clear them via autophagic degradation.
For example, microglial TLR4-induced activation of nuclear factor κB (NF-κB) upregulates
p62/SQSTM1 signalling, which degrades misfolded α-syn proteins via autophagy and
protects against midbrain dopaminergic neuronal loss [49]. Furthermore, ageing-mediated
alteration in microglial functions disrupts microglial regulation of autophagy and promotes
neuronal loss.
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Figure 3. Effects of ageing on healthy to proinflammatory microglia. Healthy microglia regulate the release of cytokines,
proteases, ROS and RNS and phagocyte foreign bodies. In addition, they clear cell debris and proteins. With advanced
ageing, microglia eventually lose function or functions dysregulated by persistent exposure to foreign bodies or mutations.
Increasing microglial ROS production releases proteases and cytokines and slows the autophagic process, leading to aberrant
protein aggregation and inflammatory response, neuronal death and neurodegenerative disease.

Ageing has been recognised as a major risk factor for many neurodegenerative dis-
orders. Advanced ageing includes several hallmarks indicating risks of developing neu-
rodegenerative diseases such as Alzheimer’s (AD), Parkinson’s (PD), Huntington (HD)
and frontotemporal lobar (FTD) disease. Furthermore, microglial cells change with ageing,
which is one of the major risk factors for age-related development of neurodegeneration.
Although neurodegenerative diseases are multifactorial conditions, and their complexity is
not yet well understood, there has been scientific agreement on the degenerative diseases
and age-related changes they can cause in the neural microenvironment.

Ageing produces the common feature of high heterogeneity in microglia, which is also
a common phenotype of different neurodegenerative diseases [39]. Moreover, the pattern
of microglial gene expression changes with ageing and neurodegenerative conditions [50].
The major phenotypic changes in ageing microglia are increased soma volume, a retrac-
tion in processes and a loss in uniform tissue distribution [51]. Furthermore, microglial
activation slows with age, reducing sensing activity and impairing synaptic contact [6].
This process of ageing microglial activation is distinct from classical activation and is
referred to as microglial dystrophy; the anomalous activation is more likely to be senes-
cent rather than a classical phenotype [52,53]. Moreover, a new phenotype of microglia
has been defined—dark microglia—characterised by condensed electron-dense cytoplasm
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and nucleoplasm, nuclear chromatin remodelling and high levels of synaptic stripping
activity and oxidative stress [54,55]. Interestingly, these phenomena have not only been
observed in microglial populations associated with chronic stress or diseases such as AD
but also in the microglia in normally ageing brains [54]. Although knowledge of these
molecular structural changes is still in its infancy, it has already been established that
ageing microglia are highly granular and present an uncharacteristic dark appearance
in immunohistological preparations. Another phenotypic change in aged microglia is
defective lysosomal digestion. This defect largely privileges accumulation of indigestible
material composed of lipofuscin and other autofluorescent pigments [56,57]. Therefore,
the use of immunofluorescence or flow cytometry has become familiar among researchers
to distinguish between normal and aged microglia. Accumulation of such autofluorescent
pigments and lipofuscin is believed to be a by-product of impaired disposal mechanisms
and purported to have a direct relation to several neurodegenerative diseases, including
AD [58,59].

Microglial changes with age do not follow one specific process but, rather, change
throughout one’s life; after reaching a certain age, threshold impacts will appear. A tran-
scriptome analysis of the frontal cortex region of post-mortem healthy brains across a
wide age range (from young teenagers to people over 80 years old) showed that microglial
gene markers assemble into a transcriptional module in a gene co-expression network [60],
and this expression pattern negatively correlates with age. Another study revealed that
genes that encode microglia surface receptors for neuronal and/or microglial crosstalk are
particularly affected. Several brain-expressed transcription factors, including RUNX1, IRF8,
PU.1 and TAL1, are the master regulators of age-dependent microglial modulation [39].
This raises the question of how important it is to identify age-dependent genetic modula-
tion in adulthood to understand neurodegenerative disease pathology. Identification at the
beginning of genetic changes in middle or late-middle age might correlate several chronic
neurodegeneration initiations, and thus may help stall disease progression.

4. Microglia and Neurodegenerative Diseases: Functional Relation
4.1. Alzheimer’s Disease

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder, which has
a characteristic feature of forming Aβ-containing plaques and neurofibrillary tangles (NFTs)
containing intracellular hyperphosphorylated tau proteins and leading to neuronal loss [61]
(Figures 1 and 3). Microglia play a critical role in the progression and exaggeration of
AD, that is, the accumulation of Aβ triggers microglia to promote tau hyperphosphoryla-
tion that eventually forms NFTs, leading to cognitive impairment. Microglia accumulate
around senile plaques in AD brain parenchyma two-to-five times more than in normally
functioning brains [62].

Microglia have both direct and indirect relations with AD. Evidence from genome-
wide association studies (GAWS) has shown variant of Trem2 mutations increase in risk by
3–4.5 times for developing late-onset AD [63], which is as high as the association found with
ApoE-ε4 in the AD [64]. Mutations in other microglial genes, such as CR1, HLA-DRB1, CD33,
MS4A6A and BIN1, also have a moderate role in AD progression [64]. Although not all AD
patients have similar mutant microglial gene(s), because these are core regulator genes of
microglial functions, studying their roles in AD pathogenesis will affect all AD patients.

A key factor of AD pathogenesis is Aβ deposition, which is an equilibrium between
Aβ production and clearance. Small changes in this production—clearance ratio result in
abnormal accumulation of Aβ peptide. Therefore, microglial scavenger receptors (SRs)
have an active role in Aβ clearance [65] by phagocytosis and endocytosis [66,67]. Microglia
can also degrade extracellular Aβ using Aβ-degrading enzymes [34,65]. In addition,
microglia from the Aβ-deposited mouse model showed reduced expression of both Aβ-
phagocytic receptors and Aβ-degrading enzymes [34]. This suggests an active role of
microglia in AD pathogenesis and late-onset Aβ accumulation.
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However, microglia–Aβ interactions may lead to a loss of synapses [68], increased
production of neurotoxic reactive oxygen and nitrogen species (ROS and RNS), activated
NLRP3 inflammasomes and increased release of proinflammatory cytokines including
TNF [33,69,70]. In this way, Aβ interacts with microglial pattern recognition receptors
(PRRs), including Toll-like receptors (TLRs), SRs and complement receptor 3 (CR3) [24,71].
Thus, the microglial role in AD is a double-edged sword. For example, microglia sense
Aβ peptides and remove these injurious agents before plaques form, whereas chronic
interaction of Aβ with microglia reduces this sensing ability, resulting in further amy-
loid deposition. This reduction of the microglial clearing ability is a part of Aβ-induced
proinflammatory cytokine production, which also activates NLRP3 and releases ASC,
which binds Aβ and promotes further Aβ aggregation and spreading of amyloid pathol-
ogy [70]. Therefore, while the microglia in early AD progression have a beneficial role,
their malfunction will be detrimental to cells as the disease spreads. Furthermore, one study
analysed the transcriptome of normal and Aβ-populated microglia and defined disease-
associated microglia (DAM) [30,72]. Although the difference between DAM and dark
microglia is not clear, both have a direct association with Aβ deposition and exhibit high
expressions of CD11b and Trem2 [54]. These findings indicated a direct relation between
microglial transition from homeostatic to DAM during AD.

4.2. Parkinson’s Disease

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease,
characterised by both motor and non-motor symptoms. Events of PD progression include
misfolding of the protein α-synuclein and assembly into Lewy bodies and Lewy neu-
rites, which leads to the loss of dopamine neurons in the substantia nigra region of the
PD brain [73]. It has become evident from PD patients’ substantia nigra that HLA-DR-
expressing reactive microglia are abundant [74]. In addition, the oligomeric α-synuclein
activates microglia through heterodimer TLR1/2 and increases proinflammatory cytokine
release [75]. However, the detrimental role of α-synuclein might be realised through the
phagocytic receptor Axl. To support this hypothesis, a α-synuclein mutant (SNCAA53T)
mice study was conducted, revealing a high level of Axl receptor expression in spinal cord
analysis [26], whereas the deletion of Axl delayed disease onset. Moreover, genetic investi-
gations of sporadic and familial PD have identified leucine-rich repeat kinase 2 (LRRK2) as
the most common mutated gene in PD [76]. Furthermore, LRRK2-deficient rats showed
no significant dopaminergic neuron loss and reduced myeloid cell activation in substantia
nigra; this was shown in rats injected with rAAV2 α-synuclein viral particles [77].

Although the exact mechanism that could relate microglia to PD pathogenesis is not
yet known, this participation is proposed to be similar to that in AD. As with Aβ clearance,
microglia internalise and degrade α-synuclein to clear it. Thus, any anomalies in this pro-
cess may result in an aggregation of extracellular α-synuclein [78]. These findings, although
still requiring validation in animal models of PD, suggest that both AD and PD share simi-
lar pathogenic pathways. This raises the possibility that targeting microglia may also result
in the double-edged sword metaphor from earlier, depending on disease progression.

4.3. Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that causes charac-
teristic features of progressive damage in motor neurons in the cerebral cortex, brainstem
and spinal cord, potentially leading to paralysis and death. Although most patients are
reported as having sporadic ALS, approximately 10% of ALS patients have mutations in
specific genes, including SOD1, C9orf72, TDP43 and FUS74 [8]. Positron emission tomog-
raphy (PET) scanning revealed increased cerebral microglia activation in ALS brains [79],
and ALS brain autopsies showed that microglia are associated with the expression of
proinflammatory cytokine release [80].

Furthermore, transgenic mice overexpressing G93A mutant SOD1 (mSOD1G93A) de-
veloped ALS-like symptoms of progressive motor neuron loss [81–83]. At the early onset
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of disease progression, microglia functions are not affected by mSOD1. Eventually, how-
ever, as the disease progresses, microglia aggravate neuronal injury by interacting with
motor neurons. In ALS, microglia activate mostly through misfolding and accumulation of
mSOD1. In addition, other stressors and ROS-releasing mechanisms also activate microglia
and promote microglia-induced proinflammatory cytokine release. In one study, restraining
microglial activation by inhibiting NF-κB signalling substantially reduced motor neuron
loss and extended the survival of mSOD1G93A animals [84].

Microglia change their phenotype with disease progression, accelerating disease on-
set [85] and exacerbating motor neuron death [86]. However, at early onset, microglia
showed neuroprotective tendencies in mSOD1 mice, which increased during the late
phase of disease [87]. Microglial activation and neurotoxicity in ALS are cell-autonomous
processes and not only include NF-κB-dependent signalling [84], but also partly involve
IL-1β [88]. Both intraneuronal and extracellular misfolded mSOD1 are sensed by microglia,
and eventually microglia promote superoxide production by deregulating NADPH oxi-
dase [89] and becoming proinflammatory [90]. Therefore, this points to the interrelation
of neurodegenerative pathways between ALS, AD and PD, because in all cases where
microglia sense exogenous stimuli, they respond to danger in the host and eventually
change their phenotype with disease progression [8].

The expansion of hexanucleotide repeating in noncoding regions of C9orf72 gene have
displayed pathologic features of ALS in mice but have not shown behavioural abnormalities
or neurodegeneration [91,92]. On the other hand, a lack of C9orf72 causes lysosomal
accumulation and increases the microglial immune response and proinflammatory activity
in the host [91]. Moreover, C9orf72 is required for maintenance of myeloid cells’ normal
functioning. Although these findings seem to contradict each other, the mystery of C9orf72
in normal microglial function has been uncovered, at least in part. Altering C9orf72
also changes microglia-mediated misfolded protein clearance by modulating phagosome-
to-lysosome maturation, suggesting that this subset may have a potential role in ALS.
Therefore, future functional studies with microglia from C9orf72 ALS patient may clarify
the complexity.

Mice expressing inducible human TDP-43 (hTDP-43) showed progressive motor
neuron loss, but suppressing hTDP-43 allowed microglia to clear existing hTDP-43 [93].
Interestingly, blocking microgliosis at the early recovery phase by using CSF1R and c-Kit
inhibitors diminished the mice’s ability to completely retain motor functions, suggest-
ing that microglia play a neuroprotective role [93]. In contrast, conditional deletion of
TDP-43 in microglia increased their phagocytic functions and enhanced synaptic loss [94].
Thus, future studies should further investigate the link between TDP-43, microglia and
ALS pathogenesis, which would help ALS patients with TDP-43 mutations by minimis-
ing dysregulation of microglial phagocytic function. This paper proposes that targeting
microglia for intervening ALS should target several mutations that are associated with
microglial host defence functions including mSOD1 (ROS production), C9orf72 (cytokines),
and C9orf72 and TDP43 (phagocytosis). Thus, targeting microglia randomly in ALS to
rejuvenate associated host defence functions may not be a useful therapeutic strategy but
tailoring to a specific pathway(s) could affect potentially.

4.4. Multiple Sclerosis

In young adults, multiple sclerosis (MS) is the most frequent neuroautoimmune
disorder and is associated with severe physical nontraumatic disability. Well-defined neu-
roinflammatory demyelinating lesions and neuronal loss are the characteristic hallmarks
of MS. Patients of this disorder begin by developing demyelinated plaques in both white
and grey matter, and ongoing disease progression leads to brain atrophy and neurodegen-
eration. Because neuroinflammation has been evident in all stages of MS, it is proposed
that the presence or absence of microglia play at least a part in inflammatory CNS of MS
patients [95,96]. However, the challenge is correct distinction of resident microglia and
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other CNS macrophages, along with infiltrating monocyte-derived macrophages during
progressive MS because all share the same surface markers and functions.

Microglia’s role in MS is unclear; they may be detrimental or beneficial. At the early
onset of this disease, microglia promote axonal regeneration, clear myelin debris and re-
lease neurotrophic factors, indicating their protective role in MS [97]. However, a study of
mice with experimental autoimmune encephalitis (EAE), an animal MS model, showed en-
hanced release of proteases, proinflammatory cytokines, ROS and RNS from microglia and
recruitment of reactive T lymphocytes. Thereafter, this leads to neurotoxicity, whereas dele-
tion of the transforming growth factor (TGF)-β-activated kinase 1 in the microglia of the
EAE mouse model displayed reduced CNS inflammation. At the same time, axonal and
myelin damage were reduced by the cell-autonomous inhibition of the NF-κB, JNK and
ERK1/2 pathways [21], indicating that microglia may aggravate tissue injury in EAE.
These results suggested that microglia actively participate at different stages of MS pro-
gression, and their role eventually changes with advancement of disease. Furthermore,
it is possible that microglial function alteration is associated with specific lesions in MS,
including changes in debris clearance and the neuroprotective response.

4.5. Huntington’s Disease

Huntington’s disease (HD) is an autosomal dominant disease, featuring progressive
atrophy of the striatum and cortex [98,99]. An immunohistochemical analysis of a human
HD brain showed reactive microglia present in the cortex, neostriatum and globus pal-
lidum [100,101]. Active microglia in the striatum and cortex were also found to be related
to the onset of neuronal loss [101]. In addition, a microscopic analysis of an HD model
showed intranuclear inclusions containing huntingtin (HTT) protein and neurodegenera-
tion of medium-size spiny, encephalin-containing inhibitory neurons [99]. In this condition,
mutation in the HTT (mHTT) protein stretches the trinucleotide CAG and translates into
polyglutamine in HTT protein sequencing, leading to HD [99].

However, microglia express HTT mRNA at a relatively high level [24], and the pres-
ence of proinflammatory microglia is correlated with a higher probability of developing HD
within five years [102]. Therefore, HD severity is dependent on proinflammatory microglial
onset in HD patients [101,103]. Furthermore, progressive HD changes microglia function
and the genomic profile. Increased mHTT expression has been found to be linked to in-
creases in proinflammatory genes in HD patients and in the mouse model [104], promoting
myeloid linage-determining factors PU.1 and CCAAT/enhancer-binding protein (C/EBP)-
α,β. This increase in transcriptional factors is correlated with the higher expression of
IL-6 and TNF, and this change solely occurs in microglia [104]. Because microglia have a
role as innate defensive units in their host, mHTT microglia increased several genes that
sense their milieu, including Tlr2, Cd14, Fcgr1, Clec4d, Adora3, Tlr9 and Tnfrsf1b [24,104],
suggesting increase in capacity to sense extracellular stimuli. In response, the system
upregulates IL-6 and TNF mRNA [104], suggesting that microglial responses have a host
defence function against mHTT invasion, thereby aggravating neurodegeneration.

4.6. Frontotemporal Dementia

Frontotemporal dementia (FTD) is a progressive neuronal atrophy characterised by
rapid neuronal loss in the frontal and temporal cortices [105]. Immunohistochemical
analysis of FTD patients has shown the presence of aggregated TDP-43 in the cytoplasmic
inclusions [94]. However, PET imaging of FTD patients has reported reactive microglia
correlated with increased expression of proinflammatory cytokines TNF and IL-1β in the
CSF [94]. Moreover, recent research documented that mutations in the Grn gene, encoded
for the glycoprotein progranulin, lead to FTD. In addition, progranulin is mainly expressed
by neurons and microglia in the CNS [106]. In pathological conditions, microglia upregulate
progranulin; however, it is assumed that progranulin deficiency might impair autophagy
and lead to FTD progression [106]. In support of this, progranulin deletion in mice showed
increased microgliosis [107]. Based on these results, this study proposed that microglia
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have a potential role in FTD, and, as in other neurodegenerative diseases, they should be
evaluated by genomic study in the future.

4.7. Prion Disease

Prion diseases include spongiform encephalopathies and are due to the gradual aggre-
gation of the prion protein PrPSc [7]. In this vein, PrPSc can transmit itself into new hosts as
an exogenous seed that can cause protein misfolding and aggregation, as well as aggravate
the disease in the absence of microbial agents, viruses or inflammation. This feature is
referred to as the prion paradigm and has been evident in cases of other neurodegenera-
tive diseases, including AD, PD, ALS and FTD [7,108]. Prion-related neurodegeneration
includes increased neuronal loss and proinflammatory microglia. Microglia and other CNS
macrophages phagocytose PrPSc approximately 60 days earlier after sensing infection [109],
but their depletion increases prion infection susceptibility [110], suggesting that microglia
play a major role in controlling prion disease. The double-edged sword metaphor ap-
plies here as well for microglia because they produce ROS in response to the PrP106-126
fragment and promote PrP-induced neurotoxicity. Suppressing the superoxide-producing
enzymes produced protective results from PrP-induced toxicity in mice, further suggesting
that microglia mediate prion neurodegeneration [111].

Although it is unclear whether or not microglial proinflammatory releases affect prion
disease progression, several proinflammatory cytokines—IL-1β, IL-6, inducible nitric oxide
synthase (iNOS), NF-κB, cyclophilin A, matrix metalloproteinases and NLRP3 inflamma-
some components—have been upregulated in prion disease microglia [112,113]. It has also
been shown that prion infection affects microglial sensing and housekeeping ability through
the disruption of the Cx3cr1–fractalkine pathway [114]. Prion protein PrPSc impairs mi-
croglial ability to phagocytose aberrant proteins, including PrPSc and apoptotic debris or
cells. In addition, this impairment promotes the microglial proinflammatory mediator’s
production, which dysregulates host defence [115]. Microglial function regarding PrPSc is
SR- and TLR-mediated in an Src-kinase-dependent manner [116,117], which suggests that
microglia might initially engage in PrPSc clearance, but their consistent malfunctions and
activation in another example impair the host-defensive response. Thus, normal microglial
functions result in neurotoxic action and subsequently aid in disease progression.

Thus far, two common themes for microglia involvement in different neurodegen-
erative diseases have emerged. First, microglia perform their regular sentinel function
after sensing the aberrant or misfolded proteins such as Aβ, aggregated α-synuclein,
oxidised or mutant SOD1, or PrPSc (Figure 1). Next, they attempt to clear those toxic
stimuli via SRs and/or other PRRs as their host-defence function. However, persistent
production of aberrant proteins reduces microglial host-defence regulatory functions and
dysregulates microglial immune checkpoints that keep microglia-induced inflammation in
control, such as the Cx3cr1 or progranulin pathways. Thus, normal microglia are led into
a proinflammatory state and a further response in the host defence through exaggerated
neuroinflammation and neurodegeneration. Second, some neurodegenerative diseases
cause self-autonomous actions; mutations in specific genes, such as Trem2, HTT and TDP43,
and dysregulate host abilities of sensing, housekeeping and defence. In this way, microglial
actions initiate or exaggerate neurotoxicity and neurodegeneration.

5. Microglia as a Therapeutic Possibility in Neurodegenerative Diseases

Microglia play vital roles at different brain development phases. With age or due to
aberrant endogenous or exogenous stimuli, they begin losing their normal physiological
functions. Thus, homeostasis in CNS microglia is necessary to disrupt neurodegenerative
disease pathology and progression. In addition, identification of critical microglial markers
is important to find new therapeutic strategies. Initial studies have suggested an M1 and
M2 activation paradigm, in which M1 activation promotes inflammatory cytokines, and M2
activation promotes neurotrophic factor release. However, advanced studies have found
that this paradigm does not fit during neurodegeneration. That is, M1/M2 activation does
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not always function as expected. For instance, in regular cases, M1 activation produces
neurotoxicity via proinflammatory release, whereas in some cases, this activation promotes
axonal regeneration [118]. An AD model study showed that M1 activation promotes Aβ

plaque clearance, and, in contrast, M2 activation may ease amyloid spread [119].
Microglia are emerging as a cell type used to understand neurodegenerative diseases,

but the major challenge is studying human microglia in vitro. For an in vitro neurological
disease model study, microglial cells could possibly be developed by differentiating iPSCs
or monocytes [120,121], which has recently been demonstrated. In addition, authors have
shown that human microglial-like cells (iMGLs) have phenotypic similarity to in vivo
microglia, such as through inflammatory cytokine release or CNS substrate phagocytosis.
On the other hand, human monocyte-derived, microglia-like (MDMi) cells have not only
presented with microglia phenotype and functions but have also presented with altered
expression of gene loci related to neurodegenerative diseases such as AD, PD and MS.
These two in vitro microglial cell models could beneficiate therapeutics screening in vitro
for neurodegenerative diseases. In addition, genetic defects in microglia could be edited
by replacing allogenic or autologous stem cells or monocytes through bone marrow trans-
plantation. Although the latter has not been successfully established for all neurological
diseases—though it has for X-linked adrenoleukodystrophy—a recent study showed that
brain-engrafted bone marrow derived microglia after a long time in AD mice [122,123].
It has been suggested that peripheral myeloid cells constitute a heterogeneous cell popula-
tion that is more effective at clearing Aβ plaque than CNS resident microglia. Extrapolating
this therapy with additional triggering could bring success or could be useful for studying
other neurological diseases.

Microglial phagocytosis could be another option, but therapeutic agents that target
microglial phagocytosis can have both beneficial and detrimental effects—another double-
edged sword in neurodegeneration. Microglial phagocytosis opsonises misfolded protein
plaques, including Aβ, via the Fc receptor to help antibodies that target misfolded pro-
teins [7,124,125]. In the same way, defective microglia activation in Trem2-deficient mice
showed a lack of effectiveness toward the anti-Aβ antibodies [126]. Several antibodies
currently used in autoimmune diseases may be beneficial in neurodegenerative diseases as
well because they target specific proinflammatory cytokines, such as IL-6 and IL-1, or their
receptors. Compounds targeting CSF1R can affect proinflammatory microglia activation in
AD [127,128] and reduce microglia-induced inflammation and/or neuronal death [129] in
neurodegenerative diseases. In the same vein, IL-34 and CSF1, ligands of CSF1R, may pro-
vide neuroprotection and promote neuronal cell survival shown in neurodegenerative
models by activating CSF1R in neuron populations but not in microglia [130].

In addition, bexarotene-induced Trem2 expression in microglia is, at least in part,
mediated by ApoE/Trem2 signalling activation [131]. Thus, developing anti-ApoE an-
tibodies in carriers of the ApoE4 allele may help to prevent amyloid deposition and
its consequences [132]. Moreover, neuronal autophagy has been shown to be useful in
neurodegenerative diseases for clearing misfolded proteins and reducing inflammatory
cytokines [133]. However, very little is known about the role of microglia in autophagy.
In one study, loss-of-function mutations of TBK1 affected autophagy in myeloid cells and
increased susceptibility to ALS [134]. Beyond this, microglial autophagy facilitates Aβ

clearance and reduces NLRP3 inflammasome activation [135]. Therefore, further study
of autophagy in microglia may enhance the understanding of whether drugs activating
autophagy have beneficial or detrimental impacts on neurodegenerative diseases.

6. Conclusions

Microglial biology has gained substantial attention in recent decades. Several ad-
vancements have been introduced, including microglial gene expression checks, longevity
analysis in a single cell in the neurodegenerative disease model, pathways that regulate
their responses to neuronal injury, pathways that check microglial inflammatory responses
and pathways that promote injurious stimuli clearance. In addition, advanced research
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has shown how peripheral influences from the gut microbiome can alter such injuries.
However, substantial knowledge gaps exist that slow the therapy-finding process through
the microglial regulated pathway. One major limitation in this process is a reliable disease
model. More reliable cellular in vitro disease models and the addition of new technologies
for in vivo modelling for better imaging and analysis could strengthen understanding of
microglial involvement in neurodegeneration. Furthermore, analysis of the transcriptomes
and epigenetic profiles in various diseases shows that it is essential to understand the rele-
vance of ageing and disease progression in relation to the alteration in these profiles at the
single-cell level and to thereafter correlate such changes with microglial behaviour. Finally,
these steps could bring about a crucial breakthrough in microglia-mediated therapeutic
intervention in neurodegenerative diseases.
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