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Abstract: The adoptive transfer of the chimeric antigen receptor (CAR) expressing T-cells has pro-
duced unprecedented successful results in the treatment of B-cell malignancies. However, the use of
this technology in other malignancies remains less effective. In the setting of solid neoplasms, CAR
T-cell metabolic fitness needs to be optimal to reach the tumor and execute their cytolytic function
in an environment often hostile. It is now well established that both tumor and T cell metabolisms
play critical roles in controlling the immune response by conditioning the tumor microenvironment
and the fate and activity of the T cells. In this review, after a brief description of the tumoral and T
cell metabolic reprogramming, we summarize the latest advances and new strategies that have been
developed to improve the metabolic fitness and efficacy of CAR T-cell products.

Keywords: cancer; metabolic reprogramming; combined therapy; Chimeric Antigen Receptor T
cells; immunotherapy

1. Introduction

Chimeric Antigen Receptor (CAR) T-cells are T lymphocytes that have been specifically
engineered to target malignant cells [1]. CARs are synthetic molecules designed to activate T
cells in response to a specific antigen, mimicking T cell activation through the T cell receptor
(TCR) and associated costimulatory molecules. CAR constructs have evolved from the first
generation, that included only the signaling endo-domain normally derived from the CD3ζ
domain of the TCR or from the γ chain of high-affinity IgE Fc receptor (FcεRI), to second
and third CAR generations by adding and combining different co-stimulatory domains
with the aim to increase the efficacy and persistence of the CAR T-cells [2]. The therapeutic
successes obtained with CAR T-cells, followed by the approval from the American and
European medicines regulatory agencies (Food and Drug Administration (FDA) and
European Medicines Agency (EMA), respectively) of two CAR T-cell products targeting
the CD19 antigen for the treatment of pediatric/young adult B-cell acute lymphoblastic
leukemia (Kymriah®) and adult large B-cell lymphoma (Yescarta®) [3,4], are the results of
many years of research mainly based on the understanding of T cell biology and of their
interaction with the surrounding environment [5,6].

Emerging evidence indicates that the metabolism is a key factor in driving the immune
response by regulating the activity and the fate of the T cells. From their naïve to highly
differentiated effector function, T cells undergo metabolic reprogramming [7]. This allows
the T cells to fulfill the increase in energy demand and to generate the intermediate
metabolites necessary for their clonal activation, proliferation and differentiation [8]. Cancer
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cells undergo also metabolic reprogramming in order to promote and sustain their high
proliferation rate and survival [9,10]. Moreover, the metabolic reprogramming of cancer
cells contributes to the recruitment of cells with immunosuppressive activity and depletes
the microenvironment of metabolites and nutriments, creating conditions particularly
hostile for T cells to perform proper effector functions [11,12].

CAR T-cells are specifically designed to target an antigen on the surface of cells and
they need to be metabolically fit to reach the tumor, survive in an immunosuppressive
microenvironment and display their cytolytic function [13]. Because CAR T-cells are easily
“manipulable”, either by genetic modifications or by combination with different therapeutic
agents, many efforts are being made to identify and develop new strategies to improve
their activity against tumors.

In this review, after a brief description of metabolic reprogramming of the tumors and
T cells, we summarize the latest advances and new strategies that are proposed to improve
the metabolic fitness and the anti-tumor activity of CAR T-cells.

2. Metabolism: The Energy Engine

In normal conditions, cells primarily utilize glucose as source of energy to produce
adenosine triphosphate (ATP) and sustain their metabolic needs [14]. Through glycolysis,
cells metabolize the glucose into pyruvate. Two molecules of pyruvate are reduced into
two molecules of Acetyl-CoA, which, together with other Acetyl-CoA molecules deriving
from the fatty acid cycle (fatty acid oxidation, FAO) enter the tricarboxylic acid cycle (TCA)
for ATP production by the mitochondria [14]. On one hand, these pathways provide the
majority of reduced co-enzymes that are subsequently oxidized by the electron carbon
chain to produce ATP and, on the other hand, generates intermediate metabolites for
the different biosynthetic processes, including gluconeogenesis, lipolysis and amino acid
synthesis. Coenzymes such as nicotinamide adenosine dinucleotide (NAD+) and Flavin
adenine dinucleotide (FAD) are reduced in the TCA cycle and transfer electrons through the
electron transport chain to the final acceptor molecule, oxygen (oxidative phosphorylation,
OXPHOS). Three NADH+ and one FADH2 are produced by each TCA cycle and yield
through the electron transport chain 10 ATP molecules. This mitochondrial oxidative
pathway is referred to as aerobic oxidative metabolism which occurs in the presence of
optimal oxygen levels. When the mitochondria are damaged or the oxygen concentration is
insufficient, cells convert pyruvate to lactate as a strategy to overcome the adverse condition.
Interestingly, both cancer cells and activated lymphocytes share a metabolic strategy
dictated by a common metabolic demand, the need to prioritize rapid biosynthesis [15].
For this purpose, the cells choose to shift to the “aerobic glycolysis”, also known as
Warburg effect [16], in order to generate readily available intermediates for biosynthesis.
Moreover, these cells increase glutamine oxidation to provide a-ketoglutarate to keep the
TCA cycle going and produce metabolic intermediates for the biosynthesis of diverse
macromolecules [17].

3. Effector T Cells and Metabolic Reprogramming

When naïve or quiescent T cells meet the antigen, they become activated, proliferate
and, depending on the nature of the antigen stimulation and the microenvironment, differ-
entiate in various T cell subsets with highly specialized defense or regulatory functions [17].
After antigen clearance, most of the effector T cells will disappear by apoptosis while some
will remain to constitute a subpopulation of memory T cells [18]. During these different
stages and depending on effector or regulatory functions, T cells will adapt their metabolic
program according to their needs [19]. Naïve and resting T cells rely mainly on the oxida-
tive phosphorylation and fatty acid metabolism to fulfill their basic demand in energy [20].
Antigen-activated T cells switch rapidly to aerobic glycolysis and glutaminolysis metabolic
programs to fuel the high energetic and biosynthetic requirements in amino acids, lipids
and nucleotides, necessary to promote and sustain cell proliferation/expansion and sur-
vival. Effector T cells use the glycolytic and the FAO pathway, while regulatory T cells
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(Treg) rely more on the FAO and OXPHOS to maintain their specific functions. However,
these metabolic shifts observed in optimal in vitro culture condition appear to be slightly
different in vivo. Recent findings indicate that CD8+ effector T cells in particular, had
a less pronounced shift to glycolysis and a greater rate of oxidative metabolism in vivo
compared to what was previously observed in the in vitro studies [21]. When the antigen
load decreases, memory T cells switch back to oxidative and fatty acid metabolism resem-
bling the naïve and quiescent T cell metabolic phenotype [22]. Under circumstances of
chronic immune activation or continuous antigen stimulation, as observed for chronic viral
infection and cancer, the activity of effector T cells decreases over time and they eventually
undergo apoptosis, impairing formation of memory T cell sub-population. This process,
known as exhaustion, is characterized by a metabolic dysfunction associated to a reduction
in mitochondrial mass and ATP production [23,24]. Consequently, a decrease in cytokine
production, such as interleukin-2 (IL-2), essential for T cell proliferation and function, and
an increase in the expression of immune checkpoint inhibitors including programmed cell
death protein 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and T cell
immunoglobulin and mucin domain-containing protein 3 (TIM-3), leading to a shutdown
of the immune response [25,26].

4. Tumor Metabolism and Microenvironment

Tumors are a heterogeneous group of diseases involving abnormal cell growth with
the potential to invade and spread throughout the body. This abnormal replication rate
requires a continuous source of energy and a modification of the normal metabolism, which
induces important modifications of the microenvironment capable of limiting the survival
of elements of the immune system. Tumor cells can organize and generate masses which
may have different characteristics based on their localization. For example, in the inner
part of the tumor mass, the poor vascularization strongly reduces the oxygen levels and,
thus, cells cannot rely on normal oxidative metabolism to survive and proliferate [27]. In
this hypoxic condition, a decrease in ATP production is observed leading to an increase in
glucose and glutamine uptake, which, once converted into pyruvate, is not metabolized
into Acetyl-CoA to fuel the oxidative path normally required for maximum ATP production.
On the contrary, pyruvate is directed toward the production of lactic acid. This switch in
metabolic program from the oxidative to the lactic acid fermentation leads to an increase in
production and release of lactic acid by the tumor cells, contributing to the acidification of
the tumor microenvironment (TME) [28].

Both these phenomena, the acidification and the hypoxia, are interconnected with
each other and promote important molecular changes capable to increase the tolerance to
the acidosis, facilitating tumor evolution, growth and metastasis but also to increase the
resistance to pharmacological intervention [29,30]. In particular, under hypoxic conditions,
tumor cells respond with a rapid induction of the transcription factors hypoxia-inducible
factor 1 alpha (HIF1α) and Nuclear Factor kappa-light-chain-enhancer of activated B cells
(NFKB), both involved in the regulation of genes implicated in inflammation and adaptation
to hypoxia [31]. They control the mitochondrial dynamic and mitophagy, promoting the
acidification of the microenvironment [32–34]. Furthermore, these transcription factors
regulate the expression of a plethora of interleukins/cytokines and angiogenic factors [IL-6,
IL-10, IL-1β, chemokine (C-X-C motif) ligand 8 (CXCL8), vascular endothelial growth
factor (VEGF)] [35–38]. These molecules help recruitment of cells with immunosuppressive
functions, including myeloid-derived suppressor cells (MDSCs), Treg, Innate Lymphoid
Cells (predominantly 2 and 3), Tumor-Associated Macrophages and Cancer-Associated
Fibroblasts to establish an immunosuppressive/tolerogenic environment [39] and, suppress
antigen processing and presentation favoring immune evasion [40,41].

HIFα and NFKB control also the expression of the checkpoint molecule programmed
death-ligand 1 (PD-L1), which binds to the checkpoint inhibitor PD1 receptor present at
the surface of antigen-activated T cells, inhibiting their cytolytic activities [42–44]. The PD-
L1/PD1 axis is critical in the regulation of T cell metabolism. PD1 blocks glycolysis, through
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the inhibition of the phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB)/mammalian
target of rapamycin (mTOR) pathway and the down-regulation of glucose transporter
1 (GLUT1) expression, both essential for T cell activation [45]. Moreover, PD1 activates
5′-prime-AMP-activated protein kinase (AMPK), a kinase involved in the regulation of
the FAO, and induces autophagy through activation of the Unc-51 like autophagy acti-
vating kinase (ULK1) [46]. On the other side, PD-L1 drives glycolysis in tumor cells and
contributes to the depletion of the glucose from the TME [47], an essential element for CAR
T-cell activity. In addition to the PD-L1/PD-1 axis, other immune checkpoint molecules,
including CTLA-4, lymphocyte activation gene 3 (LAG-3), TIM-3, B and T lymphocyte
attenuator (BTLA), T cell immunoreceptor with Ig and ITIM domains (TIGIT) or V-domain
Ig suppressor of T cell activation (VISTA), engage with specific molecules expressed at
the surface of the tumor cells and inhibit T cell proliferation, cytokine production and
cytolytic function [48]. However, their function and mechanism of actions in the regulation
of T cell metabolism are not completely understood. TIM-3 has recently been linked to
the regulation of T cell glucose metabolism [49] by down-regulating glucose uptake and
consumption, as well as by increasing the release of lactate. LAG-3 maintains mitochondrial
and metabolic quiescence in naïve CD4+ T cells potentially through the regulation of the
signal transducer and activator of transcription 5 (STAT5) pathway [50]. CTLA-4 may have
a role in the catabolism of tryptophan in immunosuppressive metabolite [51], while TIGIT
regulates glucose uptake and impair T cell effector function [52].

The activation of HIF1α leads also to the up-regulation of the expression of CD39
and CD73, enzymes involved in the conversion of the extracellular ATP in adenosine [53]
which affects the function and activity of several cell types of the immune system through
its binding to the G-coupled receptor adenosine 2A receptor (A2AR). Adenosine increases
the activity of the immunosuppressive cells, such as Tregs, while inhibits the recruitment,
infiltration and the activation of effector T cells and natural killer (NK) cells [54].

Depletion of the tryptophan from the TME and its conversion by malignant cells in
kynurenines (quinolinic and 3-hydroxyanthranilic acids), by the indoleamine 2,3-dioxygenase
enzyme, is another important element involved in the regulation of the tumor immu-
nity [55–57]. Once released in the TME, kynurenines facilitate tumor progression and
metastasis, induce T cell differentiation into regulatory T cells and suppress helper and
effector response by inducing apoptosis [58,59] (Figure 1).

Figure 1. Tumor cell metabolism and immunosuppression. The figure shows the different ways by which the tumor cell
metabolic reprogramming conditions the tumor microenvironment and affects the immune response. Treg, regulatory
T cells; OXPHOS, oxidative phosphorylation; FAO, fatty acid oxidation; VEGF, vascular endothelial growth factor; ROS,
reactive oxygen species, Th1, helper T cells. Created with Biorender.
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5. Armoring CAR T-cells: Improving the Intrinsic Anti-Tumor Activity through
Improved Metabolic Fitness

CAR T-cells, like other effector T cells, require specific metabolic support for optimal
performance in terms of proliferation and maintenance of their specific effector and memory
functions. Since the therapeutic response of CAR T-cell treatment in patients is strictly
linked to their activities and persistence, many efforts have been committed to maximize
CAR T-cell efficacy and rendering cells metabolically fit to deal with the tumor.

5.1. Engineering of the CAR Module: Costimulation as Metabolic Support for T Cells

Second and third generation of CARs are composed of a combination of costimulatory
domains such as immunoglobulin (Ig) superfamily members, CD28 or inducible T cell
costimulatory (ICOS), and the tumor necrosis factor receptor (TNFR) superfamily members
4-1BB, OX40 and CD27. Depending on the costimulatory domains incorporated into the
synthetic CAR construct, different signaling pathways are triggered upon antigen activa-
tion [1,60,61]. These co-stimulatory domains are particularly implicated in the regulation
of T cell metabolic reprogramming, mimicking a physiologic response and improving their
persistence, memory and anti-tumor potency.

Antigen activation of second-generation CAR integrating a CD28 cytoplasmic domain
(CD28.CD3ζ) enhances the glucose uptake and the aerobic glycolysis, which correlates with
an increase in the effector T cell memory population [62]. Glycolysis induction observed
after CD28 stimulation appears to be promoted through the activation of PKB/mTOR
signaling pathway and activation of HIF1α, the latter being directly involved in the up-
regulation of glucose uptake and the expression of glycolytic enzymes [63]. However,
other evidence demonstrates that the tonic activation of CAR T-cells with the CD28 endo-
domains is responsible for the suboptimal anti-tumor activity observed in vivo as the T cells
exhaust rapidly, resulting into a decrease in cell proliferation and cytokine production [63].

In comparison, T cells transduced with second-generation CAR constructs comprising
the 4-1BB domain (4-1BB.CD3ζ) have an enhanced mitochondrial biogenesis and oxidative
metabolism, which is associated with an increase in cell survival and central memory T cell
population. Activation of a 4-1BB.CD3ζ CAR construct targeting CD19 was also reported
to counteract the effect of chronic CAR signaling stimulation by decreasing exhaustion
and increasing central memory-related markers as well as by inducing a gene expression
signature related to hypoxia, metabolism and apoptosis [64]. Activation of 4-1BB increases
the metabolic capacity of the T cells through a peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC1α)-dependent mitochondrial fusion and biogenesis
mechanisms, via the activation of the p38-microtubule associated protein kinase (MAPK)
pathway [63,65].

Therefore, 4-1BB induces a higher mitochondrial oxidative phosphorylation upon
activation allowing the generation of memory T cells with a better in vivo persistence
phenotype, while CD28 activation increases the aerobic glycolysis path leading to an early
dominance of the effector T cells. These differences in T cell phenotypes associated with
their metabolic programs are in agreement with clinical observations showing that, T
cells transduced with CD19.CAR-4-1BB.CD3ζ construct demonstrate superior efficacy in
acute lymphoblastic leukemia than those transduced with the CD19.CAR-CD28.CD3ζ con-
struct [66]. CD28 and 4-1BB endo-domains regulating the effector and the memory T cell
phenotypes, respectively, appear both critical for CAR T-cell activity and third-generation
CAR built with a combination of these two co-stimulatory domains (CD28.4-1BB.CD3ζ)
demonstrated superior anti-tumor efficacy in vitro and in vivo preclinical models com-
pared to their respective second generation CARs (CD28, OX40, 4-1BB) and a third genera-
tion CAR encoding for CD28.OX40 costimulatory domains [67]. While CD28 and 4-1BB
cytoplasmic domains appear both critical for CAR T-cell activity, other co-stimulatory
domains are reported to regulate the metabolism and to potentiate the anti-tumor activity
of the CAR T-cells. For instance, dual costimulation of 4-1BB and OX40 in melanoma
enhanced glucose uptake, glycolysis, and OXPHOS [68]. OX40, normally induced after
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T cell activation, regulates Tregs glycolysis and lipid metabolism and promotes T cell
expansion and generation of memory cells through a TNF receptor-associated factor 2
(TRAF2)-dependent mechanism [69]. However, Quintarelli et al. demonstrated that OX40
incorporated into third-generation CARs, CD28.OX40.CD3ζ or 4-1BB.OX40.CD3ζ decreases
INFγ and IL2 production and the anti-tumor activity when compared to a CAR construct
including the combination of CD28.4-1BB.CD3ζ [67].

Another member of the TNFR superfamily costimulatory proteins is CD27, which is
normally expressed in resting T cells [70]. Integration of the CD27 cytoplasmic domain
into a CAR construct enhances T cell expansion, effector functions as well as survival and
augments T cell persistence and anti-tumor activity in vivo. These effects are potentially
mediated through the induction of anti-apoptotic proteins of the B-cell lymphoma 2 (Bcl-2)
family and the up-regulation of the proto-oncogene serine/threonine-protein kinase Pim-1,
particularly involved in the regulation of the oxidative stress and aerobic glycolysis [71,72].

Stimulation of ICOS, a member of the immunoglobulin superfamily costimulatory
molecules, switch on the glycolysis and lipogenesis pathways through activation of
mTORC1 and mTORC2, as well as the induction of Glut-1 and is a key player for the
differentiation and expansion of helper T cells (Th17) [73]. CARs with ICOS cytoplasmic
domain are linked to immunotherapies that require Th17 cell function and prevalence [74].
However, second-generation ICOS-based CAR showed to increase the anti-tumor activity
and persistence of the transduced T cells when compared to CARs with CD28 and 4-1BB
intracellular-domains [75]. Moreover, CAR T-cell persistence and anti-tumor activity were
further enhanced when ICOS was combined with the 4-1BB in a third-generation CAR.

All these observations indicate clearly that depending on the co-stimulatory domains
integrated in the CAR construct, T cells will activate different metabolic pathways with a
particular impact on their functions, fitness and behavior inside the TME.

5.2. Exploiting Transcription Factors and Specific Genes Pathways to Promote Potent Antitumor
Activity of CAR T-Cells

Transcription factors regulate the expression of a specific set of genes, some of which
are particularly involved in modifying the metabolic states of the T cells. Therefore,
different strategies to modulate their activity and modify CAR T-cells transcriptional
programs have been used to increase the metabolic fitness and intrinsic anti-tumor activity
of engineered T cells.

Kagoya et al. have modified a CAR construct to activate specifically STAT3 [76], a
transcription factor involved in the rapid innate immune mitochondria reprogramming
and inflammatory response upon antigen stimulation [77]. The modified CAR construct
contained a truncated domain of the Il2 receptor and a STAT3 binding tyrosine motif
(YXXQ), as well as the co-stimulatory domain CD28. Upon stimulation, STAT3 pathway is
activated and the CAR T-cells show potent cytotoxic activity even after repetitive antigen
stimulation in vitro resulting in a superior anti-tumor effect in vivo when compared to T
cells transduced with a CD28 or 4-1BB second-generation CAR. Over-expression of IL23
is another way to induce STAT3 activation in CAR T-cells. IL23 is constituted by two
sub-units, IL23aP19 and IL12bp40, which only assemble upon T cell activation. Xingcong
Ma et al. have co-expressed the CAR construct with the P40 subunit, which binds the P19
sub-unit to form IL23 only upon antigen activation [78]. As a result, these IL23-engineered
CAR T-cells increase their proliferation rate and lytic activity, as well as decrease the
expression of exhaustion markers in vitro. In vivo, the CAR T-cells demonstrate a better
tumor control and improve survival. Another approach used to activate the STAT pathway
in CAR T cells was to co-expressed together with the CAR a membrane-bound chimeric
IL15. The engineered T cells signal through the STAT5 pathway, maintaining a memory-like
transcriptional profile and developing a long-term persistence phenotype in vivo [79].

More recently, Kondo et al. have shown that the activation of the Notch homolog
1 facilitates mitochondrial biogenesis, fatty acid synthesis and OXPHOS in CAR T-cells
targeting CD19 and leads to the maintenance of a stem cell-memory T cell phenotype [80].
They further demonstrated that the NOTCH effect is mediated through the induction of
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the transcription factor forkhead box M1 (FOXM1) and the metabolic reprogramming of
the T cells. Moreover, overexpression of FOXM1 in CAR T-cells enhances their anti-tumor
activity and their stem cell-memory phenotype in an in vivo model of leukemia.

The CAR T-cell metabolic program can also be improved using modified transcription
factors as exemplified with the T-box transcription factor TBX21 (T-Bet). T-Bet is normally
highly expressed in T cells and is required for the regulation of genes involved in the
proinflammatory pathway and the development of T helper (Th) CD4+ cells into a Th1
phenotype [81]. The co-expression of T-bet with a second-generation CAR (CD28.CD3ζ) tar-
geting the B7-H3 antigen has been shown to potentiate CAR T-cell anti-tumor activity. This
effect was observed with a T-bet construct deleted in its DNA binding domain (∆TBOX),
indicating that it is unlikely mediated through its direct transcriptional activity. The use of
the ∆TBOX construct is known to upregulate the expression of glycolytic pathway genes
through the binding of its transactivation domain with other transcription factors, such as
BCL6 or NFKB [82,83].

Modifications of the transcription factor activities have been also performed using
specific small molecules. The down-regulation of the basic leucine zipper ATF-like tran-
scription factor (BTAF) expression, which cooperates with interferon regulatory factor 4
(IRF4) and nuclear factor of activated T cells (NFAT) to impair CD8+ T cell metabolism
and promote exhaustion, has been achieved using JQ1, an inhibitor of the bromodomain
containing protein 4 (BRD4) epigenetic regulator [84]. The decrease in BTAF expression fol-
lowing JQ1 treatment led to an increase in glycolysis and OXPHOS, which maintain CD8+ T
cells with features of stem cell-like and central memory phenotypes, and co-administration
of JQ1 with CAR T-cells enhanced their anti-tumor activity and persistence in vivo. C-Jun
over-expression in CAR T-cells has been proposed to be another strategy to negatively reg-
ulate the BTAF involvement in T cell exhaustion. C-jun appears to compete with BTAF/IRF
at the promoter of the genes switching off BTAF transcriptional activities. Over-expression
of C-jun protects CAR T-cells from exhaustion by enhancing IL2 expression and inhibiting
the transcription activity of the BTAF/IRF [85].

While the different strategies to manipulate the activity of specific transcription factors
have been shown to potentiate CAR T-cells by modifying their metabolism, the efficacy
and the safety of these engineered T cells remains to be demonstrated in the clinical arena.

6. Pre-Conditioning CAR T-Cells to Increase Their Metabolic Fitness

The improvement of the quality and fitness of the CAR T-cells before their adoptive
transfer is an important step. The composition of the culture medium and the protocol for
the expansion of CAR T-cells are crucial to tune specific metabolic programs and enhance
CAR T-cell persistence and/or cytotoxic activity and therefore their anti-tumor activity.

The addition of specific cytokines in the culture medium, such as IL7 and IL15, have
been carefully chosen to enhance the fitness of the CAR T-cells [86]. IL7 enhances glucose
uptake through the STAT5 activation pathway, increasing the survival of the CAR T-
cells [87]. On the other hand, IL15 reduces mTOR activity and the expression of glycolytic
enzymes, but improves mitochondrial fitness, favoring the stem cell-like properties of CAR
T-cells [88]. The inhibition of mTOR activity in IL2 stimulated CAR T-cells with rapamycin
or with dichloroacetic acid, both known to block aerobic glycolysis, has shown similar
results to IL15 treatment on the CAR T-cell differentiation but impairs their expansion
ex-vivo. However, incubation of CAR T-cells with inhibitors of PI3K, upstream regulator
of mTOR, increase the naïve and central memory T cell sub-population without affecting
ex-vivo expansion. Moreover, PI3K and PKB inhibitors enhance CAR T-cells in vivo
persistence and anti-tumor activity [89,90].

The nutritional component of the culture medium also needs to be optimized in order
to improve adoptive transfer of T cell therapy. For example, Geiger et al. observed that
increasing L-arginine levels lead to phenotypic changes in TCR transgenic CD8+ OT-I T
cells [91]. L-arginine enhances T cell metabolic fitness by increasing OXPHOS and decreas-
ing glycolysis and, therefore, induces a central memory-like phenotype that improved



Cells 2021, 10, 14 8 of 16

persistence and anti-tumor activity in vivo. Thus, CAR T-cells could be pre-incubated with
specific metabolites such as L-arginine before their adoptive transfer to the patient. Another
strategy, recently highlighted by the work of Fulthan et al. [92], demonstrates that CAR
T-cells are susceptible to low arginine level because of the low expression of the resynthesis
enzymes, ornithine transcarbamylase and argininosuccinate synthase. Co-expressing these
enzymes in a 4-1BB second-generation CAR showed a metabolic rewiring toward arginine
and proline, as well as pyrimidine and purine metabolisms. As a result, the proliferation of
the modified CAR T-cells is enhanced in vitro and the antitumor efficacy is significantly
improved for different in vivo pre-clinical tumor models [92].

Inhibition of the lymphocyte cell-specific protein-tyrosine kinase (LCK) with dasatinib
is another way to condition CAR T-cell activity. Dasatinib inhibits LCK-induced CD3ζ
phosphorylation of the CAR construct and, thus, blocks CAR T-cell activation, proliferation,
cytokine production and anti-tumor activity in vivo without affecting their viability. This
blockade is rapidly and completely reversible following removal of dasatinib. Therefore,
dasatinib can be used as a pharmacologic on/off switch to control CAR T-cell activity and
associated toxicity, such as cytokine release syndrome [93].

7. Molding the Tumor Microenvironment: Improving Extrinsic Factors to Contrast
Adverse TME
7.1. Adapting the Strategy to the Specific Situation

To cope with hypoxia, where the expansion, differentiation and cytokine production
of CAR T-cells is impaired [94], Jiullerat et al. [95] have proposed a strategy where the
expression of the CAR is stabilized and therefore functional only in hypoxic condition.
This was performed by adding a particular subdomain of the transcription factor HIF1α to
the CAR module, which normally regulates the degradation or the stabilization of HIF1α
protein depending on the level of oxygen [95]. While these engineered CAR T-cells did
not significantly improve their cytotoxic activity in vitro, the author proposes that the
integration of the tumor microenvironment sensor may minimize the on-target/off-tumor
effect and expand the number of antigens surface for therapeutical purpose.

In addition to the acidification of the TME, hypoxia increases the production of H2O2
creating oxidative stress and generating reactive oxygen species (ROS) that help tumor cell
growth. In addition, the mitochondrial ROS production is increased in antigen-activated
CAR T-cells and appears to play a crucial role in activation, differentiation and metabolic
reprogramming of the cells [96]. However, uncontrolled ROS production provokes systemic
T cell dysfunction and abrogation of cytokines production [97]. To counteract the high level
of ROS, Ligtenberg et al. have over-expressed catalase in CAR T-cells, this enzyme being
capable of metabolizing H2O2 [98]. The CAR T-cells over-expressing catalase demonstrate
less oxidative stress upon activation and a superior ability to explicit their cytotoxic function
under high concentration of hydrogen peroxide in vitro. Moreover, they were also able to
protect bystander T and NK cells from oxidative stress-dependent inhibition. Although
this approach may present several advantages in vitro, its relevance for anti-tumor therapy
remains to be demonstrated in vivo.

The tumor growth factor beta (TGFβ) is a cytokine that can be secreted by tumor cells
and is particularly abundant in the TME [99]. In addition to promoting tumor growth
and contributing to lactate production [100,101], TGFβ has a clear function in immuno-
suppression and tumor cell evasion by modifying the fate of T cells. TGFβ induces the
differentiation of CD4+ T cells into immunosuppressive Treg cells by inhibiting glycol-
ysis and maintaining the expression of forkhead box P3 (FOXP3) [102]. Moreover, it
suppresses the cytotoxic activity of CD8+ T cells [103]. In CAR T-cells, TGFβ induces
also a Treg-like phenotype and accelerates their exhaustion through the activation of the
transforming growth factor beta receptor II (TGFBR2). Knockdown, using CRISP/Cas9
technology, or over-expression of a dominant-negative TGFB2R, render the CAR-T cells
resistant to exhaustion and considerably improve their anti-tumor activity and persistence.
TGFβ-resistant CAR T-cells are now being tested in ongoing clinical trials (NCT03089203,
NCT00889954, NCT02065362) [104,105].
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Recently, several studies highlighted the role of mitochondria in regulating key pro-
cesses in T lymphocytes. It has long been recognized that memory T cells mainly rely
on mitochondria-based oxidative metabolism [106,107]. Interestingly, the morphology
of the mitochondrial network is tightly linked to the cell metabolic status and it can be
actively controlled. As demonstrated by Buck et al. [108], pharmacological manipula-
tion using a mitochondrial “fusion promoter” compound was able to favor mitochondria
elongation and OXPHOS activity and to reprogram T cells towards a memory phenotype
favoring their long-term survival and increasing their anti-tumor function. As it is well
known that mitochondria also regulate T cell migration, proliferation and apoptosis, all
key aspects necessary to an optimal anti-tumor response, modulation of their dynamics
may, therefore, represent an important strategy to increase T cell fitness, invasiveness and
expansion [109,110].

7.2. Checkpoint Blockade and CAR T-Cell Therapy

As for T cells, CAR T-cells, after their activation, have been found to express on
their cell surface inhibitory molecules, including PD1, CTLA4, LAG-3, TIM3 and A2AR.
Theseobservations, made in vitro and in clinic with T cells expressing different CAR
constructs, led to the development of several strategies to counteract the inhibitory effect
of these molecules and to revert the exhausted phenotype of the CAR T-cells [111].

As mentioned earlier, the PD-L1/PD1 axis has a clear impact on both tumor- and
T cell metabolism. Blockade of PDL-1 decreases the tumor glycolytic pathway through
the inhibition of the PI3K/mTOR pathway and glucose uptake, leading to an increase
availability in glucose in the TME required for the activation of CAR T-cells. On the other
side, PD1 acts primarily by inhibiting the CD28 subdomain integrated in CAR constructs,
and its blockade reverts the metabolic shutdown and rescues the exhausted T cell phe-
notype. Blocking the PD-L1/PD1 axis either by using neutralizing monoclonal antibody
such as anti-PD1 (pembrolizumab, nivolumab, cemiplimab), anti-PDL1 (atezolizumab,
durvalumab, avelumab) [112] or by engineering CAR T-cells to secrete one or a combina-
tion of antibodies has been shown to boost CAR T-cell efficacy [113–115]. Other strategies
tested the overexpression of a PD1 dominant negative receptor or a chimeric PD1:CD28
construct [116,117] as well as inhibiting its expression using the short hairpin RNA (shRNA)
or the gene editing CRISPR/Cas9 technologies [118]. All of these approaches have been
shown to potentiate the anti-tumor activity and to increase the persistence of CAR T-cells.
While several clinical trials are ongoing to explore the efficacy of these approaches in
patients affected by different lymphoid and solid tumor types [119], the effectiveness of
PD1/PDL-1 blockade in combination with CAR T-cells is not always as expected. For
examples, PD1 inhibition in combination with disialoganglioside (GD2).CAR T-cells did
not demonstrate a significant effect in relapsed or refractory neuroblastoma patients in-
fused with GD2.CAR T-cells [120]. To improve efficacy, combined inhibition of PD1/PDl-1
pathway together with other checkpoint molecules are now being tested [121–124]. For
instance, the efficacy and safety of CAR T-cells co-expressing CTLA4 and PD-1 antibodies
is now evaluated in clinical trials on epidermal growth factor receptor (EGFR) positive
solid tumors (NCT03182816, NCT03182803).

The conversion of ATP in adenosine by tumor cells suppresses CAR T-cell activity
and mobility [125]. Genetic depletion or the pharmacologic inhibition with adenosine
analogues (SCH58261) of the A2AR expressed by activated CAR T-cells, enhance their
anti-tumor function. This effect was further boosted when the A2AR antagonist were used
in combination with PD-1 blockade in in vivo models of receptor tyrosine-protein kinase
erbB-2 (HER2) positive breast tumors [126]. The production by the tumor cells of trypto-
phan metabolites, such as Kynurenines, also has a potent immunosuppressor effect on CAR
T-cells. Kynurenines inhibit proliferation, anti-tumor activity, production of IL2 and INFγ
and induce CAR T-cell apoptosis. Inhibition of the enzyme responsible of the tryptophan
catabolism, indoleamine-pyrrole 2,3-dioxygenase (IDO) 1, with 1-methyl-tryptophan re-
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stored CAR T-cell activity against IDO1 positive tumors in vivo in a preclinical study [127]
(Figure 2).
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8. Conclusions

The discovery and implementation of various strategies have led to a tremendous
improvement of CAR T-cell therapeutic efficacy and safety, with, however, limited success
for solid tumors. The efficacy of CAR T-cell treatment and the patient survival depend
on how efficiently CAR T-cells perform, this being correlated to and influenced by the
metabolic fitness of the engineered T cells, as well as to the metabolic state of the tumor and
the composition of its microenvironment. Harnessing the tumor metabolism to impede
its immunosuppressive effect while improving the metabolic abilities of the CAR T-cells
appears a promising approach to optimize the efficacy of this promising immunotherapy.
However, the high heterogeneity and complexity of the tumors and microenvironment may
imply the engineering of CAR T-cells specifically designed, or their use in combination
with selected agents, depending on the need. This will necessarily require a better under-
standing of the immunomodulatory landscape of the TME on T lymphocytes using diverse
metabolomic, proteomic and transcriptomic technologies, as well as data integration for
the identification of specific biomarkers and the design of more robust and effective CAR
T-cell therapeutic strategies. Furthermore, these approaches need to be validated in pre-
clinical studies including both long- and short- toxicity tests considering the characteristic,
source and strategy of production of the effector cells used for the generation of CAR+ cells
(polyclonal T cells, antigen-specific T cells, CD8+, a particular ratio of CD4+/CD8+, γ/δ T
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cells, NK-T cells or NK cells), for which, however, only limited data are now available on
their metabolic response to the in vitro stimulation and their anti-tumor response.
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