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Abstract: Rhizosphere and plant-associated microorganisms have been intensely studied for their
beneficial effects on plant growth and health. These mainly include nitrogen-fixing bacteria (NFB)
and plant-growth promoting rhizobacteria (PGPR). This beneficial fraction is involved in major
functions such as plant nutrition and plant resistance to biotic and abiotic stresses, which include
water deficiency and heavy-metal contamination. Consequently, crop yield emerges as the net result
of the interactions between the plant genome and its associated microbiome. Here, we provide
a review covering recent studies on PGP rhizobia as effective inoculants for agricultural practices in
harsh soil, and we propose models for inoculant combinations and genomic manipulation strategies
to improve crop yield.

Keywords: soil bioremediation; high-salinity soil; plant beneficial microbes; rhizobia; microbial
inoculants; plant-growth promoting rhizobacteria (PGPR)

1. Introduction

The last ten years have witnessed a number of discoveries and an increased awareness of the
importance of the microbiome for the health and the growth of host macroorganisms [1,2]. Plants and
their related microbiota can be considered holobionts, complex systems ruled by interdependent and
composite interactions [3–5]. Indeed, plants are colonized by an astounding number of microorganisms
that can reach numbers much greater than those of plant cells. This is especially relevant for the
rhizosphere, the thin layer of soil surrounding and influenced by plant roots, where it is possible to
observe a staggering diversity of microorganisms; a single gram of rhizospheric soil hosts tens of
thousands of distinct microbial species [6,7]. Plants influence the composition of their rhizosphere
microbiota through the production of root exudates [8], which differ in space and time [9], contributing to
the positive selection of plant-growth promoting (PGP) and beneficial bacteria [10]. Indeed, it has been
suggested that plants may have evolved the beneficial trait of secreting specific compounds to recruit
protective microorganisms in response to pathogen attacks [11,12]. Plant-based bacterial selection relies
on the microorganism already present in the soils where they are grown. Therefore, crop productivity
could be increased by modifying root microbiota with microbial inoculants, which may be composed
of a single strain or a consortia of different PGP rhizobacteria (PGPR) [13,14].
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Within the beneficial plant microbiota, rhizobia constitute one of the most studied fraction [15].
The “rhizobium” definition is based on the ability to induce the formation of root/stem nodules
in leguminous plants [16]. However, rhizobia are found not only on legumes, but are also found
in association with several plant species [17]. Within legume nodules, rhizobia differentiate into
bacteroids and synthesize a protein complex called nitrogenase that converts atmospheric dinitrogen
to ammonia (biological nitrogen fixation, BNF) [18]. The produced ammonia is then transferred to the
host plant to sustain its biosynthetic pathways [16]. The establishment of the symbiotic interaction
between the nitrogen fixing rhizobia and leguminous plants is highly regulated and begins with
mutual recognition between the plant and the rhizobia present in the rhizosphere. To date, rhizobia
have been identified in two bacterial classes, the Alphaproteobacteria and the Betaproteobacteria. In the
Alphaproteobacteria, rhizobial strains are present in the genera Sinorhizobium (syn. Ensifer), Rhizobium,
Mesorhizobium, Bradyrhizobium, Azorhizobium, Methylobacterium, Devosia, Ochrobactrum, Aminobacter,
Microvirga, Shinella, and Phyllobacterium. In the Betaproteobacteria, rhizobia are present within strains of
the genera Paraburkholderia, Cupriavidus, and Trinickia [19–21]. While the beta-rhizobia are mainly found
in association with tropical legumes, the alpha-rhizobia appear to be more widespread and nodulate
tropical to temperate legumes including pasture, tree, and grain legumes. The alpha-rhizobia have
received more research attention than the beta-rhizobia; among the alpha-rhizobia, Sinorhizobium (syn.
Ensifer) is likely the most studied genus, followed by the genera Rhizobium and Bradyrhizobium [22,23].

In this review, we highlight the most recent studies on PGP rhizobia isolated from, and adapted
to, drought-affected and metal-contaminated soils and their possible use as effective inoculants for
legumes grown in harsh agricultural soils. We cover the identification of the genetic determinants of
their tolerance, as well as the mechanisms that allow rhizobia to survive and to improve host plant
growth in harsh soils. Models of inoculant combinations and genomic manipulation strategies for the
improvement of crop yield are discussed.

2. The Need for Rhizobial Inoculants

The demand for plant proteins for human nutrition has increased tremendously over the last fifteen
years. This can be related to: (i) Demographic growth and urbanization, (ii) the limited land areas that
can be used for the production of food crops while farming systems are switching to specialized but
unsustainable cereal production (for market competitiveness), and (iii) decreases in animal protein
production due to shortage of irrigation and/or rainfall water especially in arid areas. The demand for
plant proteins can be met in part through the cultivation of protein-rich leguminous crops. Additionally,
legumes can help improve soil fertility through symbiotic nitrogen fixation, and they can help protect
ground water from toxicity resulting from excessive application of N-fertilizers [24].

In the past three decades, eco-sustainable agronomic practices have been employed in an attempt
to replace chemical fertilizers and pesticide-based agriculture [25,26]. Therefore, the exploitation
of beneficial microorganisms as biofertilizer has become of primary importance [27]. In particular,
rhizobial bioformulations could partially or completely substitute mineral nitrogen fertilizers [28,29].
Rhizobium-legume symbioses provide more than half of the world’s biologically fixed nitrogen [30],
and it was reported that rhizobial nitrogen fixation introduces 40–48 million tonnes of nitrogen
into agricultural systems each year [31]. The impact of BNF on the global agricultural economy
was estimated to be worth the equivalent of USD160–180 billion [32]. Rhizobium inoculants are
already widely used in agriculture, providing one of the most cost-effective ways to boost legume
performances [33,34]. However, with a few exceptions, the last fifteen years has seen only small
enhancements in the production of traditionally grown grain legumes such as fava bean, chickpea,
lentils, or common beans [35]. Generally, yield instability is the main constraint for increasing plant
productivity. Thus, special attention must be given to the factors that reduce soil quality and decrease
plant yield.

Recent works have highlighted that microbial species associated with plants (rhizobial and
non-rhizobial strains, including mycorrhizal fungi) can positively influence plant tolerance to water
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deficiency [36]. This is due to their PGP features such as indoleacetic acid, siderophore production,
phosphate and zinc solubilization [37], and the synthesis of 1-aminocyclopropane-1-carboxylate (ACC)
deaminase [38], which are more evident and easily identified in stressful conditions [39]. Nevertheless,
legumes are strongly affected by water deficit. In particular, BNF appears to be more sensitive to water
deficit than other physiological functions such as photosynthesis or nutrient uptake [40]. Sometimes,
this results in impaired nodule development [41] or the accumulation of small, generally organic,
osmolytes called compatible solutes [42].

Aside from water deficiency and soil nutrient depletion, heavy-metal contamination due to
anthropic activities (agricultural and industrial practices) or the weathering of metal-enriched rocks
have recently increased exponentially, becoming a worldwide problem for crop productivity [43–45].
Generally, plant-associated microbes can contribute to a plant’s ability to perform phytoextraction
(accumulation of toxic compounds in the plant tissues) and phytostabilization (adsorption through the
roots and conversion into harmless compounds). In legumes, phytostabilization is the key process
when considering the phytoremediation of contaminated soils [46,47], and their associated rhizobia
can promote chemical transformation and the chelation of heavy-metal compounds [48] (Figure 1).
Therefore, plant growth and agricultural yield is related not only to the plant genotype and the soil
condition, but, especially for legumes, their associated microbiota also play important roles [49,50].
As such, the selection of rhizobial strains resistant to water deficiency and capable of alleviating
metal phytotoxicity could be a crucial strategy to improve the yield of legumes growth in arid or in
metal-contaminated soils.
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Figure 1. The mechanisms involved in bioremediation of heavy-metal contaminated soil and the
contribution of PGP rhizobia.

3. Plant Growth Promoting Rhizobia in Saline and Harsh Soil

Salinity due to water deficiency is one of the largest environmental constraints for plant growth
and productivity in stricken regions [51,52]. It was estimated that almost 40% of the world’s lands
can potentially become arid or semi-arid [52], most of which are located in the tropics and in the
Mediterranean area [53,54]. The persistent increase of anthropic activities (such as poor agricultural
practices) decreases soil water availability, alters the soil microbiota, and reduces the nutritive value of
soils [55]. The progressive salinization of soil may cause several stresses to the plants that decrease their
growth. This negatively affects crop productivity, hindering the agricultural economy of developing
countries [56].
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Desiccated soils can lead to alterations in plant homeostasis due to a reduction in the osmotic
potential and inappropriate ionic distribution [56]. The alteration in nutrient supply and the resulting
nutritional imbalance induces a loss of turgor pressure and the growth of smaller leaves [56].
Furthermore, increasing Na+ and Cl− concentrations commonly leads to the formation of burn-like
lesions that alter leaf transpiration [57]. Continued growth interruption results in less efficient
photosynthesis, respiratory variations, premature senescence, and the loss of cellular integrity leading
to plant death [58,59]. Salt tolerance among legume species can fluctuate and is dependent on the
chemical features of the soil, the climatic conditions, and the growth stage of the plant [53,60,61].
Tree legumes such as Prosopis [53,62] and Acacia spp. [53,63] are highly tolerant to salinity, as are the
grain legumes Glycine max [51] and Vicia faba [61,64]. On the contrary, Cicer arietinum, Phaseolus vulgaris,
and Pisum sativum are known to be extremely sensitive to salt stress [64–67]. BNF can also be strongly
affected by a lack of water, influencing the mutual symbiotic interaction between the host plants and
their associated rhizobia [53]. Generally, salt and osmotic stresses lead to a decrease in rhizobium
nodulation, affecting the early stages of the symbiotic process [68–71]. This commonly includes
poor root colonization by the bacteria and reduced curling and deformation of roots hairs [53,72,73].
Furthermore, a decrease in nitrogenase activity under drought/salinity stress is commonly attributed
to a reduction in nodule respiration [67,74–76], which reduces the synthesis of cytosolic proteins such
as leghemoglobin [67,76,77].

It was reported that host legumes are less tolerant to salt than their associated rhizobia [71,73,78].
For example, Rhizobium leguminosarum bv. trifolii TA-1 can tolerate up to 350 mM of NaCl in vitro [78].
The highest levels of salt tolerance seem to be associated with rhizobia isolated from woody legumes
(e.g., Prosopis, Acacia, and Leucaena), which are tolerant of up to 850 mM of NaCl [73,79,80]. For example,
Sakrouhi and collaborators [81] isolated 20 symbiotic N2-fixing bacteria from Acacia tortilis and Acacia
gummifera that were able to grow in high salt media (400 mM). The intracellular accumulation of
low-molecular-weight organic solutes, osmo-protectants, is an osmotic adaptation mechanism used by
a large variety of bacterial species [53]. These compounds are acquired through de novo synthesis or
uptake from the environment, and they can be accumulated to high intracellular concentrations without
interfering with cellular processes [56], such as in the S. meliloti 102F34 strain [82–84]. The accumulation
of poly-hydroxybutyrate (PHB) has also been reported as a protective measure to help rhizobia
survive in high saline environments [85]. Following a decrease in osmolarity, the osmo-protectants are
released by bacteria into the surrounding environment and actively recovered by plants, which are
unable to synthesize them de novo [84]. The successful uptake of these compounds by the plants
improve their growth under osmotic stress [56]. Additionally, intracellular trehalose accumulation
by R. leguminosuarum seems to be involved in metabolic osmoregulation of the host plants [86,87].
The intracellular accumulation of glycine betaine was identified as one of the most frequent osmotic
stress responses of rhizobia [88,89]. Several lines of evidence suggest that this process plays a role in
maintaining bacteroid nitrogenase activity in Medicago sativa nodules [53,90–92].

Nowadays, the massive use of fertilizers to offset the effect of soil nutrient loss (also due to
salinization) on crop productivity seems to be the preferred solution. This choice has progressively
contributed to the deterioration of the soils that were already compromised by intense agricultural
practices. An alternative is to make use of bacterial inoculants adapted to these harsh conditions.
Studying the bacterial communities associated with plants growing in saline soils, and the underlying
mechanism of their effectiveness, can be a good starting point for the use of microbial inoculant in
agricultural practices to reduce saline stress [56,93]. To begin addressing this, the genomes of several
rhizobia that nodulate plants in harsh environments were sequenced to identify stress-adaption genes.
Examples include: Rhizobium sp. LCM 4573 (a salt-tolerant rhizobium from Senegalese soil [94]),
R. leucaenae (a stress-tolerant species nodulating plants in tropical acid soils [95]), S. meliloti AK21
(from the Aral Sea Region that experiences saline and drought conditions [96]) and Ensifer aridi
(isolated from arid soils of diverse deserts [97]). Transcriptomic and proteomic studies have been
instrumental in highlighting how rhizobia respond to environmental stresses (a detailed list is provided
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elsewhere [98]). Studies with Mesorhizobium loti suggested heat shock results in a global downregulation
of protein expression possibly to conserve energy [99], while salt stress leads to over-expression of
ABC transporters and genes associated with nucleotide transport and metabolism [100]. Similarly,
characterization of the acid stress response in S. meliloti suggested that this stress results in an elevated
metabolic respiration rate [101]. However, to date only a few studies have examined the responses of
differentiated bacteroids to environmental stress [102,103], although several studies have examined
the responses of the plant partner [104]. Additional studies characterizing the response of bacteroids
to environmental stresses would be beneficial to complement the free-living datasets.

The agricultural significance of uncovering the genetic and metabolic basis of stress resistance
in rhizobia and other PGP bacteria has been emphasized from at least the early 1990s [105]. In fact,
numerous studies have demonstrated that genetically modifying rhizobia can increase or decrease
their symbiotic abilities in stressful environments [106]. The grain yield of common bean plants
grown in drought conditions was significantly higher when inoculated with a Rhizobium etli strain
overexpressing otsA, encoding a trehalose-6-phosphate [107]. Similar results were obtained for maize
plants inoculated with a non-rhizobium diazotroph Azospirillum brasilense strain overexpressing
a trehalose biosynthesis gene [108]. In contrast, soybean plants inoculated with a Bradyrhizobium
japonicum putA mutant that is unable to catabolize proline produced fewer seeds than plants inoculated
with the wild-type parental strain when grown in moderate drought conditions [109]. S. meliloti
strains overexpressing betS displayed improved nitrogen fixation phenotypes during salt stress [110],
while salt-sensitive Rhizobium tropici mutants were poor symbionts even in the absence of stress [111].
Finally, ACC-deaminases encoded by some rhizobia can reduce the overproduction of the plant gas
hormone ethylene during abiotic stresses [38,112], reducing the deleterious effect of ethylene and thus
improving plant growth [113].

The inoculation of plants with microbial communities has also been shown to improve plant
tolerance to environmental stresses. The co-inoculation of soybean (Glycine max) with Chryseobacterium
balustinum Aur9 and Ensifer (Sinorhizobium) fredii SMH12 led to increased symbiotic performance
under saline conditions (25 mM NaCl) [114]. In the same study, co-inoculation of common bean
(Phaseolus vulgaris L.) with R. tropici CIAT899 and C. balustinum Aur9 enhanced bean growth in both
saline (25 mM NaCl) and control conditions compared to single strain inoculation [114]. Moreover,
co-inoculation of Rhizobium phaseoli M6 and M9, Pseudomonas syringae Mk1, Pseudomonas fluorescens
Mk20, and Pseudomonas fluorescens biotype G Mk25 strains decreased the effects of salinity stress in
bean, enhancing its nodulation process in vitro and in fields conditions [115,116].

4. Plant Growth Promoting Rhizobia in Heavy Metal Contaminated Soil

Anthropogenic activities, such as the use of fertilizers and pesticides in agricultural soils,
the production of sewage sludge waste, and industrial and mining activities, are responsible for
the accumulation of toxic heavy metals in the food chain [117]. Low concentrations of metals such as
zinc (Zn), copper (Cu), iron (Fe), nickel (Ni), manganese (Mn), molybdenum (Mo) and cobalt (Co) are
necessary for the metabolism of all organisms [118]. However, high concentrations of these metals,
as well as the long term persistence in the soil of elements such as cadmium (Cd), lead (Pb), and arsenic
(As), negatively affect the composition of microbial communities [119], the dynamics of the rhizosphere
niche [120], and the growth, the biomass, and the photosynthesis of plants [121]. Plant species used for
the remediation of heavy metal polluted sites represent an environment-friendly, aesthetically appealing,
and cost-effective solution. Legumes may be ideal species for bioremediation as surveys of plant
species surviving in long-term metal-contaminated environments have shown legumes to account for
a dominant portion of these populations [122]. The metal tolerant plant species used for bioremediation
have developed several mechanisms that allow them to thrive in these contaminated environments
and to accumulate high concentrations of specific metals in the aboveground tissue. Among these,
both enzymatic and non-enzymatic molecular mechanisms have been described. Heavy-metal stressed
plants may protect themselves from reactive oxygen species thought the production of antioxidant
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enzymes or scavenger compounds [123]. Recently, PGP bacteria, including rhizobia, have been shown
to reduce the toxicity of plant exposure to heavy metals [124,125]. Heavy-metal contaminated soil
remediation can be performed with different strategies [126]. Plants able to decrease the mobility
and/or the bioavailability of metals can be used in both phytostabilization and phytoimmobilization to
prevent their leaching into ground water or their entry into the food chain. Mechanisms involved in
this process include adsorption by roots, and the precipitation and complexation of the metals in the
root zone [127]. Phytovolatilization involves the conversion of a metal (i.e., Hg as the mercuric ion)
into the volatile form and its release into the atmosphere through the stomata [128]. However, the most
important phytoremediation approach for removal of metals and metalloids from contaminated
soils, water, and sediments is phytoextraction [129–131]. The main contribution of rhizobia towards
phytostabilization and phytoimmobilization is plant growth enhancement [132]. Bacteria that nodulate
their hosts may increase metal accumulation in root nodules, while those that remain in the rhizosphere
would reduce metal toxicity locally by precipitation, chelation, immobilization, and biosorption.
The nodule itself has an important role in metal-resistance: Once the symbiosis is established, nodules
could serve as storage areas that provide plants an extra place to stock metals and reduce the risk of
direct exposure [133].

Accelerating the phytoremediation of metalliferous soils by increasing mobilization and
phytoextraction of heavy metals though the metabolic activity of rhizobia is a well-known
practice [37,131,134–137]. Currently, the most studied metal resistance mechanisms in microorganisms
include metal exclusion, protein binding-mediated extra- and intra-cellular sequestration, enzymatic
detoxification, active transport of the metal, passive tolerance, and reduction in metal sensitivity
of the cellular targets [138,139]. Bacteria can also contribute to phytoremediation through the
production of extracellular polymeric substances. For example, studies of the interaction between
metals and extracellular polymeric substances demonstrated that biosorption can reduce heavy metal
contamination of wastewater systems [140,141]. Unlike salt-tolerant bacteria, there have been numerous
studies on the use of bacteria isolated from metal contaminated soil as inoculants to promote plant
growth in contaminated environments [37,48]. Although not all rhizobia are intrinsically tolerant to
metals, metal-tolerant strains of taxonomically diverse rhizobia have been isolated from various plants
in heavy metal contaminated environments [37,142]. Metal resistance determinants provide protection
for rhizobia to survive and maintain effective nodulation of legumes, allowing them to play a role in
promoting plant growth. In addition, the existence of a symbiotic relationship may provide protection
for the survival of rhizobia in soils with elevated metal concentrations [143,144].

Arsenic toxicity, and the oxidative damage that it produces in cells through the overproduction of
reactive oxygen species, affects DNA, proteins, and lipids. This provokes chlorosis, necrosis, delays
in flowering, and a reduction in yield [145]. PGP rhizobia may play a beneficial role in protecting
plants from arsenic contamination. This can be accomplished by stimulating the antioxidant enzymatic
activities in plants, and stabilizing heavy metals and metalloids thereby reducing their accumulation
in aerial organs [146–148]. For this reason, the use of PGP rhizobia in heavy metal and metalloid
contaminated soils should not only promote the growth of the plant but should also immobilize
and decrease the concentration of these elements in plant organs to reduce human exposure to toxic
concentrations [149,150]

The presence of heavy metals can also influence the results of inoculant treatment of crops.
For example, inoculation of soybean plants with two different strains of Bradyrhizobium, B. diazoefficiens
USDA110 and Bradyrhizobium sp. Per 3.61, was studied in the Córdoba province of Argentina where
arsenic contamination of groundwater is a consistent environmental problem [151]. The results
demonstrated that only B. diazoefficiens USDA110 could nodulate soybean at the highest tested As(V)
concentrations, while Bradyrhizobium sp. Per 3.61 was the better symbiont in the presence of low As(V)
concentrations as it limited the translocation of the metal to the legume aerial compartments [151].
Numerous studies have also examined the effect of plant inoculation with pairs of PGP bacteria [152–155].
For instance, the co-inoculation of soybean with B. japonicum E109 and Azospirillum brasilense Az39
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influenced plant growth and arsenic phytostabilization in arsenic contaminated conditions [156].
Furthermore, it was observed that the indole acetic acid (IAA) produced by A. brasilense Az39 had
a protective effect on B. japonicum E109 when exposed to arsenic [156]. B. japonicum strains can use
IAA as a carbon source, which seems to serve as a signal to coordinate bacterial behaviour to enhance
protection under adverse conditions [157]. The presence of high levels of lead in soil is toxic for
plants, resulting in chlorosis, blackening of roots, and reduced growth [158]. A study using Brassica
juncea showed that the inoculation of autochthonous PGP rhizobial strains can alleviate the harmful
effects of lead exposure. Sinorhizobium sp. Pb002 was isolated from the rhizosphere of B. juncea grown
in Pb-contaminated soil [159]. In a microcosm experiment, the presence of strain Pb002 stimulated
biomass formation by B. juncea and increased plant survival and lead uptake [159]. Nickel and zinc are
essential elements for plant growth; however, excessive amounts of these nutrients can be toxic [160,161].
This toxicity can be alleviated, at least in part, through rhizobium inoculation. For example, inoculation
of green gram plants with Bradyrhizobium sp. (vigna) RM8 or Rhizobium sp. RP5 increased both seed
yield and grain protein in the presence of excessive nickel or zinc [162,163]. The presence of Cd in soil
can impair plant growth due to a reduction in chlorophyll content and photosynthesis [164]. Moreover,
Cd alters the cell redox potential and increases the amount of reactive oxygen species in the cell,
which in turn negatively impacts cell membranes and biomolecules [164,165]. Bradyrhizobium sp. Yl-6,
isolated from G. max nodules grown in Chinese Cd-contaminated soil, displayed an ability to increase
mineral nutrient (Fe) uptake while reducing Cd accumulation [166].

Researchers have identified potential metalloid stress-adaptation genes in rhizobia and they have
investigated their transcriptional responses. Putative nickel adaptation genes were identified using
association mapping with 47 symbiotic Mesorhizobium strains isolated from either nickel-enriched
serpentine soils or nearby non-serpentine soils [167]. The identified genes included several transporters,
an opine dehydrogenase, and an exopolysaccharide export protein, among others [166]. Additionally,
investigation of the transcriptional response of S. meliloti strain CCNWSX0020 upon exposure to copper
or zinc stress allowed the identification of several upregulated genes, including four genes (yedYZ,
fixH-like, cusA-like, and cueO) whose mutation impaired either early or late symbiotic processes [168].
As for rhizobia colonizing saline and arid environments, genetically modified strains can have different
symbiotic abilities. For example, a M. amorphae ∆copA deletion mutant displayed impaired symbiotic
capabilities in copper contaminated soils, whereas overexpression of a flavodoxin gene in S. meliloti led
to a more efficient symbiosis under cadmium stress [169].

Together, the studies discussed in this review (and summarized in Table 1) highlight how the
rhizobial genotype can strongly influence symbiotic effectiveness and the plant response in harsh
environments. Fully elucidating the genetic and molecular bases of these phenotypes would lay a strong
foundation to aid the development of improved bio-inoculants, either through genetic engineering or
the rational selection of optimal wild isolates.

Table 1. Studies of plant growth improvement mediated by rhizobium-inoculants on harsh soil.

Strain
Isolation Conditions

Crop Effect/Action Mechanism Reference
Site Metal

Contamination

Bradyrhizobium
diazoefficiensUSDA110 Ref. strain As Soybean Limits metalloid translocation and

accumulation in edible parts of the legume [151]

Bradyrhizobium sp.
Per 3.61

Nodules of
soybeans As

A. brasilense Az39 As Soybean Enhances growth of the plant and
phytostabilization of As when co-inoculated [156]

B. japonicum E109 As

Sinorhizobium sp.
Pb002

Rhizospere of
Brassica juncea Cd Brassica juncea Increases plant survival and lead uptake [159]
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Table 1. Cont.

Strain
Isolation Conditions

Crop Effect/Action Mechanism Reference
Site Metal

Contamination

Bradyrhizobium sp.
(vigna) RM8

Nodules of
greengram Ni, Zn Greengram Increases the number of nodules on the plant,

as well as IAA and siderophore production [163]

Rhizobium sp. RP5

Bradyrhizobium sp. Nodules of
Glycine max Cd Glycine max Increases mineral nutrient uptake (Fe) and

reduces cadmium accumulation in the plant [166]

Rhizobium
leguminosarum

(LR-30),
Mesorhizobium ciceri
(CR.30 and CR-39)

and Rhizobium
phaseoli (MR-2)

Lens culinaris L.,
Vigna radiata L.,
Cicer aretinum

L.

Wheat
(Triticum
aestivum)

Improves plant growth, biomass, and drought
stress through production of catalase, IAA, and
exopolysaccharides under PEG-6000 simulated

drought conditions

[170]

Strain Isolation conditions Crop Effect/Mechanism of action Reference

Azospirillum Sp245 Surface-sterilized wheat roots
of (Brazil) [171]

Lattuce
(L.sativa L.)

Promotes aerial biomass, higher ascorbic acid
content accompanied by a lower oxidation rate,

better overall visual quality due to higher
chlorophyll content, hue, Chroma, L and lower

browning intensity

[172]

Sinorhizobium medicae
WSM419 Nodules of Medicago murex Medicago

truncatula

Delays stress-induced leaf senescence and
abscission and nutrient acquisition during

drought stress
[173]

Sinorhizobium meliloti
A2 strains

Commercial strain,
Eastern Canada [174]

Medicago sativa
cv Apica,

Medicago sativa
cv Halo

Increases shoot/root ratio, shoot water content,
and the concentrations of starch and pinitol in

nodules

[175]

Sinorhizobium meliloti
Rm1521 Ottawa vicinity [176]

Rhizobium etli CE3
overexpressing

trehalose-6-phosphate
synthase gene

CFN42 derivate [177], original
isolate from P. vulgaris nodule

P. vulgaris var.
Negro Jamapa

Enhances drought tolerance due to
upregulation of genes involved in stress

tolerance, carbon and nitrogen metabolism by
trehalose

[107]

Co-inoculation Crop Effect/Mechanism of action Reference
Rhizobia PGPRs

Rhizobium phaseoli
M6; M9.

phaseoli M6 and M9
and PGPR

Pseudomonas syringae,
Mk1;

Pseudomonas fluorescens Mk20;
Pseudomonas

fluorescens biot. G Mk25

Vigna radiata L. Decreases damaging effect of salinity stress on
mung bean growth [116]

5. Development of Rhizobial Inoculants

The use of rhizobial bioinoculants began in the USA at the end of 19th century, where soil containing
naturally-occurring rhizobia was mixed with seeds. Since then, rhizobium inoculation has become
a common practice to improve crop production [178]. Since the first marketed rhizobium biofertilizer
“Nitragin”, which was developed by Nobbe and Hiltner in 1896, rhizobial bioformulations have
improved dramatically. From the second half of the 19th century, liquid inoculants formulation [179]
moved initially to freeze-dried inoculant lyophilization [180], and then to gel-based products such as
polyacrylamide (PER) [181], alginate (AER), or xanthan (XER) [27,182]. Over the last 30 years, a huge
number of formulations have been patented and commercialized; examples include vermiculite-based
Gold CoatTM Rhizobium inoculant [183], liquid seed applied soybean inoculant Cell-Tech® [184], liquid
in-furrow inoculant LIFT, and air-dried clay powder for alfalfa Nitragin® Gold [27,184]. In 1997,
the first marketing of a genetically engineered S. meliloti strain RMBPC-2 was approved [185].

Eventually, additives and cell protectant-based liquid inoculant formulations were developed that
increased cell survival through the use of compounds such as the polymer polyvinyl pyrrolidone (PVP),
carboxymethyl cellulose (CMC) [186], gum Arabic [142], sodium alginate [182], and glycerol [187].
The choice of inoculant carriers that can promote the long-lasting maintenance and protection of viable
microbial cells is a global issue [24,188]. Peat is currently the most common organic carrier material for
bioformulation production [189], especially in North and South America, Europe, and Australia [190],



Agronomy 2019, 9, 529 9 of 21

although other materials (such as coal, bagasse, coir, dust, and perlite) are also used [191]. Supported
by successful in vitro experiments, Albareda and collaborators suggested the use of broth culture
media as a rhizobial carrier for soybean cultivation [191]. It was demonstrated that after 3 months of
storage, liquid cultures were able to maintain more than 109 cfu/mL of Sinorhizobium fredii SMH12
and Bradyrhizobium japonicum USDA110 [191]. Therefore, aqueous-, oil-, or polymer-based liquid
formulations have increased enormously in recent years (for details see [190,192–194]). Additionally,
the inclusion of microbial or plant secondary metabolites, such as flavonoids and phytohormones,
has become a common practice in bioformulation preparation to improve the efficiency of the
inoculants [25,195–197].

6. Inoculant Combinations and Phenomic Strategies for Improving Crop Yield

Screening for rhizobia with high nitrogen fixation rates is performed in many laboratories; however,
the use of effectiveness as the sole criterion for rhizobia selection may not always be the most relevant
criterion for field applications [75]. Indeed, in the soil the rhizobia have to overcome many different
adverse conditions (pH, desiccation, nutrient deficiencies, salinity/alkalinity, extreme temperatures,
toxicities) [75,198] and they have to outcompete other rhizobial strains [199,200]. It is thought that
there is generally an alignment between the fitness of rhizobia and the fitness of their host plants [201].
However, rhizobia are not vertically transmitted but are instead soil bacteria that colonize plant roots.
Therefore, ineffective or less effective rhizobia can become abundant and outcompete more effective
strains. Moreover, a single plant can be infected by multiple strains with different nitrogen fixation
efficiency [202,203]. Recent data suggested that legumes cannot discriminate between effective and
ineffective strains prior to infection [204]. Instead, legumes limit the loss of resources by sanctioning
individual nodules containing ineffective strains [205]. However ineffective strains may escape from
plant sanctions by co-infecting nodules together with effective strains [202].

One way to overcome these competition issues is to select or create highly competitive strains [3].
Rhizobial symbiosis genes (nod, nif, and fix) are generally located on chromosomal mobile elements
or on symbiosis plasmids [206]. Taking advantage of these features, it is possible to create hybrid
strains without the insertion of exogenous DNA. For example, a hybrid strain of S. meliloti was
recently created by moving the pSymA megaplasmid (accounting for nearly 20% of total genome
content) from a donor S. meliloti strain to an acceptor strain [207]. Interesting, the resulting cis-hybrid
strain seemed to exhibit a cultivar-specific improvement in symbiotic properties, compared to the
parental strains, in controlled laboratory conditions [207]. Similarly, the transfer of symbiotic plasmids
between different R. leguminosarum strains improved various measures of symbiotic efficiency in
laboratory settings [208–211]. Therefore, genome-wide replicon-based remodeling of bacterial strains,
potentially supported with a metabolic modelling framework [212], could be a powerful tool in
precision agriculture by creating highly efficient strains depending of the farm/soil features [213].
This “Natural Genome Assisted Breeding” approach, based on the transfer of replicons among different
strains, will also prevent the introduction of non-natural genes into the environment (Figure 2).



Agronomy 2019, 9, 529 10 of 21

Natural Genome 
Assisted Breeding

Microbial consortia
inoculation

Figure 2. Different approach aimed to promote plant growth: Natural genome assisted breeding
as a genomic manipulation strategy, and microbial consortia (multi-strains combination) for the
improvement of plant-specific rhizobial inoculants in harsh environments.

One of the major issues related to the application of rhizobium inoculants is the inclusion of
other additives (e.g., fungicides, nutrients [193], and fertilizers) that may reduce the viability or
effectiveness of rhizobia. A recent trend to overcome this issue is to use microbial consortia instead of
single strain biostimulants [214]. Consortia are formed by a combination of bacterial and/or fungal
species to cover a broader spectrum of usage and soil conditions [214]. Microbes within a consortium
are better able to handle biotic and abiotic stresses as they may work synergistically by exchanging
nutrients and removing toxic compounds [215,216]. Using rhizobia in combination with other PGPR
may improve their effect; for example, it has been reported that the combination of Rhizobium strains
with Bacillus strains can improve root structure and increase nodule formation in bean, pigeon pea,
and soybean (see [217] and references therein). Other well documented examples of mixed inoculants
involving rhizobia and PGPR strains that led to improved symbiotic phenotype are: Rhizobium with
Bacillus subtilis and Bacillus megaterium; Rhizobium tropici with Chryseobacterium balustinum, Bacillus
atrophaeus, and Burkholderia cepacia; Mesorhizobium with Pseudomonas; Mesorhizobium in combination
with Azotobacter chroococcum, Pseudomonas aeruginosa, and Trichoderma harzianum; and S. meliloti with
a consortia of Burkholderia spp. (see [217] and references therein). Increased growth promotion could
be due to a direct effect on nodulation, the production of phytohormones, or enhanced resistance
to crop diseases [216,217]. Additionally, the synergistic interaction between arbuscular mycorrhiza
and rhizobia for enhancing crop yield through improving nutrients uptake has also been heavily
investigated [217]. Indeed, arbuscular mycorrhiza symbiosis can increase rhizobium nodulation of
legumes under control [218] and saline conditions [219]. The consortium can also improve the uptake
and transfer of nitrogen in a soybean/maize inter-cropping system [220].

Overall, the use of consortia composed of rhizobia and other PGPR combined with recent advances
in rhizobium genomic manipulation could lead to increased inoculum efficiency in field conditions.

7. Concluding Remarks

In recent years, many studies were focused on the development and the optimization of
technologies for the improvement of sustainable crop production, in particular in harsh (arid and/or
metal-contaminated) environments. The studies were mainly spurred by an increasing requirement
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for plant proteins, which is due to the increasing worldwide human population and the need to reduce
the use of chemical fertilizers. The demand for increasing plant protein production and reducing the
use of fertilizers can be accomplished, in part, through the cultivation of legumes; legumes are rich
in protein and are able to improve soil fertility through BNF performed by their associated rhizobia.
A huge number of studies conducted in the last thirty years have highlighted the ability of rhizobia
to colonize particularly harsh soils, and to promote the growth of the leguminous plants to which
they are associated. In this review, we summarized the most recent and detailed literature on plant
growth promoting rhizobia isolated from (and thus, adapted to) arid and heavy metal contaminated
soils, as well as their possible use as inoculants for legume-based agriculture in harsh soils. Despite
the current knowledge on the topic, which ranges from genetic to molecular mechanisms, further
research should be conducted on the feasibility of plant or soil specific rhizobia-based inoculations.
Here, we proposed genetic manipulation strategies, which simulate natural evolution, and strain
combination to optimize plant-specific rhizobial inoculants for the improvement of crop yield.
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