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Abstract: Potato late blight caused by Phytophthora infestans is one of the most important plant diseases
known, requiring high pesticide inputs to prevent disease occurrence. The disease development
is highly dependent on weather conditions, and as such, several forecasting schemes have been
developed worldwide which seek to reduce the inputs required to control the disease. The Irish Rules,
developed in the 1950s and calibrated to accommodate the meteorological network, the characteristics
of potato production and the P. infestans population at the time, is still operationally utilized by the
national meteorological agency, Met Éireann. However, numerous changes in the composition and
dynamics of the pathosystem and the risks of production/economic consequences associated with
potato late blight outbreaks have occurred since the inception of the Irish Rules model. Additionally,
model and decision thresholds appear to have been selected ad hoc and without a clear criteria.
We developed a systematic methodology to evaluate the model using the empirical receiver operating
curve (ROC) analysis and the response surface methodology for the interpretation of the results.
The methodology, written in the R language, is provided as an open, accessible and reproducible
platform to facilitate the ongoing seasonal re-evaluation of the Irish Rules and corresponding decision
thresholds. Following this initial analysis, based on the available data, we recommend the reduction
of the thresholds for relative humidity and an initial period duration from 90% and 12 h to 88% and
10 h, respectively. Contrary to recent reports, we found that the risk of blight epidemics remains low at
temperatures below 12 ◦C. With the availability of more comprehensive outbreak data and with greater
insight into the founder population to confirm our findings as robust, the temperature threshold
in the model could potentially be increased from 10 ◦C to 12 ◦C, providing more opportunities
for reductions of pesticide usage. We propose a dynamic operational decision threshold between
four and 11 effective blight hours (EBH) set according to frequency of the disease outbreaks in the
region of interest. Although the risk estimation according to the new model calibrations is higher,
estimated chemical inputs, on average, are lower than the usual grower’s practice. Importantly,
the research outlined here provides a robust and reproducible methodological approach to evaluate a
semi-empirical plant disease forecasting model.

Keywords: Phytophthora infestans; potato late blight; plant disease forecasting; decision support
system; reproducibility
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1. Introduction

Potato late blight (PLB) caused by Phytophthora infestans (Mont.) de Bary [1] is amongst the
most destructive diseases of potato crops [2]; due to its fast reproductive cycle and aggressiveness,
if left untreated, it can rapidly lead to the total destruction of the crop, either in the field or in
storage, following harvest [3]. In Ireland, historical outbreaks of potato blight have had a significant
cultural and economic impacts, and are partly attributed to mass starvation and the subsequent
migration of large portions of the population fleeing from famine during the 1840s [4]. In Ireland
alone, an estimated €5 million is spent annually on fungicides to control PLB, whilst globally the cost
of control and losses are estimated to exceed €1 billion annually [5]. Although P. infestans can form
overwinter oospores, under Irish conditions that is not believed to occur (Louise Cooke, personal
communication), and typically the pathogen overwinters in infected tubers (in dumps, volunteers or
infected seeds) [6]. The rate of late blight epidemic progression is highly dependent on the weather,
with temperature, relative humidity and precipitation being the most important variables, the latter two
closely being related [7]. Prolonged periods of humid and cool weather provide conditions favorable
for pathogen sporulation [8]; short-lived sporangia subsequently spread through a mixture of rain
splash and wind dispersal [9]. The disease impacts yield both indirectly and directly; indirectly, by
reducing photosynthetic surface, and directly, when zoospores washed from foliage infect tubers in the
ground [6].

Since the late 1970s, increasing globalization has resulted in the worldwide migrations of pathogen
genotypes of both mating types, leading to the displacement of dominant, older clonal lineages or
genotypes commonly referred to as US-1 [10]; this has facilitated the development and spread of new
lineages, some of which demonstrate an increased aggressiveness [11]. This rise of new genotypes
has introduced changes in the ecology of P. infestans [12–15]. The increasing genetic variability of
P. infestans is likely reducing the durability of late blight resistance based on R gene stacks [16,17].
Although the structure of the Irish P. infestans population shows little genetic variation, it is dominated
by a few clonal genotypes comprised of the more aggressive EU_13_A2 and EU_6_A1 strains [18,19].
New genotypes have established in Ireland and have been reported in higher frequencies in recent
years [20–22]. In addition, the majority of potato production in Ireland is based on more susceptible
potato cultivars, guided by market demand [23]. Population diversification, coupled with the influence
of climate change [24], has led to increased difficulties controlling PLB [25,26]. Presently, due to the
high risk of PLB epidemics in high-input agriculture, associated with increased aggressiveness of the
pathogen, intensive fungicide regimes are routinely used; in Western Europe this equates to more than
10 applications per season [5,27], while in some countries crops can receive as many as 20 fungicide
applications [28]. The need to develop late blight forecasting models for use as decision support tools
has been long acknowledged as one of few integrated pest management (IPM) approaches available for
PLB management, motivated by both environmental and economic factors [29–31]. In response to the
environmental challenges posed from increased pesticide usage, the European Community Directive
128/2009 on the Sustainable Use of Pesticides provides strict guidelines for the sustainable use of
plant protection products in order to reduce risks to human health and the environment [32]. Reliable
disease forecasting offers the potential to reduce yield losses and crop inputs during unfavorable
blight weather conditions, while also supporting an ex post facto justification for the use of plant
protection products [3,31] in compliance with national and international regulations. Kessel et al. [33]
have shown the necessity for environmental risk prediction to guide low input chemical protection
to prevent the resistance breakdown of currently resistant potato cultivars. Forecasting systems that
involve numerous alerts have been shown to be useful in that regard, when applied on a pathosystem
involving a valuable crop and rapid disease [34].

At their core, crop disease forecasting systems employ algorithms, either mechanistic (fundamental)
or empirically based, to predict disease cycles. Mechanistic based models are developed from laboratory
experiments in controlled environment chambers, greenhouses or fields, and describe one or more
segments of the host-parasite relationship as influenced by the environment [34]. Initially, the
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development of such models centered around the use of weather events to predict the development
and onset of epidemics, and were mainly empirical in nature [35], based on the duration of weather
events beyond a crude weather threshold (e.g., [36,37]) and phenological stage [38]. More recently,
the use of mechanistic approaches have increasingly been employed in an effort to encompass more
complex components of PLB epidemics, along with crop growth, chemical protection and cultural
practices [11,33]. Due to its historical and relative economic importance, Ireland has a long history in
the development of forecasting systems for use in PLB management.

Austin Bourke, one of potato late blight forecasting pioneers, developed the PLB model referred
to as the ‘Irish Rules’ (IR). This model sought to include knowledge of the disease life cycle as opposed
to being an entirely empirical approach [39]. For example, the selection of suitable weather criteria was
determined from previously published laboratory experiments [8], rather than a retrospective analysis
of historical weather during blight outbreaks, such as in the development of the ‘Dutch rules’ [36] and
‘English rules’ [40]. Bourke [41] found that the frequency of warnings produced by these latter models
was too high under Irish conditions, and consequently, the IR were devised as an intermediate solution
between empirical and process-based approaches [7,42], the aim of which was to increase the accuracy
of disease life cycle interpretation.

The first attempt to undertake an evaluation of the IR dates back to the 1970s, when Frost [43] found
no significant relationship between disease outbreaks at a site located in the south east of the country,
Oak Park, Co. Carlow (now a Teagasc research center), and risk accumulation derived from weather
data from two nearest synoptic weather stations, Mullingar and Kilkenny. Following re-analysis of this
work, Keane [44], who included two additional surrounding weather stations, reported that IR were
able to predict those outbreaks, although the exact evaluation methodology is not well documented.
Reported field evaluations of the IRperformance have shown that the control according to the model
outputs results in a significant reduction in fungicide usage, but with unsatisfactory disease control
compared to the Negfry Decision Support System (DSS) [45] or routine fungicide protection [46].
More recently, as part of a pan-European initiative, a theoretical comparison of the risk accumulation
between several European PLB risk prediction models has shown that the IR model simulates the
lowest estimate of risk, due to its strict criteria [47].

The uptake and use of DSS in blight forecasting worldwide is limited largely due to the level of
risk associated with a costly disease outbreak [31,48,49]. Risk adverse farmers use DSS to support an
increased number of chemical treatments [34], which is often the case in Ireland. The main incentive for
producers to use plant disease risk prediction in recent times is to increase economic benefit through
cost reduction, and to comply with pesticide use policies required by supermarket chains [3,48]. Irish
producers use, but do not necessarily rely on, operational blight warnings, hence it is now timely to
review the IR and undertake an evaluation with a view toward refining the rules in light of recent
changes in disease and plant ecology.

The aim of this study was, therefore, to provide a comprehensive, systematic and transparent
method to facilitate an ongoing evaluation of the IR model, and its operational application, in the
context of changes in the disease epidemiology and increasing regulation (market/policy). The impact
of the proposed modifications on the potential number of treatments and fungicide usage is also
determined and presented. Additionally, this research provides the first completely reproducible
report in the area of plant disease forecasting, with a view to inspire and enable researchers elsewhere
to modify, adapt and use the proposed methods and the code outlined here.

2. Data and Methods

The paper is structured as follows; initially we provide an overview of the site and available
biological and weather data. The Irish Rules model is described, after which we present the evaluation
of the model’s parameter thresholds, currently employed operationally. Proposed model modifications
and identified decision thresholds are further assessed by a comparison of treatment frequency and
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dose reduction. A schematic of the workflow is outlined in Figure 1. The list of frequently used
abbreviations is presented in Table 1.Agronomy 2019, 9, x FOR PEER REVIEW 4 of 25 
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Table 1. List of frequently used abbreviations in the manuscript along with their full forms.

Abbreviations Full Form

IPM Integrated Pest Management
DSS Decision Support System
PLB Potato late blight
IR Irish Rules

RHt Relative humidity threshold
Tt Temperature threshold

SDt Sporulation duration threshold
LWt Leaf wetness threshold
EBH Effective blight hours
ROC Receiver operating characteristic

AUROC Area under the ROC curve
FP False positive
TP True positive
FN False negative
TN True negative
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2.1. Site Description

Oak Park, Co. Carlow, Ireland (latitude: 52.8560 and longitude: −6.9121), a Teagasc (Irish
agricultural advisory body) research center, is located in the south east of Ireland. Soils are composed
of light limestone gravelly soils and heavy textured soils derived from limestone till.

Typical weather conditions calculated over the growing period (April to October) for the period
2007 to 2016 indicate that average daily relative humidity values were typically high throughout
the potato growing season, which is a characteristic of Irish conditions more generally. The mean
temperature over the period was 13 ◦C, relative humidity was 80.2% and average sum of precipitation
was 398.31 mm. The night time temperatures during the early part of the potato growing season were
low, with averages of 6.6 ◦C in April and 9.2 ◦C May.

2.2. Data

2.2.1. Biological Data

Planting dates and primary disease outbreak data were acquired from the Teagasc breeding
program field trial records for the period 2007 to 2016. The breeding program trials consisted of
25–60 potato varieties in all years, representing all levels of susceptibility to potato late blight. Trials
were laid out in randomized complete block design, with six blocks and plots of 20 plants. The seeds
were propagated in accordance with the seed certification scheme of the Irish Department of Agriculture,
Food and the Marine (DAFM) to ensure no latently infected tubers; the P. infestans inoculum originated
from natural sources. Crop rotation was undertaken on a five-year cycle. Plots did not receive any
fungicide treatments. All plots were visually inspected for disease occurrence on a weekly basis, from
crop emergence, and generally more frequently during periods of humid weather. That data provided
the information about the disease outbreaks used in the model analysis and evaluation outlined herein.

Planting dates in the biological data are somewhat later compared to the usual agricultural practice
in Ireland, which is suitable for the analysis because the healthy green tissue is present throughout
summer. Outbreak dates vary from 26th of June to 23rd of August.

2.2.2. Weather Data

Hourly weather data for the historical period under investigation, was acquired from the Met
Éireann synoptic weather station at Oak Park. The weather variables obtained include the hourly air
temperature (°C) and relative humidity (%) at 2m and the total hourly precipitation (mm). The trial
sites were within a radius of 500 m of the weather station in all years and were located on flat ground
with no physical barriers in between them.

Availability of good quality weather and biological data is crucial for successful calibration
and evaluation of plant disease forecasting models [50]. Quality control of the available weather
data and appropriate imputation of missing values is often disregarded in agriculture, which could
lead to imprecise or incorrect results [47,51]. Post-processing of the weather data undertaken as
part of this study included checking for duplicate entries and recording values outside of ’expected’
ranges, determined using histograms. The data had only 6 missing values for both precipitation
and temperature, and 7 missing values for relative humidity, over the period of interest. These
short intervals of consecutive hours of missing data for temperature and relative humidity were
imputed by spline interpolation using the Forsythe, Malcolm and Moler method [52], as suggested by
Shah et al. [53].

2.2.3. The IR Model and Its Operational Use

According to original Irish Rules [41], illustrated in Figure 2, periods with temperatures ≥ 10 °C
and relative humidity ≥ 90% provide the necessary environmental conditions considered conducive
for potato late blight. These periods are further split into:
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• Sporulation period—the initial stage considered necessary for the formation of sporangia is set to
a minimum of 12 consecutive hours;

• Infection period—starts after the 12 hour sporulation period is completed. If the surface of
the plant is not wet at the beginning of the infection period, effective blight hours (EBH) begin
accumulating from the 16th hour (12 h sporulation period + 4 h = 16 h); when the surface of the
plant is wet at the beginning of the infection period, the effective blight hours’ (EBH) accumulation
is reduced by a period of 4 h (16 h − 4 h = 12 h). The leaf (surface) wetness (LWt) is considered
present if there was a considerable amount of precipitation (≥ 0.1 mm) during the time window
of 3 h before and 3 h after the 12th consecutive hour of sporulation. The infection period lasts
until conditions (temperatures ≥ 10 °C and relative humidity ≥ 90%) are not broken for more than
5 consecutive hours, required for spore survival.

Hours fulfilling these criteria are termed effective blight hours (EBH). The risk of potato late blight
outbreak estimation is based on the longevity of the infection period, expressed as a sum of the EBH.
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Figure 2. Simplified presentation of the Irish Rules algorithm. The operational warning threshold
scale is presented as the “traffic light” scheme, ranging from green (no warning), to yellow when the
warning considered and red when the warnings are issued without delay.

Currently, the warning system is used operationally by the national meteorological service, Met
Éireann. The IR are utilized in their original form to support the blight warning service with issuing
spray advice [44,46]. The decision on issuing a blight warning and its termination is determined by
the meteorological officer on duty after visual inspection of the IR model outputs based on a 10-day
numerical weather prediction (NWP) model forecast from the European Centre for Medium-range
Weather Forecasts (ECMWF). Warnings are disseminated through the Met Éireann web portal, radio
and television weather broadcasts and mobile application. Operationally, a decision threshold to issue
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a blight warning is considered for an accumulation of 12 EBH. Additionally, if a continuous spell of
mild, humid and damp weather lasting 24 h or more is expected, a blight warning may be considered,
even if it does not explicitly meet the warning criteria. Blight warnings are typically issued 2 to 6 days
in advance and include information about areas likely affected, duration of the spell and opportunities
for spraying, where possible. The decision threshold of 12 EBH was established from operational
experience since the 1950s (for example, between 1950 and 2000, a network of blight scouts reported on
regional blight outbreaks and the progress of epidemics) although it was not systemically documented.
Currently, the May 1st is the ‘Zero date’. a date threshold after which warnings are considered valid.

2.3. Evaluation Procedure

2.3.1. Model Thresholds under Evaluation

The IR is a set of processes mimicking the ‘behavior’ of a mechanistic model. The transition between
these processes is determined by an empirically derived set of thresholds, which ultimately influence
the risk estimation expressed as the duration of an infection period. Four of these primary thresholds
were subjected to a sensitivity analysis. The environmental thresholds for relative humidity (RHt),
temperature (Tt) and the duration of period considered as necessary for the inoculum production—the
sporulation duration threshold (SDt), were varied from −3 to +3 units of their respective default values
(Table 2). To assess the leaf surface wetness indicator, the default estimation using rain (>0.1 mm) was
compared to using the combined rain and relative humidity thresholds as indicators (Rain > 0.1 mm
and RH ≥ 90). The model was run using all combinations of model variable thresholds. Outputs were
then combined with the hourly weather data for further analysis.

Table 2. Model variable threshold variations evaluated in the analysis.

Range Relative Humidity (%)
(RHt) Temperature (°C) (Tt) Sporulation Duration (hours)

(SDt)

+3 93 13 15

+2 92 12 14

+1 91 11 13

Existing 90 10 12

−1 89 9 11

−2 88 8 10

−3 87 7 9

2.3.2. Analysis of Diagnostic Performance

The period considered in the sensitivity analysis was from planting date to the recorded disease
outbreak in each season, which was further split in two segments (Figure 3):

- No infection period: Considered the period when the healthy (susceptible) host was present,
but no infections were observed. This period lasted from emergence, which was estimated to
start three weeks after planting, to 14 days prior to the first observation of the disease in the
field. Specificity or true negative rate was measured during this period. It was considered that
each warning during this period activated a chemical treatment which provided protection for
the subsequent period of 7 days, and was considered as a false positive (FP). True negatives
(TN) were calculated as a proportion of the remaining period, when fungicide protection was
not recommended.

- Warning period: Considered a period when infections occurred and was assigned a 10-day time
window, starting 14 days and ending 4 days prior to the disease being observed in the field. A risk
warning of disease outbreak 10 days ahead has been reported as an optimum warning time [54],
and a period of four days was considered to be a minimum incubation period. Sensitivity or
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true positive rate was assessed during ‘warning period’. Warning periods where the value of the
warning threshold was reached and would trigger a fungicide treatment, is considered as a true
positive (TP) and if the warning was not issued false negatives (FN).
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Contingency tables were created with sensitivity and specificity values from a confusion matrix
(as shown in Table 3) for each evaluated disease warning decision threshold for all model outputs.
The range of decision thresholds used as cut-off points, or the level of risk leading to treatment, was
from 1 to 18 EBH.

Table 3. Confusion matrix used for calculating the cutoff points for contingency tables.

Disease Forecast
Disease Observed

Yes No

Yes TP
Warning period

FP
No infection period

No FN
Warning period

TN
No infection period

Measures of
the performance

Sensitivity
TP/(TP + FN)

Specificity
TN/(TN + FP)

2.3.3. Receiver Operating Characteristic (ROC) Curves

The performance of each model was assessed using receiver operating characteristic curves (ROC).
An ROC curve is a graphical technique for assessing model predictive ability through the relationship
of specificity and sensitivity [56,57]. Empirical ROC curves were constructed with cut-off points for
different thresholds on a discrete scale. Specificity (i.e., 1-specificity) on the x-axis and the sensitivity
on the y-axis was plotted for each cut-off point. The accuracy of the model was evaluated based on
the area under the ROC curve (AUROC), serving as a single measure of the discriminatory ability of
the model [58,59]. The area under the curve (AUROC) was calculated for model outputs using the
trapezoidal rule [59]. In general, an AUROC of 0.5 suggests no discrimination (i.e., the model is no
better than a random predictor); as the value of AUROC approaches 1, the better the predictive value
of the model are [60].

2.4. Statistical Analysis

2.4.1. Evaluation of Leaf Wetness Estimation

In order to evaluate the LWt estimation, two indicators are evaluated; values of hourly rain
(rain > 0.1 mm) and rain and humidity (rain ≥ 0.1 mm and RH ≥ 90%). The model runs were split
in two groups, with each run having a measure of the LWt indicator in each group. The difference
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between paired samples was calculated; and normality of the sample distribution was visualized
using a histogram and density plot, and assessed with the Shapiro–Wilk test. Where samples did
not conform to a normal distribution, a non-parametric paired two-sample Wilcoxon rank sum test
was carried out to assess the difference between groups. Model outputs with higher performing LWt
indicators were kept for further analysis.

2.4.2. Evaluation of Main Variable Thresholds

Boxplots were used for the initial visualization of change in model accuracy, with a change in each
factor level of a single variable. A polynomial surface, using locally estimated scatterplot smoothing
(LOESS), was fitted to the AUROC data using each variable as a predictor and all possible interactions,
to model the trend of AUROC response with change for each variable threshold individually.

An orthogonal polynomial regression model was used to study the sensitivity of the AUROC
with the change in the model variable thresholds and their interactions. Polynomial response models
have shown to be useful for summarizing relationships [61]. The response surface methodology [62]
consists of a group of mathematical and statistical procedures used for approximating the functional
relationship between a selection of control variables which have an influence on the response
variable [63]. The polynomial models were fitted sequentially, starting from first order and adding
higher degree terms up to the fourth order. Model fits were assessed with their respective R2-value
and an R2 adjusted-value, a Shapiro–Wilk test of residuals and examination of the fitted surface,
until overfitting was indicated on the response surface plane. Additionally, the non-parametric local
regression (LOESS) was used to obtain predicted values for the four-dimensional response surface,
using RHt, Tt and SDt, and all three and two-way interactions as the predictors. The extent of
agreement was then compared between polynomial regressions and the LOESS regression to aid
in choosing the degree of the polynomial regression, measured using the concordance correlation
coefficient [64]. The lowest-degree polynomial that accomplished the required degree of approximation
was subsequently adopted. The higher degree polynomial models offer increased flexibility in
the response surface, but they need to be fitted with caution due to the potential to ‘overfit’ these
models [61].

The fitted polynomial equation was then expressed in the form of three-dimensional (3D) surface
plots, in order to visualize the interaction between the changes in thresholds (Table 2) and the response
variable. The graphical representation provides a method to visualize the relationship between
the response and experimental levels of each variable, and the types of interactions between the
test variables.

Due to awareness of constraints of the limited data set, we relied on current knowledge of PLB
disease epidemiology as a guide for interpretation of the results. Hence, a suite of model versions was
selected based on the results of the sensitivity analysis, which were subjected to further examination
based on the position and grouping of the cut-off points in the ROC space. Defining an optimal
decision threshold is not a trivial task [56]. The high cost of false negatives (FN) associated with
potential onset of PLB epidemics [14,65] predetermines that the decision threshold should lie closer to
the upper right-hand corner of the ROC curve, in order to minimize the associated risk of the disease
development [66].

2.5. Treatment Frequency and Dose Reduction

The crop risk prediction model is useful only if it provides the same level of protection as the
standard practice, while reducing necessary costs and labor [32,34]. In this theoretical study, we do
not account for the differences in the active ingredient or the type of the fungicide, but merely try
to associate a reasonable estimation of possible reductions in the number of treatments or/and dose
reduction with predictive power at predefined decision thresholds. After defining the ’optimum’ sets
of model thresholds, it was necessary to compare the number of treatments and the pesticide usage
recommended by the model versions compared to standard growers’ practice. This was done in order
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to determine if the recommended model parametrizations are economically and environmentally
viable. Currently, spray intervals range from 5 to 7 days under Irish conditions, which are the intervals
we accounted for in this study. We evaluated three model parametrizations—the IR with the default
parameters (Section 2.2.3, The IR Model and Its Operational Use), and two improved parametrizations
as identified in the subsequent analysis.

We assume that planting starts the day after the daily average soil temperature is greater than
8 ◦C for three consecutive days after the 1 April. This is a common practice in Ireland, in line
with recommendations from the national advisory body, Teagasc. Farmers typically start fungicide
treatments as soon as the emergence progresses over 50% and continues until the potatoes’ above-ground
potato haulm completely die off, typically three weeks after desiccation. Here, we assume that the
growing season lasts 120 days. However, the pesticide protection continues during these three weeks,
until the potato above-ground potato haulm is desiccated.

The difference between standard growers’ practice and model versions is evaluated in two ways:

1. Reduction in the number of treatments, split into:

• Model guided: A fungicide treatment is applied every time the warning threshold is reached
with a minimum period of 5 days prior to following treatment, and;

• Model and calendar guided: A minimum of 5 and maximum of 10 days between treatments.

The sum of recommended treatments is calculated for all decision thresholds and seasons.
The resulting summaries are presented visually as point graphs. A LOESS curve was fitted to estimate
the minimum decision threshold where the protection according to the model is for fewer treatments
then the usual 5 or 7-day practice.

2. Dose reduction based on 7-day calendar treatment. Currently, Irish growers do not rely on the
operational warnings issued by the Met Éireann, but do increase the dose or use stronger, often
less environmentally friendly, formulations during those periods identified as at risk. Possible
dose reductions are calculated for the usual 7-day calendar treatment. The dose reductions are
based on the maximum risk calculated by the model during the 7-day period between treatments.
The maximum dose is applied if the risk is over 12 EBH, which is the current warning decision
threshold in Ireland.

2.6. Software Used for the Analysis and the Reproducibility

This analysis has been implemented in R, a freely available statistical programming language [67].
A portion of the data was imported using readxl [68]. Packages used for data munging: tidyverse [69],
zoo [70], data.table [71] and pracma [72]. Packages used for visualisations: ggplot2 [73], cowplot [74],
ggrepel [75], rsm [76] and ggthemes [77]. Univariate series imputation was implemented using
functions from package imputeTS [78]. Package zoo [70] was used for processing dates. Formatting of
tables was done with pander [79]. Packages rmarkdown [80] and knitr [81] were used for creating a
reproducible compendium. Package here [82] was used to ensure reproducibility on different platforms.
Programming functions from R.utils [83], string manipulation with mgsub [84] and statistical tests and
visualizations: rcompanion [85].

The full analysis can be reproduced using code and data archived at https://mladencucak.github.
io/AnalysisPLBIreland/.

3. Results

3.1. Evaluation Leaf Wetness Estimation

A Wilcoxon signed rank test showed that there was a significant difference (p < 0.001) between
AUROC values for the models. Using the combined estimators RH ≥ 90% and rain > 0.1 mm as
indicators for leaf wetness, were significantly higher than using only rain > 0.1 mm. The median

https://mladencucak.github.io/AnalysisPLBIreland/
https://mladencucak.github.io/AnalysisPLBIreland/
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AUROC for the method based on rain and RH thresholds was 0.735 compared to 0.695 for the method
only using rain indicator (Figure 4).
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Figure 4. Group median difference between models with leaf wetness estimation using rain (>0.1 mm)
or the combined rain and relative humidity (rain > 0.1 mm and RH ≥ 90%) as an estimator.

3.2. Evaluation of Main Variable Thresholds

Scatterplots with LOESS smoothing and boxplots indicated a non-linear relationship with change
in each factor level. The AUROC was found to increase when the thresholds for relative humidity and
sporulation duration were reduced. Conversely, an increase in the temperature threshold resulted in
an improvement in the predictive power of IR. For all variables, levels of predictor variables showing
an increase in AUROC also show higher levels of dispersion, indicating the necessity to investigate
the interactions.

A statistically significant cubic polynomial model (F3,323 = 105.9, p < 0.0001) was fitted to the
AUROC data with the proportion of variance explained by the model of 0.8617 and 0.8535 for R2 and
adjusted R2 values, respectively (Table 4). Diagnostic plots of residuals versus order of the data and
histogram indicated no violation of the normality assumption. The forth order polynomial model
showed only a slight increase in the R2 and adjusted R2 values, while the Shapiro–Wilks test indicated
a lack of normality in the distribution of the residuals. Visual assessment of the response surface
plotted with the 4th order model indicated a potential overfitting problem. Linear and quadratic fits
had lower R2 and adjusted R2 values and were considered unsuitable. In addition, the predictions
from the third-order polynomial model agreed the most with the local non parametric regression
(concordance correlation coefficient [64] of 0.9896 (95% CI: 0.9876; 0.9913)), hence this model was
deemed to adequately reproduce the behavior of the response surface.

Table 4. The table of fit statistics for polynomial models from first to fourth order fitted to area under
the receiver operating curve (AUROC) data.

Order No. of
Parameters

Degrees of
Freedom R2 Adj.

R2
F

Statistic
p

Value
Shapiro

-Wilk Test
Shapiro –

Wilk p-Value

1 4 339 0.637 0.634 198.68 <0.001 0.993 0.137
2 10 333 0.758 0.751 115.98 <0.001 0.997 0.813
3 20 323 0.861 0.853 105.89 <0.001 0.996 0.610
4 35 308 0.881 0.868 67.12 <0.001 0.990 0.030
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The 3D response surface for the AUROC against any two independent variables while keeping
the third independent variable at −3, 0 and +3 levels, respectively, is presented in Figure 5. In total,
nine 3D response surfaces were obtained by considering all possible variable combinations.Agronomy 2019, 9, x FOR PEER REVIEW 13 of 25 
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Figure 5. 3D surface for interaction effect of two variables with third variable fixed on a specific level.
3D surface plots represent interaction between: Tt and RHt, with SDt of 7 (a), 10 (b) and 13 h (c); SDt
and Tt, with RHt fixed at 87% (d), 90% (e), and 93% (f); and SDt with RHt, with Tt of 7 ◦C (g), 10 ◦C (h),
and 13 ◦C (i).

Figure 5a–c depicts the interaction between RHt and Tt, keeping SDt at its −3, 0 and +3 levels.
Figure 5a shows that AUROC increased with increasing Tt, up to 12 ◦C, and reduced RHt to 88% when
SDt was set at 9 h. If SDt is kept at the threshold of 12 h, a decrease in the AUROC is evident (Figure 5b),
while an increase in SDt to 15 h results in a significant reduction in model accuracy (Figure 5c).

It can be observed from Figure 5d–f, that the accuracy of the model increases with an increase
in Tt and a reduction in SDt. The area of AUROC of above 0.85 is achieved with the reduction of
sporulation period for 2 h and an increase of the temperature threshold of 2 ◦C. This effect on the
AUROC is reduced below 0.85 with SDt at the default threshold (12 h); while increasing SDt results in
a large reduction of the AUROC, to the level of an unacceptable prediction model.
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Figure 5g–i shows the interaction between RHt and SDt, keeping Tt at its −3, 0 and +3 levels.
Increasing Tt positively influences the model accuracy. Over the range of the Tt factor levels, the
area with the highest AUROC values is 0.79 by 0.83 by 0.87, associated with a temperature threshold
reduced to 7 ◦C, the default threshold and the one increased to 13 ◦C.

Overall, results indicate that reducing RHt to 88% and SDt to 10 h and increasing Tt to 12 ◦C
results in the largest improvements in the overall predictive performance of the model (Figure 5a,b,i).
Variations in Tt do not have the same magnitude effect on the model accuracy, as the manipulations of
RHt and SDt do.

Figure 6a–c depicts the ROC curves for the individual, selected model variable thresholds for
RHt (88%), SDt (10 h) and Tt (12 ◦C ), respectively. Adjusted RHt and SDt provides improvement
in terms of model specificity, with the grouping of cut-off points moving upwards in the ROC plane
and having no associated FN; overall accuracy displays some improvement. Overall, adjusting RHt
(Figure 5b) resulted in the greatest improvement in the model accuracy, with sensitivity of 0.8 and high
corresponding decision threshold scale of 3–9 EBH. Practically, this means that the risk accumulation
of up to 9 EBH was necessary for the onset of the disease in eight (out of 10) years. Adjusting Tt only
influenced the model performance with the sensitivity similar to the default model variable thresholds,
having two FN predictions, indicating that the change in Tt had the least impact on the improvement
in model performance (Figure 5c).Agronomy 2019, 9, x FOR PEER REVIEW 14 of 25 
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3.3. Treatment Frequency and Dose Reduction 

Figure 6. ROC curves for the model parameterizations according to the results of the sensitivity
analysis. The IR model parameterizations with the change in a single model variable threshold: relative
humidity (a), sporulation duration (b) and the sporulation duration (c), followed by the default (d),
optimized (e) and low risk (f) model parametrization.

The performance of the IR model with default variable thresholds is presented in Figure 6d. ROCs
for the existing IR variable thresholds revealed a lack of specificity, with no risk accumulation in two
years, while the current operational blight warning threshold was reached in only four out of ten years.
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A model with variable thresholds recommended by the analysis of the response surface (SDt = 10 h,
RHt = 88% and Tt = 12 ◦C), hereafter referred to as the optimized model (Figure 6e), shows improved
performance, with no FP. The disease outbreak was correctly indicated in all years of the study, although
the sensitivity dropped significantly in six years (corresponding to decision thresholds higher than
5 EBH), indicating that the maximum acceptable decision threshold for this model variation is 4 EBH,
corresponding to sensitivity of 0.9.

An additional model variation was chosen for further analysis, hereafter referred to as the low
risk model, with optimized SDt (10 h) and RHt (88%); Tt kept at the original, default threshold of
10 ◦C (Figure 6f). This was guided by the limited impact of changing the temperature threshold on
the specificity of the model (Figure 6c), limitations related to the size of the biological data set used
in the evaluation, a lack of knowledge of the pathogen founder population and the risk associated
with possible disease outbreak. The ROC curve for this model showed improvement in the sensitivity
of the model, with eight years having up to 11 EBH accumulations. While a drop is evident in the
AUROC value due to loss in specificity, the grouping of decision threshold points higher in the ROC
plane allows consideration for another decision threshold as high as 11 EBH with a Sensitivity of 0.8.

3.3. Treatment Frequency and Dose Reduction

Assuming the usual calendar spray practice was followed during the period investigated,
the number of treatments calculated for the seven and five-day calendar spray programs were 15 and
22, respectively. The decrease in the number of recommended treatments with the increasing decision
threshold approximated with the LOESS curve is presented in Figure 7. All model versions provide a
reduction in the number of treatments compared to the standard five-day calendar treatment.
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Figure 7. Difference between the model guided and the standard grower practice number of treatments
over the range of decision thresholds. Figures (a–c) depict the sums of guided model; (d–f) the model
and calendar guided number of treatments per year. The dots represent the number of treatments
per corresponding warning threshold in each year. LOESS curve represents the average potential
benefit from the use of the model. The 5 and 7-day lines represent number of treatments per estimated
crop season. If the fitted smoothed line is above the estimated calendar frequency line, the model
recommends more treatments than the usual standard calendar program, on average.
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The number of treatments according to the default parametrization of IR is lower than the calendar
practice across the range of decision thresholds (Figure 7a,d). In the case of the optimized model, the
LOESS curve does not intersect any of the growers practice lines, indicating that the average number of
treatments recommended by the model is lower than any grower practice schedule across the range of
decision thresholds (Figure 7b,d). Given that the optimum decision threshold should not be lower than
4 EBH, the optimized model still provides an opportunity for a reduction in the number of treatments
in all but one year and as low as five per season when compared to the seven-day program.

The number of treatments advised by the low risk model when the decision threshold set to 3 EBH
(lowest observed risk accumulation prior to the disease outbreak) is lower than the 7-day treatment
interval on average. However, this is not the case in years such as 2012 or 2007, when the number of
treatments with a decision threshold of 7 EBH is close to the seven-day treatment frequency. However,
the possibility to set higher decision threshold provides more opportunities for reducing the number
of treatments, in the range from 5 to 11 EBH, with an average ranging from 12 to as low as six for the
five-day strategy, and 13 to 10 for the five to ten day strategy.

The cumulative proportion of the total fungicide applied using model guided strategy and the
number of treatments is compared to the 7-day calendar practice in Figure 8. All model versions
provide reductions in both the total dose and the number of treatments applied. The reductions are
lowest for the year 2012 which was one of the most severe ‘blight years’ on record [86]. Overall,
the highest mean dose reduction is achieved by the default IR (0.248), followed by optimized IR (0.33);
the lowest mean dose reduction is expectedly associated with the low risk IR (0.436).
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Figure 8. Dose reduction and number of treatments recommended per year by the IR: optimized model
and low risk model. Facets marked with the year on top represent summaries for individual years
while the last facet represents the averages and variance across all years. In the facets for the individual
years, the height of bars represents the proportion of the dose applied per model compared to the total
dose, while numbers at the top of the bars represent the total number of treatments recommended by
the model in each year. In the overall summary (facet on the far right), height of the bar represents the
mean dose reduction, the number above the bar is the mean number of treatments during the year and
the error bar represents standard deviation.
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4. Discussion

We presented an evaluation of the operational algorithm for potato late blight risk forecasting in
Ireland. To evaluate the selected algorithm, a sensitivity analysis of the threshold values associated
with the most important variables were assessed using empirical ROC curves derived from 10 years
of historical weather and disease observation data. Guided by the results of the sensitivity analysis,
current epidemiological knowledge and PLB risk awareness, we identified two improved sets of model
parameters and a range of operational thresholds. Finally, three disease control strategies, two based
on these improved model thresholds and currently using model parametrization, are compared to
standard growers’ practice.

Crossovers between empirical and mechanistic models are a common approach in crop disease
forecasting [42]; the IR model is one example. Mechanistic algorithms are a function-based estimation
of conditions for the development and completion of several (or a single) segments of disease
development, while in the IR, these segments are limited to a threshold-based prediction of their
completion. The threshold selection is often based on estimates by the model developer and may
not be an accurate representation of the complex nature of biological processes [87]. Such algorithms
have their appeal in their simplicity, although biological processes, such as the developments of
disease epidemics, do not have a binary state but are a part of a complex system that encompasses soft
transitions between minimum, optimum and maximum states [88]. The semi mechanistic form of the
IR adopted at the time for operational use in Ireland, required a number of simplifying assumptions.
These favored more “conservative” variable thresholds, to reduce the frequency of warnings. Our
results indicate that the previously defined default thresholds of the Irish Rules are no longer fit for
risk prediction in the new PLB pathosystem, and are based on the available data.

This study is in agreement with older reports stating that blight epidemics in Ireland are not
initiated before the second half of June [27] due to low night temperatures [89]. Average minimum
daily temperature in Oak Park was low in April and May, 4.5 ◦C and 7.2 ◦C respectively, providing a
potential explanation for the low pathogen activity during this period. Lower temperatures in the
early stages of potato development can provide a certain level of protection until the plants reach a
level of maturity where they are more resistant to attack [90]. This has been challenged in recent times
due to the rise in aggressiveness of newer pathogen strains active over a wider range of environmental
controls [12,28,86]. The Irish Rules model uses a hypothetical lower temperature threshold of 10 °C
without an upper boundary, consistent with a number of early prediction models employed in Northern
Europe [37,40,91–93]. Our results indicate that the development of P. infestans under typical Irish
weather conditions is low if the temperature is less than 12 °C. However, considering a relatively
small gain in overall model accuracy, a more comprehensive evaluation would be necessary prior to
recommending increasing the current temperature threshold. Previous research from areas with a
diverse pathogen population cautions that blight epidemics will progress even if temperatures are
lower than 10 °C, under extended humid periods, although the rate of this progress is low [94,95].
Additional years of data and knowledge of the founder population would be required to ensure that
this is a robust conclusion, suitable for deployment on an operational basis.

Evidence exists for reducing the relative humidity threshold and duration of initial sporulation
period. The diagnostic performance of the optimized model versions with these factors provides a
‘safer sleep’ for the farmer. Our results are in agreement with the report from Fennoscandia rejecting a
relative humidity threshold of 90% as a development threshold [96]. This threshold has been adjusted
in a number of models used throughout Europe; i.e, the French model, Milsol, uses a threshold of
86% (Gaucher, personal communication) and the Danish Blight management uses a threshold of 88%
(Hansen, personal communication). There are a number of reasons to opt for lower risk when deciding
on which reported relative humidity threshold should be considered blight favorable, such as accuracy
of measurements, distance between weather data source and the production area, topography of
the area, physiological and phenological differences in crop haulm density and shaded areas of the
production fields [49,97,98].
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Leaf wetness estimation is one of the key parameters in agricultural meteorology controlling
pathogen infection and determining disease development rates [99,100]. In agricultural field conditions,
leaf wetness may result from rain, fog, irrigation or distillation from the soil [101]; our results indicate
that a simple use of a precipitation threshold is not an appropriate estimator of leaf wetness in this
context and should be supplemented with an additional estimator based on a simple empirical model
for RH. Due to lack of in field measurements, we used a ‘reverse’ approach to test the validity of
proposed estimation method by comparing the leaf wetness estimation to the disease occurrence [102].
This estimation method has been successfully employed in a number of DSS worldwide [99,103].

A low risk of three and four EBH was predicted by both the optimized and low risk models,
prior to the disease onset during two of 10 years studied, 2011 and 2014. Possible reasons for this
are the proximity and strength of the inoculum source or the aggressiveness of the pathogen lineage
initiating the epidemics. The specific P. infestans lineages that initiated the epidemics in our data is not
known, but we can hypothesize that these infections were initiated by the more aggressive strains.
Additionally, epidemics in both years were initiated later in the season, on July 28th and August 1st,
possibly coinciding with a shift in the structure of pathogen population, increasing the probability that
the infections were initiated by a more aggressive strain. Limited findings from our monitoring of
the founder population at Oak Park, from 2016 to 2018, show that the epidemics are predominantly
initiated by the older clonal EU_8_A1 genotype, while the population structure changes in favor of
new genotypes EU_6_A1 and EU_13_A2 over the course of the season. This is in agreement with
recent experimental evidence regarding the establishment of the new P. infestans genotypes under Irish
conditions [20–22] exhibiting an increase in aggressiveness [12–15,17]. Hence, we can recommend
4 EBH as the minimum decision threshold to be considered under conditions of high disease pressure
or if the outbreak of aggressive strain of the pathogen is reported.

The optimized model offers significant potential to increase the model specificity and
consequentially, reduction in the number of required treatments, compared to the low risk model
in the high sensitivity range of the ROC curve, between 0.9 and one. The difference between the
optimized and low risk model, calling for caution, is the grouping of the cut-off points corresponding
to the decision thresholds above 5 EBH. A number of decision thresholds for the low risk model are
closer to the higher sensitivity area (5–11 EBH at 0.8 sensitivity) compared to the optimized model
(all cut-off points higher than 5 EBH correspond to 0.6 sensitivity). Thus, determining a higher
decision threshold, which requires less treatments, is possible for the low risk model at 0.8 sensitivity,
although defining an exact threshold is difficult since values from 5 to 11 EBH correspond to the same
sensitivity value. In the case of small sample sizes, the crude empirical estimate has the disadvantage
of providing the same sensitivity values for different specificity values. The robust methodology
and highly reproducible coding example allow for the regular updating and evaluation of the model,
leading to clearer definitions of the risk and/or benefit associated with each decision threshold as the
new data becomes available.

We have shown that on average, the use of risk prediction models offers a possibility for reducing
fungicide inputs compared to standard Irish growers’ practice. Possible reductions in the dose and the
number of treatments exhibit variation across the period studied. This reflects the nature of agricultural
production and further empowers the need for IPM approach to defining the treatment intervals. While
spray intervals should be longer than seven days, most of the time these intervals could be justifiably
reduced during parts of the ‘blight year.’ Currently, operational decision thresholds for issuing blight
warnings are not clearly defined and based on experience. Here we provide an estimation of risk
associated with decision thresholds in the higher sensitivity range. The accumulation of EBH needed
to issue the warning at sensitivity levels of 0.9 and one is the same for both the optimized and low
risk models, with the optimized model providing greater opportunities for reducing the number of
fungicide treatments and/or the dose. However, an important advantage of the low risk model is
related to the sensitivity, 0.8, providing more certainty in model outputs if the warning is considered
at a higher decision threshold, from 5 to 11 EBH. Such situations may be considered when other
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factors necessary for the disease development are estimated lower, such as earlier part of season, more
resistant varieties or low number of reported disease outbreaks in region. The adoption of decision
support systems and utilization into everyday practice could have numerous benefits for growers,
such as optimization, as well as, justification of fungicide inputs [54]. Our findings indicate that the
original Irish Rules model parameters need to be altered for two model variables, which inevitably
will result in an increase in the frequency of warnings. Optimization of the control program does not
necessarily mean reduction in the number of treatments, and an effective forecasting scheme could
advise at least as many fungicide treatments as the standard growers practice during seasons with
blight favorable conditions [104], which often occur with typical weather conditions experienced in
Ireland. The decision on the level of risk acceptable by a grower is a complex one, made according
to price of treatment, value of production, legislative restrictions [96] and the need for reduction to
prevent the development of fungicide resistance [33]. Hence, here we do not make a recommendation
for the exact decision threshold but elaborate on possible reductions and varying levels of risk deemed
acceptable by a producer. Met Éireann issues regional warnings and these warnings, and the quality
of these warnings, could be improved with information regarding the disease outbreaks and rapid
identification of the pathogen lineage, due to reasons outlined above.

Decision support at the synoptic level is not a silver bullet to provide an ultimate solution
for optimal environmentally friendly disease control, but merely another tool to get closer to it.
Unfortunately, if it is not utilized as such, and in an inappropriate manner it can lead to an opposite
effect. Plant disease models are often parochial in nature, evaluated by researchers who developed
them, and are often used without calibration when employed in agroecosystems different from those
they were developed for [31,105]. The interdisciplinary nature of the work related to decision support
in crop protection, requiring skills and knowledge in informatics, mathematics, meteorology, agronomy
and biology are often a limiting factor for the sustainable development of this branch of plant disease
epidemiology [49]. One possible way to overcome some of the obstacles is acceptance of open and
reproducible methods. The importance and need for open-science in the field of phytopathology
has been reported as a way include recruitment of experts from different fields, the application
of cutting-edge methods and timely replication of data analyses to increase the robustness of the
findings [106]. Some of the relevant examples are coming from other fields of research, related to
potato late blight. The development of our understanding and knowledge of P. infestans population
diversity has been empowered with POPPR, a widely used R package for enabling easier genetic
analysis of clonal populations [107]. Moreover, Sparks et. al. [108] evaluated the possible implications
of the climate change on potato late blight in the future. These do not have only a scientific value,
but represent a significant contribution to the education of a new generation of phytopathologists,
who will need to be equipped with such knowledge and skillsets to be able to keep up with the ‘fight’
against ever-evolving plant pathogens.

Easily accessible tools are necessary for validation and calibration of risk models using historical
data prior to field evaluation in other climatic regions or re-evaluation in the in the original ecosystem,
which could potentially save a considerable amount of time and money and lead to more sustainable
use of decision support in plant protection. To the best of our knowledge, this is the first completely
reproducible evaluation of a crop disease risk prediction model, implemented in a single computing
environment, within a freely accessible software language. Such work, it is hoped, will empower the
sustainable development of potato late blight and crop disease forecasting in general.

5. Conclusions

The results have shown the there is a need to revisit the parameters of the Irish Rules model,
proposed for the different ecosystem and operational abilities at the time, and the operational use of the
model. On the basis of the work presented here, we recommend the reduction of variable thresholds
for relative humidity from 90% to 88% and sporulation duration from 12 to 10 h; and adopting an
additional leaf wetness indicator, incorporating both precipitation (≥0.1 mm) and relative humidity
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(≥90%). Our analysis indicated that very little blight development was occurring at temperatures lower
than 12 ◦C; however, we do not recommend this increase operationally due to the lack of certainty
associated with the small data sample size and the high risk related to possible disease outbreaks and
wider decision threshold range in the high sensitivity area of the ROC space for the low risk model.
However, the thresholds identified here should be continuously evaluated after each growing season,
facilitated here by the development of the methodology and associated model evaluation code. Our
recommendation for the operational application of the model is to use the range of 4 to 11 EBH and
set the threshold dynamically during the season based on the reports of the frequency of the disease
outbreaks in the region of interest. Future development of the Irish PLB warning system should include
rapid in-season identification of pathogen genotype distribution to be used as a guide for selection of
the decision threshold.

Representation of the complex aetiology of P. infestans is omitted or generalized with synoptic
empirical prediction algorithms, and other components of this pathosystem, such as pesticide
protection status, crop resistance [7], quality of meteorological network coverage and distances between
production field and weather stations [54], crop phenological stage [6] and pathogen genotype [11,28].
Understanding complexities of the agroecological system under investigation is crucial for interpreting
results of the analysis we have implemented. Small data sets may carry high variability due to a
limited number of observations [57]. Hence, we add a note of caution when employing the model
proposed here.

The exact methodology used in the development of early models, such as the IR, is not always clear,
but the assumption is that they were a product of empirical, often trial and error based methodologies
and weather data available at the time (Yuen and Mila, 2015). Hence, the recommendation for future
development is to explore the possibility of redesigning currently employed models to facilitate the
transition from the threshold based binary estimation of stages of host parasite interaction, to a more
realistic one, based on a functional relationship between host, parasite and the environment. Future
work on development of risk prediction algorithms, should also take into consideration additional
uncertainty introduced by forecasted weather data, avoiding the usual practice in crop disease
modelling where models are developed with observed weather data and applied on forecasted weather
with no evaluation of the impact of weather-forecast uncertainty on model predictions [49]. Approaches
in IPM cannot be limited to a single discipline’s efforts. The vast amount of data available nowadays
that are currently under-utilized provides a number of opportunities for smarter farming [109]

The challenge still remains in front of the end user to adequately employ information provided
in the decision-making process with an awareness or knowledge of characteristics of variety grown,
growth stage, control measures used, risk from surrounding areas, accessibility of active ingredients, etc.
The often hard-earned confidence by the final user could be maintained through constant evaluation of
the system and adequate education regarding the appropriate use of decision support tools.
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