QTL Mapping and Transcriptome Analysis to Identify Differentially Expressed Genes Induced by Septoria Tritici Blotch Disease of Wheat
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Analysis
2.2. Genotyping and Linkage Mapping
2.3. QTL Mapping
2.4. Gene Expression and Ontology
2.5. Quantification of the Fungal Sequence Reads
2.6. Co-Localization of DEGs in QTL Regions
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Experimental Design
4.2. Inoculation and Disease Assessment
4.3. Genotyping
4.4. Linkage and QTL Mapping
4.5. RNA Isolation, Sequencing and Data Analysis
4.6. Genes in QTL Physical Positions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fones, H.; Gurr, S. The impact of Septoria tritici blotch disease on wheat: An EU perspective. Fungal Genet. Biol. 2015, 79, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Suffert, F.; Sache, I.; Lannou, C. Early stages of Septoria tritici blotch epidemics of winter wheat: Build-up, overseasoning, and release of primary inoculum. Plant. Pathol. 2011, 60, 166–177. [Google Scholar] [CrossRef]
- Eriksen, L.; Munk, L. The occurrence of Mycosphaerella graminicola and its anamorph Septoria tritici in winter wheat during the growing season. Eur. J. Plant. Pathol. 2003, 109, 253–259. [Google Scholar] [CrossRef]
- Kema, G.; Annone, J.; Sayoud, R.; Van Silfhout, C.; Van Ginkel, M.; De Bree, J. Genetic variation for virulence and resistance in the wheat-Mycosphaerella graminicola pathosystem. I: Interactions between pathogen isolates and host cultivars. Phytopathology 1996, 86, 200–212. [Google Scholar] [CrossRef]
- Steinberg, G. Cell biology of Zymoseptoria tritici: Pathogen cell organization and wheat infection. Fungal Genet. Biol. 2015, 79, 17–23. [Google Scholar] [CrossRef]
- Kettles, G.J.; Kanyuka, K. Dissecting the molecular interactions between wheat and the fungal pathogen Zymoseptoria tritici. Front. Plant. Sci. 2016, 7, 508. [Google Scholar] [CrossRef] [PubMed]
- Torriani, S.F.; Melichar, J.P.; Mills, C.; Pain, N.; Sierotzki, H.; Courbot, M. Zymoseptoria tritici: A major threat to wheat production, integrated approaches to control. Fungal Genet. Biol. 2015, 79, 8–12. [Google Scholar] [CrossRef]
- Fraaije, B.; Cools, H.; Fountaine, J.; Lovell, D.; Motteram, J.; West, J.; Lucas, J. Role of ascospores in further spread of qoi-resistant cytochrome b alleles (g143a) in field populations of Mycosphaerella graminicola. Phytopathology 2005, 95, 933–941. [Google Scholar] [CrossRef]
- Cools, H.J.; Fraaije, B.A. Update on mechanisms of azole resistance in Mycosphaerella graminicola and implications for future control. Pest. Manag. Sci. 2013, 69, 150–155. [Google Scholar] [CrossRef]
- Cheval, P.; Siah, A.; Bomble, M.; Popper, A.D.; Reignault, P.; Halama, P. Evolution of qoi resistance of the wheat pathogen Zymoseptoria tritici in northern France. Crop. Prot. 2017, 92, 131–133. [Google Scholar] [CrossRef]
- Yamashita, M.; Fraaije, B. Non-target site sdhi resistance is present as standing genetic variation in field populations of Zymoseptoria tritici. Pest. Manag. Sci. 2018, 74, 672–681. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Development of Guidance for Establishing Integrated Pest Management (IPM) Principles. Available online: https://ec.europa.eu/environment/archives/ppps/pdf/final_report_ipm.pdf (accessed on 3 September 2019).
- Hillocks, R.J. Farming with fewer pesticides: Eu pesticide review and resulting challenges for UK agriculture. Crop. Prot. 2012, 31, 85–93. [Google Scholar] [CrossRef]
- Miedaner, T.; Zhao, Y.; Gowda, M.; Longin, C.F.H.; Korzun, V.; Ebmeyer, E.; Kazman, E.; Reif, J.C. Genetic architecture of resistance to Septoria tritici blotch in European wheat. BMC Genom. 2013, 14, 858. [Google Scholar] [CrossRef] [PubMed]
- Ghaffary, S.M.T.; Chawade, A.; Singh, P.K. Practical breeding strategies to improve resistance to Septoria tritici blotch of wheat. Euphytica 2018, 214. [Google Scholar] [CrossRef]
- Yang, N.; McDonald, M.C.; Solomon, P.S.; Milgate, A.W. Genetic mapping of stb19, a new resistance gene to Zymoseptoria tritici in wheat. Appl. Genet. 2018, 131, 2765–2773. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.K.M.; Chartrain, L.; Lasserre-Zuber, P.; Saintenac, C. Genetics of resistance to Zymoseptoria tritici and applications to wheat breeding. Fungal Genet. Biol. 2015, 79, 33–41. [Google Scholar] [CrossRef]
- Dreisigacker, S.; Wang, X.; Cisneros, B.A.M.; Jing, R.; Singh, P.K. Adult-plant resistance to Septoria tritici blotch in hexaploid spring wheat. Appl. Genet. 2015, 128, 2317–2329. [Google Scholar] [CrossRef]
- Arraiano, L.; Brown, J. Identification of isolate-specific and partial resistance to Septoria tritici blotch in 238 European wheat cultivars and breeding lines. Plant Pathol. 2006, 55, 726–738. [Google Scholar] [CrossRef]
- Ghaffary, S.M.T.; Faris, J.D.; Friesen, T.L.; Visser, R.G.F.; van der Lee, T.A.J.; Robert, O.; Kema, G.H.J. New broad-spectrum resistance to Septoria tritici blotch derived from synthetic hexaploid wheat. Appl. Genet. 2012, 124, 125–142. [Google Scholar] [CrossRef]
- Goodwin, S.B. Resistance in wheat to septoria diseases caused by Mycosphaerella graminicola (Septoria tritici) and Phaeosphaeria (Stagonospora) nodorum. In Disease Resistance in Wheat; Sharma, I., Ed.; CABI: Wallingford, UK, 2012; pp. 151–159. [Google Scholar]
- Plissonneau, C.; Hartmann, F.E.; Croll, D. Pangenome analyses of the wheat pathogen Zymoseptoria tritici reveal the structural basis of a highly plastic eukaryotic genome. BMC Biol. 2018, 16, 5. [Google Scholar] [CrossRef]
- Goodwin, S.B.; M’barek, S.B.; Dhillon, B.; Wittenberg, A.H.; Crane, C.F.; Hane, J.K.; Foster, A.J.; Van der Lee, T.A.; Grimwood, J.; Aerts, A. Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet. 2011, 7, e1002070. [Google Scholar] [CrossRef] [PubMed]
- Palma-Guerrero, J.; Ma, X.; Torriani, S.F.; Zala, M.; Francisco, C.S.; Hartmann, F.E.; Croll, D.; McDonald, B.A. Comparative transcriptome analyses in Zymoseptoria tritici reveal significant differences in gene expression among strains during plant infection. Mol. Plant. Microbe Interact. 2017, 30, 231–244. [Google Scholar] [CrossRef] [PubMed]
- Stewart, E.L.; Croll, D.; Lendenmann, M.H.; Sanchez-Vallet, A.; Hartmann, F.E.; Palma-Guerrero, J.; Ma, X.; Mcdonald, B.A. Quantitative trait locus mapping reveals complex genetic architecture of quantitative virulence in the wheat pathogen Zymoseptoria tritici. Mol. Plant. Pathol. 2018, 19, 201–216. [Google Scholar] [CrossRef] [PubMed]
- Rudd, J.J.; Kanyuka, K.; Hassani-Pak, K.; Derbyshire, M.; Andongabo, A.; Devonshire, J.; Lysenko, A.; Saqi, M.; Desai, N.M.; Powers, S.J. Transcriptome and metabolite profiling of the infection cycle of Zymoseptoria tritici on wheat reveals a biphasic interaction with plant immunity involving differential pathogen chromosomal contributions and a variation on the hemibiotrophic lifestyle definition. Plant Physiol. 2015, 167, 1158–1185. [Google Scholar] [PubMed]
- Biselli, C.; Bagnaresi, P.; Faccioli, P.; Hu, X.; Balcerzak, M.; Mattera, M.G.; Yan, Z.; Ouellet, T.; Cattivelli, L.; Valè, G. Comparative transcriptome profiles of near-isogenic hexaploid wheat lines differing for effective alleles at the 2DL Fhb resistance QTL. Front. Plant. Sci. 2018, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Marino, R.; Ponnaiah, M.; Krajewski, P.; Frova, C.; Gianfranceschi, L.; Pè, M.E.; Sari-Gorla, M. Addressing drought tolerance in maize by transcriptional profiling and mapping. Mol. Genet. Genom. 2009, 281, 163–179. [Google Scholar] [CrossRef] [PubMed]
- Xu, E.; Vaahtera, L.; Horak, H.; Hincha, D.K.; Heyer, A.G.; Brosche, M. Quantitative trait loci mapping and transcriptome analysis reveal candidate genes regulating the response to ozone in Arabidopsis thaliana. Plant Cell Environ. 2015, 38, 1418–1433. [Google Scholar] [CrossRef]
- Dhokane, D.; Karre, S.; Kushalappa, A.C.; McCartney, C. Integrated metabolo-transcriptomics reveals fusarium head blight candidate resistance genes in wheat QTL-fhb2. PLoS ONE 2016, 11, e0155851. [Google Scholar] [CrossRef]
- Chartrain, L.; Sourdille, P.; Bernard, M.; Brown, J.K.M. Identification and location of stb9, a gene for resistance to Septoria tritici blotch in wheat cultivars courtot and tonic. Plant Pathol. 2009, 58, 547–555. [Google Scholar] [CrossRef]
- Cuthbert, R. Molecular Mapping of Septoria tritici Blotch Resistance in Hexaploid Wheat (Triticum aestivum L.). Ph.D. Thesis, University of Manitoba, Manitoba, MB, Canada, 2011. [Google Scholar]
- Yu, H.; Wu, J.; Xu, N.; Peng, M. Roles of f-box proteins in plant hormone responses. Acta Biochim. Biophys. Sin. 2007, 39, 915–922. [Google Scholar] [CrossRef]
- Bari, R.; Jones, J.D.G. Role of plant hormones in plant defence responses. Plant Mol. Biol. 2009, 69, 473–488. [Google Scholar] [CrossRef] [PubMed]
- Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Ann. Rev. Phytopathol. 2005, 43, 205–227. [Google Scholar] [CrossRef] [PubMed]
- Zamani, E.; Mohammadi-goltapeh, E.; Safaie, N. Effects of salicylic acid on the growth and pathogenicity of Zymoseptoria tritici. Biol. J. Microorg. 2019, 7. [Google Scholar]
- Dangl, J.L.; Jones, J.D. Plant pathogens and integrated defence responses to infection. Nature 2001, 411, 826. [Google Scholar] [CrossRef] [PubMed]
- Initiative, A.G. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000, 408, 796. [Google Scholar] [CrossRef] [PubMed]
- Monosi, B.; Wisser, R.; Pennill, L.; Hulbert, S. Full-genome analysis of resistance gene homologues in rice. Appl. Genet. 2004, 109, 1434–1447. [Google Scholar] [CrossRef]
- Ji, H.-M.; Zhao, M.; Gao, Y.; Cao, X.-X.; Mao, H.-Y.; Zhou, Y.; Fan, W.-Y.; Borkovich, K.A.; Ouyang, S.-Q.; Liu, P. Frg3, a target of slmir482e-3p, provides resistance against the fungal pathogen Fusarium oxysporum in tomato. Front. Plant Sci. 2018, 9, 26. [Google Scholar] [CrossRef]
- Sun, J.; Li, L.; Zhao, J.; Huang, J.; Yan, Q.; Xing, H.; Guo, N. Genetic analysis and fine mapping of rpsjs, a novel resistance gene to Phytophthora sojae in soybean [Glycine max (l.) merr.]. Appl. Genet. 2014, 127, 913–919. [Google Scholar] [CrossRef]
- Jianyuan, L.; Xiaodong, W.; Lirong, Z.; Qingfang, M.; Na, Z.; Wenxiang, Y.; Daqun, L. A wheat nbs-lrr gene targa19 participates in lr19-mediated resistance to Puccinia triticina. Plant Physiol. Biochem. 2017, 119, 1–8. [Google Scholar] [CrossRef]
- Bittner-Eddy, P.D.; Crute, I.R.; Holub, E.B.; Beynon, J.L. Rpp13 is a simple locus in Arabidopsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica. Plant J. 2000, 21, 177–188. [Google Scholar] [CrossRef]
- Shiu, S.-H.; Bleecker, A.B. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl. Acad. Sci. USA 2001, 98, 10763–10768. [Google Scholar] [CrossRef] [PubMed]
- Greeff, C.; Roux, M.; Mundy, J.; Petersen, M. Receptor-like kinase complexes in plant innate immunity. Front. Plant Sci. 2012, 3, 209. [Google Scholar] [CrossRef] [Green Version]
- Saintenac, C.; Lee, W.-S.; Cambon, F.; Rudd, J.J.; King, R.C.; Marande, W.; Powers, S.J.; Bergès, H.; Phillips, A.L.; Uauy, C. Wheat receptor-kinase-like protein stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici. Nat. Genet. 2018, 50, 368. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Keller, B.; McDonald, B.A.; Palma-Guerrero, J.; Wicker, T. Comparative transcriptomics reveals how wheat responds to infection by Zymoseptoria tritici. Mol. Plant. Microbe Interact. 2018, 31, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Odilbekov, F.; Armoniené, R.; Henriksson, T.; Chawade, A.C. Proximal phenotyping and machine learning methods to identify Septoria tritici blotch disease symptoms in wheat. Front. Plant. Sci 2018, 9, 685. [Google Scholar] [CrossRef] [PubMed]
- Van Ooijen, J. Joinmap® 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma Bvwagening 2006, 33, 1371. [Google Scholar]
- Wang, S.; Wong, D.; Forrest, K.; Allen, A.; Chao, S.; Huang, B.E.; Maccaferri, M.; Salvi, S.; Milner, S.G.; Cattivelli, L. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant. Biotechnol. J. 2014, 12, 787–796. [Google Scholar] [CrossRef]
- Van Ooijen, J.; Kyazma, B. Mapqtl 6. Software for the Mapping of Quantitative Trait Loci in Experimental Populations of Diploid Species; Kyazma BV: Wageningen, The Netherlands, 2009. [Google Scholar]
- Voorrips, R. Mapchart: Software for the graphical presentation of linkage maps and QTLs. J. Hered 2002, 93, 77–78. [Google Scholar] [CrossRef]
- Andrews, S. Fastqc: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 21 March 2018).
- Kopylova, E.; Noé, L.; Touzet, H. Sortmerna: Fast and accurate filtering of ribosomal rnas in metatranscriptomic data. Bioinformatics 2012, 28, 3211–3217. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. Multiqc: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef] [PubMed]
- Alaux, M.; Rogers, J.; Letellier, T.; Flores, R.; Alfama, F.; Pommier, C.; Mohellibi, N.; Durand, S.; Kimmel, E.; Michotey, C. Linking the international wheat genome sequencing consortium bread wheat reference genome sequence to wheat genetic and phenomic data. Genome Biol. 2018, 19, 111. [Google Scholar] [CrossRef] [PubMed]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. Star: Ultrafast universal rna-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence alignment/map format and samtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.; Pachter, L. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat. Methods 2013, 10, 71. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. Edger: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Du, Z.; Zhou, X.; Ling, Y.; Zhang, Z.; Su, Z. Agrigo: A go analysis toolkit for the agricultural community. Nucleic Acids Res. 2010, 38, W64–W70. [Google Scholar] [CrossRef] [PubMed]
Trait | Chr. | Position | Left Marker | Right Marker | Phenotypic Variation Explained (%) | R Source | ||
---|---|---|---|---|---|---|---|---|
Exp.1 | Exp.2 | Mean | ||||||
CHL | 3DL | 0–1.2 | CAP12_rep_c3953_177 | Excalibur_c13336_670 | 9.5 | 9.3 | Stigg | |
2BL | 11–19.1 | Excalibur_c47996_509 | Kukri_c3501_1175 | 13.9 | 16.3 | Stigg | ||
Accumulated percentage of variation explained | 23.4 | 0 | 25.6 | |||||
NEC | 3DL | 0–1.2 | CAP12_rep_c3953_177 | Excalibur_c13336_670 | 9.4 | 8.5 | 10.5 | Stigg |
1BS | 0–9.4 | AX-94509078 | AX-94436250 | 12.2 | 5 | 7.2 | Stigg | |
3AS | 1.2–2.4 | tplb0053a24_2194 | AX-94704180 | 8.9 | 10.2 | 5.9 | Nimbus | |
2BL | 0–19.1 | AX-94869203 | Kukri_c3501_1175 | 16.3 | 15.7 | 18.2 | Stigg | |
Accumulated percentage of variation explained | 46.8 | 39.4 | 41.8 | |||||
PYC | 3DL | 0–1.2 | CAP12_rep_c3953_177 | Excalibur_c13336_670 | 6.7 | 5.5 | 7.3 | Stigg |
1BS | 0–1.3 | AX-94509078 | AX-95162604 | 13.2 | 4.7 | 11.4 | Stigg | |
3AS | 1.2–2.4 | tplb0053a24_2194 | AX-94704180 | 8.3 | 7.1 | Nimbus | ||
2BL | 0–19.1 | AX-94869203 | Kukri_c3501_1175 | 15.3 | 22.7 | 17.9 | Stigg | |
Accumulated percentage of variation explained | 43.5 | 32.9 | 43.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odilbekov, F.; He, X.; Armoniené, R.; Saripella, G.V.; Henriksson, T.; Singh, P.K.; Chawade, A. QTL Mapping and Transcriptome Analysis to Identify Differentially Expressed Genes Induced by Septoria Tritici Blotch Disease of Wheat. Agronomy 2019, 9, 510. https://doi.org/10.3390/agronomy9090510
Odilbekov F, He X, Armoniené R, Saripella GV, Henriksson T, Singh PK, Chawade A. QTL Mapping and Transcriptome Analysis to Identify Differentially Expressed Genes Induced by Septoria Tritici Blotch Disease of Wheat. Agronomy. 2019; 9(9):510. https://doi.org/10.3390/agronomy9090510
Chicago/Turabian StyleOdilbekov, Firuz, Xinyao He, Rita Armoniené, Ganapathi Varma Saripella, Tina Henriksson, Pawan Kumar Singh, and Aakash Chawade. 2019. "QTL Mapping and Transcriptome Analysis to Identify Differentially Expressed Genes Induced by Septoria Tritici Blotch Disease of Wheat" Agronomy 9, no. 9: 510. https://doi.org/10.3390/agronomy9090510
APA StyleOdilbekov, F., He, X., Armoniené, R., Saripella, G. V., Henriksson, T., Singh, P. K., & Chawade, A. (2019). QTL Mapping and Transcriptome Analysis to Identify Differentially Expressed Genes Induced by Septoria Tritici Blotch Disease of Wheat. Agronomy, 9(9), 510. https://doi.org/10.3390/agronomy9090510