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Abstract: Auxin regulates diverse aspects of growth and development. Furthermore, polar auxin
transport, which is mediated by the PIN-FORMED (PIN) and AUXIN1/LIKE-AUX (AUX/LAX)
proteins, plays a crucial role in auxin distribution. In this study, six PIN and four AUX/LAX genes
were identified in ramie (Boehmeria nivea L.). We used qRT-PCR to characterize and analyze the two
gene families, including phylogenetic relationships, intron/exon structures, cis-elements, subcellular
localization, and the expression patterns in different tissues. The expression of these genes in response
to indole-3-acetic acid (IAA) treatment and drought stress was also assessed; the results indicate
that most of the BnAUX/LAX and BnPIN genes were regulated as a result of IAA treatment and
drought stress. Our study provides insights into ramie auxin transporters and lays the foundation
for further analysis of their biological functions in ramie fiber development and adaptation to
environmental stresses.
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1. Introduction

Auxin is a phytohormone that controls numerous aspects of plant growth and developmental
processes, including apical dominance [1], phloem and wood formation [2,3], flower abscission [4], fruit
and root development [5,6], phototropism [7], and leaf formation [8]. In addition, auxin participates in
plant responses to abiotic stresses [9,10]. Indole-3-acetic acid (IAA) is the main form of auxin in plant
hormones. There are two distinct pathways of auxin transport in plants: passive transport through
phloem and active intercellular transport. Auxin influx and efflux carriers promote the intercellular
movement of auxin [11]. Polar auxin transport (PAT), combined with local auxin biosynthesis, plays
an important role in maximizing auxin production, and is essential for plant development and stress
responses [12,13]. The interaction and coordination of auxin influx and efflux carrier proteins in plants
constitute a flexible network that can respond to environmental and developmental changes. The four
known auxin transporter families in plants are the PIN family, PIN-LIKES (PILS) family, AUX/LAX
family, and ATP-binding cassette family B (ABCB)-P-glycoprotein (PGP) family [14,15]. Among these
four families, AUX/LAX and PIN are the most well-characterized families involved in auxin influx and
auxin efflux.

AUX/LAX proteins transport auxin into cells [16]. In Arabidopsis thaliana, the AUX/LAX family
consists of four highly conserved genes: AUX1, LAX1, LAX2, and LAX3 [17]. AUX/LAX genes encode
multimembrane-spanning transmembrane proteins, and biochemical and genetic evidence suggests
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that members of the AUX/LAX family are functional auxin influx carriers and mediate auxin-related
developmental programs in different tissues and organs [18]. From early embryonic development,
cellular patterning requires AUX1/LAX-dependent auxin influx, and the expression of AUX1 and
LAX2 is controlled by the MONOPTEROS-BODENLOS (MP-BDL) signaling pathway [16]. AUX1 is
expressed in tissues related to gravity perception, signal transmission, and signal response [18,19],
while LAX2 plays an important role in normal xylem development [20]. In addition, aux1 and lax1
mutants had significantly altered leaf phyllotaxy [21], lax1 and lax3 mutants had reduced lateral root
formation [20,22], and the lax2 mutant had vascular breaks in cotyledons [17].

The auxin efflux carriers in the PIN family transport auxin throughout the plant in a polar
manner [23–25]. PIN proteins are usually located in the plasma membrane (PM) or endoplasmic
reticulum (ER) to direct the auxin flow. The first PIN family member was identified in Arabidopsis in
association with auxin transport [26]. To date, eight PIN protein family members, named PIN1–PIN8,
have been isolated from Arabidopsis [27]. Among them, the PIN1–4 and PIN7 proteins are localized
in the PM and function as auxin efflux carriers. The PIN5, PIN6, and PIN8 proteins have a reduced
hydrophilic loop in the middle which may regulate the auxin exchange between the cytosol and
ER. Variations in the activity of these genes cause altered levels of free IAA and IAA conjugates
and affect nuclear auxin signaling [13]. PINs have functional redundancy, and their biochemical
activity is regulated in multiple stages [27]. Furthermore, the fewest PIN genes are found in
Marchantia polymorpha, which has 4, while the most are found in Glycine max, which has 23 [28].
In Arabidopsis, PIN1 is involved in floral bud [26] and leaf shape formation [29], shoot vascular
development [30], gravitropic and phototropic responses [31,32], and vein patterning [29]. PIN2 is
expressed in cortical and epidermal cells of apical elongation zones [33,34] and is involved in the root
gravitropic response [35]. PIN3 is involved in lateral root formation [36], apical hook formation and
maintenance [37], phototropic responses [32], and gravitropism [38]. PIN4 plays roles in phototropic
responses and apical hook development [35], and is expressed in the meristems of roots [39]. PIN5 is
involved in early embryogenesis, cotyledon expansion, lateral root initiation, and root and hypocotyl
growth [40]. PIN6 is dually localized in the PM and ER. It regulates intracellular auxin homeostasis and
auxin transport during plant growth, including shoot apical dominance, adventitious root formation,
root waving, root hair growth, and lateral root primordia development [41,42], and also participates in
inflorescence stem elongation [43], production of nectar, and short stamen development [23]. PIN7
participates in gravitropic and phototropic responses [32,44], early embryogenesis [25], and apical
hook development [45]. PIN8 acts as a pollen-specific auxin carrier, and is involved in sporophyte and
male gametophyte development [28,46,47].

Although extensive research has been conducted on the AUX/LAX and PIN gene families in species
throughout the plant kingdom, including Arabidopsis, Populus, Glycine max, Sorghum bicolor, Zea mays,
Capsicum annuum, and cotton (Gossypium hirsutum) [47–53], little is known about these genes in ramie.
Ramie has been cultivated for more than 4,700 years in China. The ramie fiber made from stem bast is
an excellent textile material that is widely used in industrial fabrics and the manufacture of garments.
Moreover, ramie is used as a forage crop in the south of China [54]. The present study provides
comprehensive information about the BnAUX/LAX and BnPIN gene families. Gene identification and
structure, basic parameters, phylogenetics, promoter cis-regulatory element analysis, tissue expression
patterns, transcriptional responses to hormone treatment and abiotic stress, and subcellular localization
are addressed. The results of this study could provide a foundation for further research.

2. Materials and Methods

2.1. Plant Materials, Treatments, and Sampling

Ramie cv. 1504 was planted in the ramie germplasm repository of the Huazhong Agricultural
University (Wuhan, Hubei Province, China). The shoots, leaves, stem bark, and roots of 2-month-old
plants were sampled. For indole acetic acid (IAA) treatment, the tips of young shoots (about 15 cm)
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were cut, and the incisions were immersed in 0.1 g/L KMnO4 for 2 days and then cultured in water for
rooting. Afterward, all plants were transferred to Hoagland’s nutrient solution for 7 days. Some plants
were then treated with 0.05 M IAA (Sigma-Aldrich, Saint Louis, MO, USA), while others continued to
grow in Hoagland. After 60 min of IAA treatment, the leaves were sampled, immediately frozen in
liquid nitrogen, and stored at −80 ◦C. There were three biological replicates for each sample.

2.2. Identification of BnPIN and BnAUX/LAX Auxin Transporter Gene Families in Ramie

The AtPIN and AtAUX/LAX gene sequences were obtained from the TAIR database [55]. Because
mulberry (Morus notabilis) and ramie both belong to the order Urticales, the MnPIN and MnAUX/LAX
gene sequences were downloaded from the mulberry genome database [56]. All the obtained sequences
of the two gene families were used to search three ramie transcriptome databases [57–59]. ClustalX [60]
was used to align the sequences from the three transcriptome databases according to the nucleotide
sequence. If two or more sequences from different databases overlapped partially (more than 50 bp)
or completely, they were further assembled. Finally, all the aforementioned genes obtained were
analyzed by using the Open Reading Frame Finder [61] to obtain the coding sequences (CDSs), which
were submitted to GenBank [62] (Table 1). The genome sequences of the BnPIN and BnAUX/LAX
gene families were obtained using the CDSs to conduct a BLASTN search in the two ramie genome
databases [54,63].

Table 1. Auxin transport-related genes in ramie and their CELLO localizations.

Gene GenBank
Number

CDS
(bp)

Predicted
Protein

Length (aa)

Molecular
Weight

Theoretical
pI CELLO Localization

BnAUX1 KR139986 1470 489 54960.83 8.41 PlasmaMembrane (4.989)
BnLAX1 KR139987 1467 488 54610.79 8.77 PlasmaMembrane (4.989)
BnLAX2 KR139988 1491 496 55944.47 9.01 PlasmaMembrane (4.970)
BnLAX3 KR139989 1410 469 53098.19 9.18 PlasmaMembrane (4.970)
BnPIN1a KR139990 1776 591 63313.03 8.70 PlasmaMembrane (4.225)
BnPIN1b KR139991 1869 622 67970.12 8.64 PlasmaMembrane (4.601)
BnPIN3 KR139992 2022 673 72588.55 7.30 PlasmaMembrane (3.607)
BnPIN5 KR139993 1086 361 39707.95 6.30 PlasmaMembrane (3.607)
BnPIN6 KR139994 1656 551 60102.28 8.96 PlasmaMembrane (3.607)
BnPIN8 KR139995 1080 359 39279.19 9.40 PlasmaMembrane (3.607)

2.3. Phylogenetic Analysis, Gene Structure, and Protein Profile Analysis

In this study, phylogenetic relationships were constructed with all the BnAUX/LAX and BnPIN
amino acid sequences of Arabidopsis, mulberry, and ramie using the neighbor-joining (NJ) method
in MEGA software (version 5.0), and the NJ tree was evaluated by 1000 bootstrap replicates [64].
Conserved functional domains in the protein sequences were analyzed by online MEME software
(version 5.0.4) [65]. Protein transmembrane topology was predicted using TMHMM Server (version
2.0) [66]. The protein lengths, molecular weights, and theoretical isoelectric points were analyzed by
the online ProtParam tool of ExPASy server [67]. Protein subcellular localization was predicted online
by CELLO (version 2.5) [68].

2.4. Cis-Elements in the Promoter Regions of BnAUX/LAX and BnPIN Genes

The cis-elements in the BnPIN and BnAUX/LAX gene promoter regions were surveyed by searching
the ramie genome database to retrieve 2 kb sequences that are upstream of the initiation codon. The
putative cis-acting elements associated with stress responses, growth, and development were identified
online by PlantCARE [69]. The image data were displayed using TBtools software (version 0.6652) [70].
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2.5. RNA Extraction and Real-Time Quantitative PCR Analysis

RNA was extracted using the RNA Prep Pure Plant kit (Tiangen Biotech, Beijing, China) and
then reverse-transcribed by the GoScript Reverse Transcription System (Promega, Madison, MI, USA).
Quantitative real-time PCR was performed on a Bio-Rad iQ5 Real-Time PCR System (Bio-Rad, Hercules,
CA, USA). The glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) gene was selected as the internal
control [58]. Specific primers were designed online (http://primer3.ut.ee/) (Table S1). The 20 µL reaction
system included 1 µL of cDNA, 1 µL of forward primers, 1 µL of reverse primers, 10 µL of iTaq
Universal SYBR Green Supermix (Bio-Rad, Hercules, CA, USA), and 7 µL of ddH2O. The thermocycling
regime consisted of 5 min at 95 ◦C, 40 cycles of 15 s at 95 ◦C, and 30 s at 60 ◦C. Each sample was
replicated three times. The data were calculated by the 2−∆∆Ct method [71].

2.6. Expression Profiling of BnAUX/LAX and BnPIN Genes

To further investigate the BnAUX/LAX and BnPIN expression, RNA-Seq data (measured by
normalized FPKM) including bast fiber development (top, middle, and bottom) [57], in vitro
organogenesis (W0, W1, W2, W3, W4) [58], and drought stress (1, 24, 72 h) [59] was used for
analysis. These data were presented in heat maps using the R software (version 3.6.0).

2.7. Subcellular Localization of BnAUX/LAX and BnPIN Proteins

To further confirm the subcellular localization of the BnPIN5 and BnAUX/LAX proteins, we
constructed a BnPIN (AUX/LAX):GFP fusion gene controlled by the CaMV35S promoter (refer to
Figure 7a). Specific primers were designed from both ends of the selected sequence (Table S2). Then, the
fusion genes and empty vector (positive control) were transformed into tobacco (Nicotiana benthamiana)
by Agrobacterium-mediated infiltration as described previously [72]. After transient transformation,
the tobacco plants were grown in the dark for 24–48 h at room temperature, and then the epidermal
cells were examined by a laser scanning confocal microscope (Olympus FV1200, Japan), the green
fluorescence was excited with a 488-nm laser line, and cells were detected using a NIBA emission filter.
The epidermal cells of untreated tobacco leaves were also examined as negative controls. The images
were processed by Adobe PhotoshopCC2017.

3. Results

3.1. Identification and Phylogenetic Analysis of Ramie BnAUX/LAX and BnPIN Families

In total, four BnAUX/LAX and six BnPIN genes were identified in ramie (Table S3). From the
phylogenetic tree, the BnLAX gene family can be divided into two subfamilies (Figure 1a). BnAUX1
and BnLAX1 belong to subfamily I, and BnLAX2 and BnLAX3 belong to subfamily II. A total of 20 PIN
proteins, including 6 BnPIN, 8 AtPIN, and 6 MnPIN proteins, were used to construct a phylogenetic
tree (Figure 1b). The BnPIN family was divided into four subgroups. BnPIN3 belongs to subgroup
I, BnPIN1a and BnPIN1b belong to subgroup II, BnPIN6 and BnPIN8 belong to subgroup III, and
BnPIN5 belongs to subgroup IV. Moreover, most BnAUX/LAX and BnPIN proteins were more similar
to those in mulberry compared with those in Arabidopsis.

http://primer3.ut.ee/
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3.2. Phylogenetic, Protein Domain, and Gene Structure Analysis of the BnAUX/LAX and BnPIN Families

The conserved motifs of the AUX/LAX and PIN proteins were investigated by MEME (Figure 2).
The AUX/LAX protein sequences have a conserved domain with a length of more than 400 amino acids
(Figure 2a). Ramie PIN proteins have two conserved domains of 170 and 161 amino acids, respectively
(Figure 2b). The CDS of BnAUX/LAX varies between 1410 and 1491 bp, coding 469–496 amino acids; the
molecular weight is 53098.19–55944.47, and the isoelectric point (pI) is 8.41–9.19. TMHMM2 software
predicted 10 transmembrane helices in BnAUX/LAX proteins. The CDS of BnPIN varies between 1086
and 2022 and encodes 359–673 amino acids; the molecular weight is 39279.19–72588.55, and the pI is
6.30–9.40. The transmembrane helices of BnPIN proteins range from 8 to 10 (Table 1, Figure 3), and all
PINs contain two hydrophobic domains separated by a hydrophilic loop. There are 6, 6, and 8 exons in
BnLAX1, BnLAX2, and BnLAX3, respectively, and 7, 7, 6, 7, 6, and 4 exons in the BnPIN genes. The
difference between the longest gene BnPIN6 (with a gene size of 12.9 kb) and the shortest gene BnPIN8
(1.9 kb) is mainly due to the total intron length (Figure 4).
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3.3. Cis-Element Prediction in BnAUX/LAX and BnPIN Promoters

Cis-acting elements that are bound by transcription factors and involved in plant stress response,
growth, and development [73], among other processes. Promoter cis-element analysis reveals
several phytohormone-related and stress-related motifs in the BnAUX/LAX and BnPIN gene promoter
regions (Figure 4, Table S4). Ten common cis-regulatory elements are briefly characterized as
auxin-responsive, MeJA-responsive, salicylic acid-responsive, gibberellin-responsive, defense- and
stress-responsive, abscisic acid-responsive, anaerobic-inducible, and drought-inducible elements.
Furthermore, light-responsive elements are pervasive. These results indicate that the BnAUX/LAX
and BnPIN genes are vital to various hormone signaling and abiotic stress responses, which might be
hypothesized by their diverse natures.
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3.4. Tissue-Specific and Treatment-Induced Expression Profiles of BnAUX/LAX and BnPIN

The tissue-specific expression levels of the BnAUX/LAX and BnPIN genes are shown in Figure 5.
BnAUX1, BnLAX2, BnPIN3, BnPIN5, BnPIN6, and BnPIN8 were highly expressed in the leaves,
while BnPIN1b had high expression levels in the bark. BnLAX1, BnPIN5, BnPIN6, and BnPIN8 were
expressed at relatively low levels in four tissues. After IAA treatment, the relative expression of
BnAUX1, BnLAX1, BnPIN1b, BnPIN5, and BnPIN8 decreased. Conversely, the relative expression of
BnLAX2, BnPIN3, and BnPIN6 increased, and there was no significant change in the relative expression
of BnLAX3 and BnPIN1a (Figure 5).
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In bast fiber development, expression of the BnAUX1, BnLAX2, and BnPIN1a genes was inhibited.
In the early stage of fiber development (the top part of the stem bark), only BnLAX3, BnPIN1b, and
BnPIN3 were highly expressed; in the middle part of the bast fiber, the BnPIN5, BnPIN6, BnPIN8
genes were distinctly upregulated. The bottom part of the bast fiber represents the mature fiber,
and the BnLAX3, BnPIN1b, and BnPIN3 genes were expressed to a higher degree relative to others.
In vitro organogenesis includes the development of callus and shoot buds during regeneration, and
intervals of 0 (W0), 4 (W1), 14 (W2), 28 (W3), and 35 (W4) days (the buds were observed for 30 days)
were set on the basis of morphological observation. BnAUX1, BnPIN1a, and BnPIN1b were more
expressed than other genes, and BnPIN6 was upregulated. Polyethylene glycol (PEG) treatment for
24 h caused the downregulation of the expression levels of most BnAUX/LAX and BnPIN genes, which
were still downregulated after treatment for 72 h. In contrast, in the roots, most BnAUX/LAX and
BnPIN genes were upregulated when treated for 24 h, and most genes were downregulated when
PEG treatment lasted 24–72 h (Figure 6). It is worth mentioning that 0–24 and 24–72 h PEG treatment
caused upregulation of the BnLAX1 gene in the roots for both periods, while the expression level of
BnPIN5 was downregulated and then upregulated in the roots.
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3.5. Subcellular Localization of BnAUX/LAX and BnPIN5 Proteins

The positive control and the fusion constructs were transiently transformed into tobacco leaf
cells. In Figure 7b, no GFP is observed in the negative control, and the GFP signal is distributed
throughout the tobacco leaf cells in the GFP positive control. The GFP signals from the BnPIN5-GFP
and BnAUX/LAX-GFP fusion proteins are observed clearly in the membrane, suggesting that the four
fusion proteins were localized in the cell membrane.
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Figure 7. Subcellular localization of BnPIN5, BnAUX1, BnLAX1, and BnLAX2 proteins in tobacco
leaf: (a) subcellular localization of the fused pEGAD-35S::BnPIN (BnAUX/LAX):GFP in tobacco leaf
cells. The pEGAD-35S::GFP construct was used as the control. (b) The fusion proteins were transiently
expressed in tobacco epidermis cells. Merged overlays of bright-field and green fluorescence images
are shown. The scale bars are 20 µm.

4. Discussion

4.1. Characterization and Analysis of BnAUX/LAX and BnPIN Genes in Ramie

Six PIN and four AUX/LAX genes were identified in ramie, a number of genes that is similar to the
number in Arabidopsis. The biological functions of the AUX/LAX and PIN genes have been revealed
in Arabidopsis. Therefore, studying the evolutionary relationships of AUX/LAX and PIN proteins
among ramie, mulberry, and Arabidopsis can help us understand the possible biological functions
of these genes. The phylogenetic analysis shows that the phylogenetic relationship between ramie
and mulberry is closer than that between ramie and Arabidopsis. It is predicted that all BnAUX/LAX
and BnPIN proteins are localized in the membrane, and the subcellular localization of the BnAUX1,
BnLAX1, BnLAX2, and BnPIN5 proteins in tobacco are located in the membrane. The PIN5 protein
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has a reduced hydrophilic ring which is typically located in the internal compartment [40]. However,
another study pointed out that the PIN5 protein is clearly localized in the PM [74]. For the BnAUX/LAX
and BnPIN genes, we also explored the cis-regulatory elements in the promoter regions and discovered
the enrichment of several hormone- and stress-related cis-elements, as well as many light-responsive
elements (Table S4). The prediction of the cis-regulatory elements indicates that that BnAUX/LAX and
BnPIN genes may participate in the drought stress response and drought tolerance. In Arabidopsis,
PIN play important roles in regulating asymmetrical auxin translocation during phototropism [38].
Among them, PIN3 regulates the lateral translocation of auxin and plays a role in gravitropism and
phototropism [38,75].

4.2. Analyses of Tissue-Specific Expression of BnAUX/LAX and BnPIN Genes

The differential expression of most BnAUX/LAX and BnPIN genes in tissues indicates that they
may be involved in the regulation of ramie growth and development. Nearly all the BnAUX/LAX
and BnPIN genes are highly expressed in the leaves. In Arabidopsis, the vein patterning in leaf is
controlled by two distinct auxin transport pathways: PIN1-mediated intercellular auxin transport
in the PM and PIN6-, PIN8-, and PIN5-mediated intracellular auxin transport in the endoplasmic
reticulum [76]. Moreover, phyllotaxis changes when AUX1/LAX activity is lost [23]: the quadruple
mutant aux1 lax1 lax2 lax3 and the single mutants aux1, lax2, and lax3 exhibit enhanced asymmetry in
their venation patterns [20]. Therefore, we infer that the BnAUX/LAX and BnPIN genes may regulate
auxin transport during leaf development. The BnLAX1, BnLAX2, BnPIN1a, BnPIN5, and BnPIN6 genes
show low expression levels in the bark. In contrast, BnPIN1b is strongly expressed in the bark. In an
analysis of PIN genes in cotton, fiber elongation was observed when the expression of PIN genes was
increased [77]. Further research on BnPIN1b may increase our knowledge of the molecular mechanisms
underlying bast fiber development in ramie.

4.3. BnAUX/LAX and BnPIN Genes Were Responsive to IAA Treatment and Drought Stress

Previous studies have reported crosstalk between auxin and biotic and abiotic stress signaling [78].
To confirm whether the BnAUX/LAX and BnPIN genes participate in IAA signaling and drought
responses, we analyzed the gene expression levels in ramie treated with IAA and PEG. Many
BnAUX/LAX and BnPIN genes responded to IAA treatment and drought stress at the transcriptional
level, and they were differentially expressed in leaf and root in response to drought stress. In soybean,
most of the PIN genes respond to a variety of phytohormone stimuli and abiotic stresses [79]. In sorghum,
most of the SbPIN genes are upregulated by IAA treatment, and IAA induces SbLAX2 and SbLAX3,
but the expression of SbLAX1 and SbLAX4 is inhibited in leaf and root [80]. In maize, the expression
of most ZmPIN and ZmLAX genes is upregulated in the shoots, but these genes are downregulated
in the roots as a result of drought stress [51]. In rice, the IAA content is reduced after drought stress.
In response to these stresses, many genes involved in IAA biosynthesis and signaling change at the
transcriptional level, and these changes are basically consistent with changes in the level of endogenous
IAA [81]. OsPIN3t is involved in auxin transport and the drought stress response, suggesting that
the polar auxin transport pathway is involved in regulating plant responses to water stress [82]. The
synergistic or antagonistic hormone action and the coordinated regulation of hormone biosynthetic
pathways play key roles in plant adaptation to abiotic stresses [83]. The versatile expression responses
of BnAUX/LAX and BnPIN genes to IAA and drought stress suggest that these genes are controlled by
complex regulatory networks. This is supported by the prediction analysis of the cis-element in the
promoters of BnAUX/LAX and BnPIN. Drought stress severely affects ramie stem growth, and fiber
production is easily affected by an arid environment [84]. AUX/LAX and PIN in ramie might promote
plant adaptation to drought stress by participating in the regulation of auxin distribution.
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5. Conclusions

This study comprehensively analyzed the AUX/LAX and PIN genes in ramie. Further research,
such as the identification of biological functions and genetic analysis of each BnAUX/LAX and BnPIN
gene, will accelerate the study of the molecular mechanisms mediated by auxin transporters that
regulate fiber development and abiotic stress tolerance. The results of such studies can be used to
increase the yields of ramie fiber and enhance the resistance to various stresses, thus improving
plant performance.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/9/8/435/s1,
Table S1: Primers for qRT-PCR analysis; Table S2: Primers for subcellular localization; Table S3: Gene
sequences of BnAUX/LAX and BnPIN from three databases; Table S4: Cis-Element Prediction of BnAUX/LAX and
BnPIN Promoters.
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