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Abstract: Spike shape and morphometric characteristics are among the key characteristics of cultivated
cereals associated with their productivity. Identification of the genes controlling these traits requires
morphometric data at harvesting and analysis of numerous plants, which could be automatically
done using technologies of digital image analysis. A method for wheat spike morphometry utilizing
2D image analysis is proposed. Digital images are acquired in two variants: a spike on a table
(one projection) or fixed with a clip (four projections). The method identifies spike and awns in the
image and estimates their quantitative characteristics (area in image, length, width, circularity, etc.).
Section model, quadrilaterals, and radial model are proposed for describing spike shape. Parameters
of these models are used to predict spike shape type (spelt, normal, or compact) by machine learning.
The mean error in spike density prediction for the images in one projection is 4.61 (~18%) versus
3.33 (~13%) for the parameters obtained using four projections.
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1. Introduction

Spike shape and morphometric characteristics are among the key characteristics of cultivated
cereals associated with the important agronomic traits, such as yield, non-brittle spike, and easy
threshing. Biologists and breeders are interested in the spike characteristics, such as length, number
of spikelets per spike, number of kernels per spike, size and shape of kernels, and their weight per
spike as well as spike shape and density, presence or lack of awns, and spike and awn color [1]. Spikes
differ in their shape, size, density, awnedness, color, and so on. The spike shape is controlled by a set
of genes; their study will make it possible to purposefully create new cultivars with improved yield
characteristics, easier threshing, and resistance to environmental factors [2]. The wheat inflorescence is
a compound spike with a length of 5–17 cm and longer; it consists of a rachis and spikelets. The rachis
consists of segments each bearing with spikelets. In turn, each spikelet comprises two–five florets and
only one to three of them develop into grains.

An important goal of the breeding and genetic experiments is a rapid and accurate assessment of
the target plant parameters, referred to as phenotyping [3]. The spike length and density as well as the
number of spikelets and kernels per spike, weight of 1000 grains, and several other characteristics are
of a great relevance for breeders and geneticists [4,5]. The kernel shape is also a useful breeding trait
since it determines the flour yield along with the grain size and uniformity, thereby contributing to
grain commercial value [6]. The characteristics of spike morphology also form the background of genus
Triticum L. [3,7] and related species [8] taxonomies. Currently, the spike characteristics in most studies
are assessed by an expert via a visual analysis and measurements, which is rather time-consuming;
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the more so as the modern experiments involve tens of thousands of plants [5,9]. Correspondingly,
automation of this laborious and time-consuming process is relevant for the science and breeding.
The efficiency of plant phenotyping can be increased by technologies of digital image analysis [10–12].
These technologies were applied for both kernel size and shape morphometry [13–16] and analysis of
the spike traits [17–20].

The methods for digital image analysis of spike characteristics are also developed and allow
for solving of different problems. Grillo et al. [17] developed a method for the wheat variety
identification using glumes size, shape, color, and texture characteristics obtained from image analysis.
Makanza et al. [18] designed the software allowing for determination of ear length and width as well
as estimation of maize grain size and weight. Pound et al. [19] used deep learning to count wheat
spikes and assess the number of spikelets per spike using images of wheat plants taken in glasshouse
conditions. However, Pound et al. in their work did not estimate the morphological characteristics of
spikes, such as their length, width, and type. As for the deep learning algorithms, their use, in turn,
requires a large number of annotated spike images (several tens of thousands) to train the neural
network parameters. Hughes et al. [20] determined wheat spike and grain morphometric parameters
from X-ray micro computed tomography data. This method is highly accurate when determining the
fine characteristics of spike and grain shapes but requires a special device for recording tomographic
images. Kun et al. [21] proposed morphometry of wheat spikes via image processing. The authors
utilized 2D images to assess various characteristics, such as spike length and awn number and length,
and classified the spike shape type according to its length-to-width ratio. The spike parameters were
used for their classification according to cultivars with the help of back propagation neural network.
An advantage of the last approach is in that a rather simple imaging protocol applicable to common
use is employed in spike morphometry. However, the software for image processing is unavailable.
In addition, the description of wheat spike shape based on the length-to-width ratio is a significant
simplification. Thus, a method for wheat spike morphometry that would utilize a commonly available
imaging protocol to assess a wide range of the spike shape and size characteristics with the help of
an available software is still of high relevance.

Here, we propose a method for determining the quantitative characteristics of spike shape based
on analysis of its 2D images. This method utilizes digital processing of the images of the spikes detached
from plants. The images are recorded under laboratory conditions without any special requirements to
photographic equipment and light conditions. Analysis of the detached spikes allows for digitizing
of the already existing spike specimens. This method is based on outlining the spike contour and
further analysis of the spike size and shape. This method makes it possible to extract several traits
associated with spike shape and its awns. The proposed approach has shown high performance in
identifying the image regions pertaining to the spike and its awns. Several regression models are
proposed for describing the shape of wheat spike. These techniques do not require any large training
samples for parameter selection (unlike the deep learning methods [19]). Parameters of these models
have been used to predict the spike characteristics, such as the index of spike density and its shapes.
The proposed method is available at http://wheatdb.org/werecognizer.

2. Materials and Methods

2.1. Imaging

The imaging protocols for further analysis of spikes were proposed earlier [22]. See Supplementary
file (Section 1) for a detailed description. The spike is captured on a blue background (‘table’ protocol)
or is vertically fixed with a clip holder (‘clip’ protocol). The holder allows spikes to be fixed at different
angles relative to the spike axis. We used this to obtain four projections of a spike, which further
allowed us to improve the accuracy in assessing the spike type and density (see Results). Each image
contains a ColorChecker Mini Classic target (https://xritephoto.com/camera) for color correction.
This correction allows for avoiding color shifts in the images, which result from differences in the

http://wheatdb.org/werecognizer
https://xritephoto.com/camera


Agronomy 2019, 9, 390 3 of 22

lighting conditions [23]. Another advantage in using the color scale is its standard size (68 × 108 mm),
allowing for assessment of image scale. Figure 1 shows examples of spike images.
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Figure 1. Images of spikes captured by two different protocols: (a) On a table and (b) fixed with
a clip holder.

2.2. Identifying Spike and Awns in Images

2.2.1. Image Preprocessing

Images were processed using the OpenCV (Open Source Computer Vision Library; https://opencv.
org) software package [24]. At the first stage, we identified the color scale for the image (Figure 1,
left). The color scale may be tilted relative to the image vertical axis and its plane is not always
perpendicular to the optical axis of the lens in the case of ‘clip’ protocol. The scale was identified using
its reference image to obtain several descriptors by searching for key points. The descriptor in the spike
image closest in the Hamming distance was determined for each descriptor of the reference image.
The regions corresponding to different colors of the palette were identified by aligning a calibrated
image of the scale with the reference one using a RANSAC algorithm [24].

Having identified the color scale, we correct the image color with the help of a method used
in epiluminescence microscopy [25]. The shift in colors in spike image relative to the reference was
assessed using Dcol parameter (see Supplementary file, Section 2): The higher its value, the more
significant is the color distortion. If Dcol is close to zero, the image contains almost no color distortion.
For details of the algorithm of color scale identification and correction, see Supplementary file, Section 2.

The image scale (pixel size, mm) was calculated from the ratio of the known color scale area to its
area in the image (taking into account the correction for its orientation). Further, the ColorChecker
area was excluded from analysis.

At the next stage of image preprocessing, we blurred the image using a Gaussian filter with
a kernel of 3 × 3 to reduce noise and removed the fragments of clip holder (for ‘clip’ protocol).
An enlarged fragment of the image showing the result of the smoothing algorithm operation is given
in Supplementary Materials (Figure S3, Supplementary file).

2.2.2. Image Binarization

The image was binarized after its conversion to a HSV (Hue, Saturation, Value) color space,
which separates the color information from luminosity and more stably characterizes color at different
illumination levels. As has been earlier demonstrated, the HSV color space best fits the recognition
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of objects on a uniform background [26], and in particular, for detecting the plant contours [27].
The intervals of HSV channels used for binarizing the image into spike and background regions
were selected using a training sample (see below Section 2.2.4). The resulting image was segmented
into the pixels of background and the remaining pixels belonging to the regions of spike and of
awns. After eliminating the ColorChecker region and segmentation according to the spike color,
the contour that was largest in its area corresponded to spike and awns and was selected in the image.
The contours smaller in area, which corresponded to rubbish and glumes (Figure 2d), were discarded
from further analysis.
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2.2.3. Awn Identification

The awns are colored similar to the spike. In some images, awns intensively intersect and even
stick together forming a bundle, which significantly hinders identification of individual awns and even
makes it impossible in some cases. Correspondingly, a two-stage algorithm was used.

At the first stage, the pixels of the awn skeleton are identified. Since the awns are much thinner as
compared with the spike region (body), a partial skeletonization algorithm was used for identifying
the awn skeleton. The pixels at the spike–background boundary were iteratively erased. The threshold
of erasure iterations, nEi, was used; this threshold was selected using a training sample of images
(see below). The erasure process was stopped in any spike/awn region when its thickness reduced to
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a single pixel. After nEi erasure iterations were completed, the spike/awn regions with a unit thickness
were assigned to the awn skeleton. All pixels of the spike/awn region were then classified relatively to
the spike body and awns. For this purpose, each pixel of the boundary was provided with a linked list
of the pixels, which included the pixels removed at the subsequent iterations and were located in the
direction perpendicular to the erased spike–background boundary. In the course of contour refining,
the lists for the adjacent boundary pixels were pooled when a removed pixel at a certain iteration
appeared to be common for two of them. The lists of the pixels that contained a pixel belonging to the
awn skeleton were assigned to the awn region. The remaining pixels were regarded as belonging to
the spike body.

2.2.4. Selecting Parameters for Identification of Spike and Awn Regions in Image

Operation of the algorithm for identification of spike and awn regions depends on the
following parameters:

(1) The target values of HSV channels and the ranges of their acceptable deviation for image
binarization into the background and spike/awn regions and

(2) The number of iterations (nEi) to the stoppage of skeletonization algorithm.
To select these parameters, we used a sample of 93 spike images of F2 hybrids between the

near-isogenic line of Australian common wheat cultivar Triple Dirk (Triple Dirk B) and the Chinese
wheat Triticum yunnanense, King ex S.L. Chen (syn. T. spelta ssp. yunnanense (King ex S.L. Chen)
N.P. Gontsch.), accession KU 506 acquired using both the ‘table’ and ‘clip’ protocols. Each spike was
classified according to the types of awnedness based on an expert estimation into awnless, awnletted,
half-awned, and short-awned (Figure 2a–d, respectively) [2]. Table 1 lists the distribution of spike
images in this sample according to the types of protocol and awnedness pattern. The total awn and
spike body pixels were manually marked for each of these images. The images were randomly divided
into the test (30 images) and training (63 images) samples so that the ratios of awn types in spikes in
both samples were approximately equal.

Table 1. Distribution of the spikes in sample according to awnedness types.

Awnedness Type Number of Images ‘Clip’ Protocol ‘Table’ Protocol

Awnless 16 10 6
Awnletted 4 4 0

Half-awned 14 14 0
Short-awned 59 36 23

The Jaccard index, J [28], also known as Intersection over Union (IoU) [29], was used for assessing
performance of the algorithm for image segmentation into the background and spike:

J(A, B) =
|A∩ B|
|A∪ B|

=
|A∩ B|

|A|+ |B| − |A∩ B|
(1)

Here, A denote the pixels of the image region generated by segmentation using the designed algorithm
and specified values of its parameters and B, the manually marked pixels of the image region.
We calculated the Jaccard indices: Je is the binarization accuracy for the whole spike with awns; Jb,
recognition accuracy for the pixels of spike body (the spike region minus the pixels of awns); and Ja,
the accuracy of awn recognition. While selecting the parameters, we optimized the mean Je for test
sample and after the optimization, independently estimated Jb and Ja using the test sample. Genetic
algorithm [30] was used for optimization. The blocks of parameters (individuals) included sets of
seven target HSV colors and their ranges (dH, dS, and dV). The blocks could exchange (crossing over)
target colors with linked ranges. The population size varied from 20 to 100 individuals.
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2.2.5. Estimating the Effect of the Degree of JPEG Compression on Segmentation Accuracy

In this work, we used the JPEG format for analyzing images. This format is a flexible and efficient
technique for compressing digital images and makes it possible to achieve a high degree of compression
with a insignificant loss in image quality perception for an unaided human eye [31]. Nonetheless,
a JPEG image compression leads to a certain loss of information. The loss is the higher, the higher the
degree of compression. The loss of information may have a negative effect on the further analysis,
in particular, a high degree of compression leads to a considerable loss in accuracy in morphometry
of biological objects [32]. The loss of information when forming a JPEG file is specified by quality
factor (QF), varying in the range of 1–100: The higher the quality, the smaller is the information loss,
and correspondingly, the degree of compression [33].

All images used in this work were captured as RAW files with a Canon 600D digital SLR and
converted into JPEG using Capture One v.7 with the following parameters: Quality = 90 and ICC
Profile = sRGB IEC61966-2.1. We have estimated the effect of the JPEG file quality specified during
compression of the initial image on the accuracy of image segmentation. We have analyzed the spike
images of two plants of the F2 hybrids between the Triple Dirk B and the Chinese wheat T. yunnanense,
one awned and one awnless (Figure S4a,c; Supplement file). For this purpose, we got a TIFF file
(without compression) and a series of JPEG files with a quality varying from 1 to 100 (11 variants for
each) for each of the analyzed images.

For each of the obtained images, the spike and awns were automatically segmented into
ColorChecker regions using the above-described technique. The Jaccard index, J, in the comparison
of segmentation results for JPEG (with compression) and TIFF (without compression) images was
independently estimated. Additionally, J was estimated when jointly segmenting the spike and awn
regions. This allowed us to assess the effect of image quality on segmentation accuracy.

2.2.6. Awn Quantitative Characteristics

Once the awn and spike regions are selected, the characteristics of spike awnedness are calculated,
including the total awn area, Sa (mm2), determined as the number of the corresponding pixels
multiplied by the area of 1 pixel; the number of awns, Na, as the number of contacts between spike
and awn regions (number of awn bases); total awn length, La (mm), as the total length of the pixels
that from the skeleton of awn region; and the mean awn length, la = La/Na (mm). Since part of the
images contained considerably intersected and/or overlapped awns, it was impossible to distinguish
individual awns; correspondingly, we did not assess the lengths of individual awns (Figure 2b–d).

2.3. Spike Morphometry

2.3.1. Identifying and Straightening Spike Contour

Broken lines were sometimes formed after awn erasing at the sites where they contacted the
spike body. In this case, we smoothed the contour using an algorithm for computing elliptic Fourier
descriptors [34]. After the awn regions were removed, descriptors for 70 harmonics were computed to
recognize the spike contour and further uses them for determining the points of the smoothed contour.

The spike axis was approximated with a broken line iteratively constructed of the segments of
spike body. At the first stage, the center of mass and the main axes of the ellipsoid approximating the
contour were determined for the pixels of the contour. The major axis corresponded to the direction of
the rachis in the center of mass. The perpendicular to the major axis divides the spike region into two
parts. At the second stage, an analogous procedure was applied to each part. As a result, each part
was also divided by the corresponding axis into two parts; the next iteration stage was again applied
to each part. The procedure was successively performed until the number of segments exceeded 20.
The centers of mass of each constructed segment determined the broken line that approximated the
spike axial line. At the last stages of iteration, the segment size across the axis in some cases could
be larger than along the axis. In this case, an axis co-directional to the major axis of the segment
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constructed at the previous stage, but passing the center of mass of the current segment was used as
the axis of this segment.

After the spike axial line is determined, the spike contour is straightened so that this axis is vertical
with its upper end at the spike tip and its lower end, at its base and the distance of the pixels of the
transformed contour from the axial line are equal to the distances of the corresponding pixels of the
initial contour. This transformation makes it possible to remove the deformation of spike contour
caused by its bending. The size and quantitative characteristics of spike shape are determined in the
straightened spike contours.

2.3.2. Integral Characteristics of Spike Shape

The characteristics of spike shape fall into several categories. The first group comprises integral
shape characteristics, such as spike length Le (mm), which is approximated by the length of spike axial
line; Pe (mm), the perimeter of spike without awns; Se (mm2), the area of spike region; for the square
index, SQI = Se/(L2) is the ratio of the spike area to its squared length.

The other integral parameters are described below.
Circularity index I reflects the degree to which the shape of the contour is close to a circle; its value

varies from 0 to 1, with the unity value for an ideal circle:

C =
4π× area
perimeter2 (2)

The perimeter is longer for the contours with numerous convexities on its surface, while the
circularity index acquires lower values. In such cases, it is reasonable to use a roundness index, R,
since this value is independent of such irregularities of perimeter:

R =
4× area

π[Major axis]2
(3)

Rugosity index, Rg, is determined as the ratio of the perimeter of the contour to the convex perimeter:

Rg =
Ps
Pc

(4)

where Ps is the perimeter of the contour and Pc, its convex perimeter, also known as the least convex
hull, i.e., the least convex figure that contains all points of an image.

Solidity index, S, is the ratio of the contour’s area to the area of its convex hull:

S =
Contour Area

Convex Hull Area
(5)

2.3.3. Model of Sections

The first model for describing the spike shape was a set of sections determined by the
perpendiculars to spike’s axial line with a step of 1/21 (20 sections + 1) of the spike length. Two distances
for the pixels of the contour were determined for each perpendicular (from each side of the axial line).
Thus, this model was defined by 40 parameters.

2.3.4. Model of Quadrilaterals

The contour of a spike placed horizontally is representable as two quadrilaterals (Figure 3)—upper
and lower ones with a common base. The left and right sets of edges are approximated by two
quadrilaterals with one adjacent side, their base, being equal to the sum of the spike axis intervals (spike
length Le). The geometry of the upper quadrilateral is determined by the four following independent
parameters (Figure 3):
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xu1 is the distance from the spike tip to projection B’ of top B onto base AD;
xu2 is the distance of B’ to projection C’ of top C onto base AD;
yu1 is the distance of top B to its projection B’ onto base AD; and
yu2 is the distance of top C to its projection C’ onto base AD;
Distance xu3 from projection C’ to spike base D is computable from the spike length as xu3 = Le −

xu2 − xu1.
Analogous parameters xb1, xb2, xb3, yb1, and yb2 are determined for the lower (bottom) quadrilateral

(Figure 3).
The procedure used for selecting parameters of the quadrilateral that most adequately describes

the spike shape consisted of the following. The perpendicular to the spike axis (Figure 3, dashed line)
was constructed for each pixel of the spike boundary, i. The height of the perpendicular is yi. The cross
of the perpendicular with an edge of the quadrilateral determines the height yqi. This procedure was
performed for all pixels of the boundary to calculate the below value:

DSq =
∑

i

(
yi − yqi

)2
(6)

which, at a fixed Le, depends on four parameters, DSq = DSq(xu1, xu2, yu1,
and yu2). We selected parameters xu1, xu2, yu1, and yu2 so that DSq was minimized.
Levenberg–Marquardt algorithm [35] implemented in the Apache commons-math3 library 3.6.1
(class org.apache.commons.math3.fitting.leastsquares.LevenbergMarquardtOptimizer) was used for
DSq minimization. The algorithm converges in dozens of iterations (50 on the average); the time to
find the parameters numerically using one Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz processor is
about 25–50 ms. The parameters were independently selected for the upper and lower quadrilaterals.
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The main parameters characterizing geometry are shown for the upper quadrilateral. The dashed
line is perpendicular to the axis through each pixel i of the contour; the height values for ith pixel, yi,
an edge of quadrilateral, yqi, are shown.

We have also estimated several derived parameters for these two quadrilaterals:

αu1 is the inclination of edge AB relative to the base of the upper quadrilateral (degrees);
αu2 is the inclination of edge BC relative to the base of the upper quadrilateral (degrees);
αu3 is the inclination of edge CD relative to the base of the upper quadrilateral (degrees);
t1u is the tangent of angle αu1;
t2u is the tangent of angle αu2;
t3u is the tangent of angle αu3;
Su1 is the area of triangle ABB’ (mm2);
Su2 is the area of trapezium BB’C’C (mm2);
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Su3 is the area of triangle DCC’ (mm2);
Su is the area of the upper quadrilateral (mm2); and
yum is the mean height of the upper quadrilateral (mm).

The parameters for the lower quadrilateral were calculated in an analogous manner.
The following variables were also calculated for both quadrilaterals:
AIx2 = (xu1 − xb1)2/xu1 + (xu2 − xb2)2/xu2 + (xu3 − xb2)2/xu3 is the asymmetry index for the lengths

of segments (mm);
AIy2 = (yu1 − yb1)2/yu1 + (yu2 − yb2)2/yu2 is the asymmetry index for the heights of the segments

(mm); and
AIxy2 = AIx2 + AIy2 is the total asymmetry index (mm).

2.3.5. Radial Model

Parameters of the radial model are calculated as follows: 360 rays are drawn from the center of
mass of the spike contour starting from the direction of its major axis with a step of 1 degree to the
point of the contour closest to a given ray. The lengths of the 360 intervals, thus constructed, represent
the radial model.

The total list of all spike morphometric characteristics is shown in Supplementary file (Table S1).

2.4. Predicting Spike Density Index and Type of Its Shape

2.4.1. Sample of Spike Images

We assessed the efficiency of our approach by predicting the spike shape type. For this purpose,
the spike images of 249 plants, annotated manually, were extracted from the SpikeDroid database [22].
We used digitalized data of 1245 spike images of eight hexaploid wheat species, one artificial amphyploid
and one intraspecific F2 hybrid population (Table 2). These wheat species have the spikes of contrasting
shapes, which are controlled by well-studied genes [36]. The main spike of each plant was chosen;
five images of each spike were acquired in one projection using a ‘table’ protocol and four, using a ‘clip’
protocol). The characteristics of the plants and spikes of the images, which were used for training and
testing the spike shape recognition, are listed in Supplementary file (Table S2).

Table 2. Wheat species and hybrids used in prediction of spike density index and shape type.

Species Number of Plants Number of Images

Triticum compactum Host 63 315
F2 Triple Dirk B × KU506 Triticum yunnanense 52 260

Triticum aestivum L. 50 250
Triticum antiquorum Heer ex Udacz. 20 100

Triticum sphaerococcum Perc. 19 95
Triticum spelta L. 18 90

Amphyploid speltiforme 9 45
Triticum yunnanense King ex S.L. Chen 9 45

Triticum macha Dekapr. et Menabde 9 45

The sample comprises the plants of over 20 genotypes from nine countries (Table S2). The numbers
of spelt, normal, and compact spikes are 67, 72, and 110, respectively. The sample contains plants with
different types of awnedness, namely, awnless (114 plants), awnletted (64), awned (33), and half-awned
(38). The average spike length for different genotypes varies from 3.46 to 11.17 cm. The number of
spikelets varies from 14 to 24 with an average of 13 to 45 by 1 dm. Thus, this sample represents a wide
variety of spikes relative to their shape, size, and type of awnedness. For each plant, the spike shape
type was determined by an expert, its length was measured, and the number of spikelets per spike
was counted.
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Examples of the images of each spike shape type are shown in Supplementary file (Figures S5–S7).
Density index D [37], where (A − 1) is the number of spikelets per spike without the apical spikelet
and B, the length of spike rachis (cm), displays a high correlation with spike shape.

D =
10(A− 1)

B
(7)

2.4.2. Methods for Predicting Spike Characteristics

To predict the density index, we used the random forest method (RandomForestRegressor,
sklearn.ensemble software package, scikit-learn library [38]). The spike shape type was determined
with the help of LogisticRegression and RandomForestClassifier of the same library.

For prediction, we used 44 parameters of the quadrilateral model and seven indices that describe
the spike geometric characteristics (perimeter, spike area, total awn area, circularity index, roundness,
solidity, and rugosity). The number of parameters for the model of sections and radial model was
reduced to 10 using principal component analysis (the largest components were selected from the
sample in Table 2 so that they finally accounted for over 90% of the total variance). Thus, we analyzed
71 parameters for each image.

In the case of ‘clip’ protocol, each spike is represented in four projections. We pooled the parameters
of all four images by ranking projections according to a decrease in spike width (parameter yum).
As a result, we got 284 parameters (parameters 1 to 142 describe the frontal side of the spike and 143 to
284, its lateral side).

To estimate the characteristics of spike shape, we selected the most significant parameters
according to their predictive capacity for spike density estimation. The parameters were ranked
according to their significance based on the averaged results of eight different approaches: (1) Linear
regression coefficients (Linear Regression); (2) regression coefficients with lasso regularization (Lasso);
(3) regression coefficients with ridge regularization (Ridge); (4) selection of parameters according to
stability criterion [39] using RandomizedLasso, sklearn library (Stability); (5) ranking according to
recursive feature elimination (RFE) [40]; (6) ranking based on average entropy reduction computed
when constructing the trees of solutions by random forest method (RF) using RandomForestRegressor
class, sklearn.ensemble software package; (7) ranking based on the correlation between regressor and
target parameters (Corr) using f_regression class in sklearn.feature_selection package; and (8) ranking
based on the maximal information coefficient (MIC), which takes into account nonlinear dependences
between parameters [41] using the MINE (maximal information-based nonparametric exploration)
statistics of minepy package. The estimate for a parameter in all these strategies varies in the range of 0
to 1.

2.4.3. Assessing Prediction Performance

To estimate prediction performance for density index, we used the mean absolute error (MAE)
and mean absolute percent error (MAPE), calculated as

MAE =
1
M

∑ j=M

j=1

∣∣∣n j − n′ j
∣∣∣ (8)

MAPE =
100%

M

∑ j=M

j=1

(∣∣∣n j − n′ j
∣∣∣/n j

)
(9)

where M is the number of spikes; nj is the density index calculated manually; and n’j is the predicted
density index value. In addition, we assessed the Pearson correlation coefficient for predicted and
expert-assessed values.
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The prediction performance for spike classification according to their shape was assessed using
measure F1, calculated as the mean harmonic for precision and recall [42]:

F1 = 2
Precision×Recall
Precision + Recall

(10)

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

where TP, TN, FP, and FN correspond to the number of true positive, true negative, false positive,
and false negative solutions.

The data were divided into training and test samples at a ratio of 70% to 30%. The prediction
accuracy was assessed using cross-validation. To compare different methods for predicting the spike
characteristics, the MAE, MAPE, and F1 values were averaged over five iterations of the cross-validation
for both the training and test samples. However, the parameters were preserved during cross-validation
and their values with the mean errors are given in Section 3.3.

2.5. Analysis of F2 Hybrid Plants

We analyzed F2 hybrids between a near-isogenic line of the Australian common wheat cultivar Triple
Dirk (Triple Dirk B) and the Chinese wheat Triticum yunnanense King ex S.L. Chen (syn. T. spelta ssp.
yunnanense (King ex S.L. Chen) N.P. Gontsch.) accession KU 506. All samples included 120 plants grown
in a hydroponic greenhouse under standard air humidity, temperature, and light conditions, namely,
the day length of 18 h, moisture content of 65%–70%, and temperature of +20/+25 ◦C (night/day).
The Triple Dirk B plants have normal spike shape versus KU 506 with a dense spelt spikes. The spike
images of these plants were mainly captured using a ‘table’ protocol.

3. Results

3.1. Assessing the Recognition Accuracy for Awn and Spike Regions

After selecting the optimal parameters for the algorithm, the achieved recognition accuracy of
spike body and awns for the test sample were Jb = 0.925 and Ja = 0.660, respectively, and for the training
sample, Jb = 0.932 and Ja = 0.634.

Color correction had no significant effect on the recognition accuracy of spike and awns: the mean
Jaccard index, Jb, for the spike body segmentation with color correction was 0.925 and for awns with
color correction, mean Ja was 0.679.

Figure 4 shows examples of the results of algorithm application to the spike with identifier 6450
from the SpikeDroid database [22]. The estimated recognition performance for spike body and awns
in this image was Jb = 0.963 and Ja = 0.796, respectively. As is evident from Figure 4C, the main share
of unclassified pixels concentrated at the awn ends, while the pixels for the larger part of the awns
were correctly identified.
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Figure 4. Stages of the algorithm for identifying awns by the example of a spike of F2 hybrid between
the Triple Dirk B and Chinese wheat T. yunnanense ID no. 6450: (a) Spike image on blue background;
(b) binarized spike pattern; and (c) initial spike image with recognized awn regions (marked red) and
spike sections (marked blue).

We estimated the effects of various factors associated with the protocols of image acquisition and
processing on the accuracy of awn identification, including the scale of imaging (number of pixels per
unit captured area), type of the protocol (‘table’ or ‘clip’), and spike projection (front or side) for the
latter protocol.

First and foremost, we studied the effect of image spatial resolution on the accuracy of awn
identification. As has emerged, the sample of images that we used for assessing the accuracy of
detecting the contours contains four scales of spatial resolutions (Supplementary file, Figure S8).
All images acquired using the ‘table’ protocol reside along one line (scale 4, orange circles, highest
resolution). The remaining resolution variants (from the lowest resolution scale 1 to medium resolution
scale 3) correspond to the images of the ‘clip’ protocol. Thus, the differences in the image spatial
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resolution are inevitable for these protocols and the use of the color scale for determining the image
resolution is justified.

Figures 5 and 6 show the distribution of parameter J for identification of the spike body and awns
for all 93 images.
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Figure 5. Distribution of Jaccard index J for (a) the awns and (b) spike bodies grouped according to the
scale of spatial resolution.
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Figure 6. Distribution of the Jaccard indices, J, for (a) awns and (b) spike body grouped according to
the used protocols (‘clip’ or ‘table’).

The estimate for the recognition accuracy of awn regions, Ja, falls into the range of 0.27–0.9.
For resolution scale 1, the distribution of accuracy is shifted towards the smaller side (Figure 5) and
amounts on the average to approximately 0.549; this is logical since it is the lowest resolution. As for
the remaining scales (scales 2, 3, and 4), the Ja distributions differ to a lesser degree: Their mean values
are 0.695, 0.607, and 0.676, respectively. The recognition accuracy for the spike body, Jb, falls into the
range of 0.8–0.98 with means of 0.901, 0.928, 0.938, and 0.945 for scales 1–4, respectively. Note that Jb

displays the evident trend of an increase in the recognition accuracy of spike body with an increase in
the spatial resolution, unlike Ja.

The second factor putatively influencing the algorithm performance is the type of protocol used.
In the ‘table’ variant, the distance between the camera and object in a set of shots is fixed, while the
spike is placed horizontally on the surface of a table in the plane perpendicular to the lens axis. In the
case of ‘clip’ protocol, the spike may deviate from the plane perpendicular to the lens axis because it is
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bent or fixed along the axis differing from the vertical. We analyzed the distribution of J for the images
grouped according to the used protocols (Figure 6).

The results shown in Figures 5 and 6 demonstrate that the image scale significantly influences the
recognition accuracy of both the spike body and awns and the type of protocol used has a significant
effect on the identification accuracy for spike body, but not for awns.

The results of analysis of the degree of image quality on segmentation accuracy in the case of
JPEG compression demonstrate that the J value when segmenting the ColorChecker and spike body
regions is above 0.99 at a QF value of 50 and higher. This means that the image quality in the QF range
of 50–100 has almost no effect on the recognition accuracy of ColorChecker and spike body regions.
Even for QF = 1, the J values for these two regions are >0.98.

The recognition accuracy for the awn pixels depends on QF to a greater degree. In this case,
J significantly depends on the awnedness of spike. If the area of awns is large enough, J > 0.95 for
QF ≥ 90. As for QF ≥ 50, the J value is over 0.93. For an awnless spike, J < 0.9 as early as QF = 90 and
drops to 0.83 at QF = 50. Nonetheless, the recognition quality for QF = 90 (the parameter used in our
work) looks quite acceptable.

Note that the performance of our method makes it possible to process one image using one Intel(R)
Xeon(R) CPU E5-2680 v4 @ 2.40GHz processor on the average over 3 min (with switched off options of
debugging information output and image saving at intermediate processing stages).

3.2. Analyzing Awnedness Parameters for Spike Sample

We have analyzed the total awn area (mm2), Sa. The significant differences between Sa distributions
for a sample of 46 images (without repeating different projections) were observed for the images of
awnletted and short-awned spikes (χ2 = 22.64, p < 0.05); awnless and short-awned (χ2 = 24.75, p < 0.05);
and short-awned and half-awned (χ2 = 18.09, p < 0.05).

Figure 7 shows the distribution of the awnedness types relative to Sa: The short-awned spikes
have the largest range; note that they have both large and small values of the total awn area. The largest
number of spike images with this awnedness type has a medium area value (180 < Sa < 222 mm2).
The awnletted spikes have the minimum total awn area followed by the awnless and half-awned
spikes. However, the obtained Sa distributions for different spike shape types considerably overlap,
with only one Sa interval housing a single awnedness type, short-awned spikes (264 mm2 < Sa).
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3.3. Predicting Density Index and Type of Spike Shape

The distribution of spikes from the samples shown in Table 2 according to the manually assessed
density index is shown in Figure 8. As obvious, the compact spikes display highest density; for normal
and spelt spikes the density is within the range of 10–30. The distributions of the last two types
considerably overlap. An analogous significant overlapping of the distributions of the number of
spikelets and spike length is observable for these spike shape types (Figure 8B). It is also evident that
these distributions for the compact spikes are considerably different.
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To predict the spike density, we selected variables characterizing spike morphology using several
criteria (as is described in Section 2.4.2). The variables were ranked based on the averaging of eight
significance characteristics. Then, the variables were added one by one in the descending order of mean
significance value using both training and test samples. Regression was performed using the random
forest method. While adding variables, the MAE values were assessed for the test and training data.

The training involved 12 most significant parameters. The number of parameters for training
was selected based on the training curves (Supplementary file, Figure S9), showing the dependence of
MAE in predicting spike density index on the number of the best parameters used for training by the
random forest method.

We ranked the parameters according to their significance when predicting the spike density index.
The results of selection of the 12 best parameters for ‘table’ (one projection) and ‘clip’ (four projections)
protocols are listed in Tables 3 and 4, respectively.

The parameters with a high significance for both protocols are spike length and circularity index.
Interestingly, these traits appear significant for almost all projections in the case of ‘clip’ protocol.

The errors of prediction for density index and spike shape type (spelt, normal, or compact) are
listed in Tables 5 and 6, respectively. The training involved the parameters listed in Table 3 for the
images acquired according to ‘table’ protocol and in Table 4 for the ‘clip’ images. The mean absolute
error in predicting density index in the test sample (MAE test) is 4.61 for one projection and 3.33 for
four projections. The Pearson correlation coefficient for the predicted values and expert estimates in
the test sample (R) is 0.51 for one projection and 0.74 for four projections. The classification models
were trained by logistic regression (lr) and random forest (rf) methods.

Table 6 lists the errors of prediction for spike shape type averaged over five cross-validation
iterations. The estimates for these parameters for each cross-validation iteration are listed in
Table S4 (Supplementary file). We attempted to use the predicted density index (lr_density_pred and
rf_density_pred) as an additional trait, but had no gain in accuracy. The values of F1 measure for
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performance of spike shape classification in test sample is 0.85 (F1_rf) for four projections and 0.78
(F1_lr) for one projection. These accuracy estimates demonstrate that utilization of the information
about four projections increases the prediction performance by 7% and decreases MAE for spike density
prediction by 1.28, which corresponds to 4.25%.

Table 3. Estimation of the measures of significance of spike quantitative characteristics for predicting
spike density based on analysis of the images acquired by ‘table’ protocol: characteristics are listed
in column 1; significance values, in columns 2–9; and their means, in column 10. The significance
measures are described in Methods, Section 2.4.2.

Parameter Linear Regression Ridge Lasso Stability RFE RF Corr MIC Mean

L 0.93 0.07 0.04 0.74 0.81 1 1 1 0.7
R 0 0.75 0 0.68 1 0.06 0.65 0.93 0.51

xu2 1 0.1 0.11 0.61 0.73 0.07 0.5 0.88 0.5
tb1 0 1 1 0.04 0.95 0.01 0 0.34 0.42
P 0 0.07 0.07 1 0.66 0.06 0.49 0.71 0.38

profile_8 0 0.51 0.55 0.86 0.88 0.03 0.07 0.13 0.38
yb1 0 0.7 0.7 0.21 0.92 0.05 0.04 0.37 0.37
yu1 0 0.82 0.78 0.02 0.75 0.03 0.01 0.41 0.35

profile_1 0 0.46 0.45 0.44 0.71 0.18 0.07 0.51 0.35
radial_3 0 0.01 0.01 0.92 0.2 0.21 0.31 0.92 0.32

yb2/L 0 0 0 0.48 1 0.13 0.33 0.6 0.32
C 0 0.2 0 0.34 1 0.05 0.36 0.64 0.32

Table 4. Estimation of the measures of significance of spike quantitative characteristics for predicting
spike density based on analysis of the images acquired by ‘clip’ protocol (the corresponding projections
are parenthesized); characteristics are listed in column 1; significance values, in columns 2–9; and their
means, in column 10. The significance measures are described in Methods, Section 2.4.2.

Parameter Linear
Regression Ridge Lasso Stability RFE RF Corr MIC Mean

xb2 (projection 2) 1 0.15 0.13 0.75 1 0 0.46 0.68 0.52
xu2 (projection 2) 0.98 0.06 0.04 0.87 0.9 0.04 0.63 0.63 0.52
C (projection 3) 0 0.24 0 0.81 0.53 1 0.62 0.94 0.52

yb1/L (projection 3) 0 0.01 0 0.9 0.59 0.86 0.86 0.8 0.5
R (projection 3) 0 0.38 0 0.94 0.64 0.01 0.84 0.96 0.47
L (projection 4) 0.42 0.06 0.01 0.5 1 0.01 0.79 0.79 0.45
R (projection 4) 0 0.32 0 0.88 0.52 0.01 0.81 1 0.44

yu1/L (projection 3) 0 0.01 0 0.94 0.71 0.02 1 0.71 0.42
L (projection 3) 0.11 0.08 0.02 0.26 1 0.2 0.73 0.76 0.4

yu1/L (projection 4) 0 0.01 0 1 0.48 0.01 0.84 0.8 0.39
R (projection 2) 0 0.19 0 0.8 0.49 0.03 0.63 1 0.39

xu2 (projection 1) 0.58 0.05 0 0.52 0.73 0.03 0.43 0.65 0.37

Table 5. Estimates of prediction performance for of spike density index for one (‘table’) and four (‘clip’)
projections (MAEtraining and MAEtest, mean absolute errors for training and test samples; MAPEtraining

and MAPEtest, mean absolute percent errors for training and test samples; R2
training and R2

test, Pearson
correlation coefficient between the predicted and expert estimates for training and test samples).

Performance Measure ‘Clip’ ‘Table’

MAEtraining 1.48 1.88
MAEtest 3.33 4.61

MAPEtraining 6.19 7.77
MAPEtest 13.28 17.80
R2

training 0.95 0.94
R2

test 0.75 0.52
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Table 6. Estimates of prediction performance for spike shape type for one (‘table’) and four (‘clip’)
projections (F1_lr and F1_rf, the F1 measure for the accuracy of spike classification according to
density by logistic regression and random forest methods; F1 lr_density_pred and F1 rf_density_pred,
the F1 measure for the classification accuracy using an additional parameter, predicted density index,
by logistic regression, and random forest methods).

Performance Measure ‘Clip’ ‘Table’

F1_lr 0.82 0.78
F1 lr_density_pred 0.83 0.77

F1_rf 0.85 0.72
F1 rf_density_pred 0.84 0.76

Table 7 lists the estimates of confusion matrix values for the classification of spike shape in the
test sample for four projections obtained by the random forest method. It shows that compact and
spelt spikes are distinguished with the least number of errors. As for the normal spikes, they are
most frequently predicted as belonging to two other types (lowest prediction quality). Interestingly,
the spikes belonging to normal and spelt ones give the highest number of mutual false predictions.
These results agree with the histograms in Figure 8A, which are based on expert estimates.

Table 7. Confusion matrix for classification of spike shape in the test sample of images (see Table 2) in
four projections (‘clip’ protocol).

Compact Observed Normal Observed Spelt Observed

Compact predicted 158 13 0
Normal predicted 8 79 20

Spelt predicted 0 20 77

3.4. Analysis of F2 Hybrid Plants

The results of comparison between spike length estimated manually and L parameter obtained
using 2D images is represented in Supplementary file Figure S10. The Pearson correlation coefficient
between two values is 0.808 (p < 0.01), MAE = 0.75 cm, MAPE = 0.09. We predicted spike density
index for this sample also. The Pearson correlation between predicted and manually estimated D
values is 0.69, MAE = 2.59, MAPE = 11.26, which is similar to the values estimated for the spike test
samples (Table 5). The distribution of predicted D values for F2 hybrid plants shown in Figure 9.
This distribution is bimodal. Interestingly, two groups of spikes with D < 26 (94 plants) and D > 26
(26 plants) correspond well to the values of density index from parent plants (see Figure 9).
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Figure 9. Distribution of the spike density values predicted using 2D images for the F2 hybrids between
a near-isogenic line of the Australian common wheat cultivar Triple Dirk (Triple Dirk B) and Chinese
wheat Triticum yunnanense King ex S.L. Chen (syn. T. spelta ssp. yunnanense (King ex S.L. Chen) N.P.
Gontsch.) accession KU 506. The X axis shows the density index and the Y axis is the percentage of
spikes. Arrows point to the parent D values, amounting to 20.40 for Triple Dirk B and 29.66 for KU 506.

4. Discussion

The insight into the genetic control of wheat spike characteristics requires morphometry of a large
number of accessions. This process can be automated utilizing various methods for image analysis.
However, it is desirable that the corresponding methods are applicable to mass use and utilize simple
and inexpensive phenotyping techniques. When elaborating our approach, we followed these criteria;
in particular, we used the protocol that did not require any expensive equipment and gives the images
of acceptable quality. An advantage of the protocol is that it allows for analysis of the spikes from
different collections.

Analysis of the identification performance for spike region has shown that the image scale has
the most significant effect on the background/spike and spike body/awns segmentation accuracy:
The farther the spike from the camera lens, the higher is the segmentation error. The imaging resolution
considerably differs depending on the protocol for image acquisition; in ‘table’ protocol, the camera
is considerably closer to the object so the resolution is high, whereas in ‘clip’ variant, the distance
to the object may vary, making the resolution lower. Since the focal length was fixed, the resolution
depended only on the distance to the imaged object.

Color correction of images has no significant effect on the segmentation accuracy. Most likely,
this is the result of standard illumination during spike capturing [22]. Nonetheless, the option
of color correction, available in our method, allows the colors in images to be more objectively
estimated and assists in considerable improvement of data processing under conditions of poorly
controllable illumination.
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However, the captured images may have some flaws. For example, spikes have the awns going
beyond the spike plane, which can interfere with the focusing, making the resulting image of the
spike or its parts blurry (Figure 2). This is surmountable by an increase in the depth of focus, manual
focusing, and capture of several images to discard the defect images. Nonetheless, it has turned out that
the image quality even for such images is sufficient to assess the spike shape, thereby demonstrating
that our method is suitable for the screening of spikes.

A smaller Ja value as compared to Jb is in part associated with a small area of awns relative to
the overall spike and concurrently with a larger number of boundary pixels for the awn region. Thus,
cost of the error at binarization stage is considerably higher for the awn region as compared with the
spike body region. In addition, the very manual marking of high-resolution images is laborious and
does not allow the fluctuations in identification of spike boundaries to be avoided.

Here, we propose a method for assessing the parameters of spike shape. These parameters
are arbitrary dividable into “general” characteristics reflecting the overall shape (for example, spike
circularity, area, and length). We also additionally introduced the ad-hoc models for description of
spike shape. Two of them (model of sections and radial model) were formulated based on most general
considerations and their parameters have no specificity associated with the typical wheat spike shape.
The third model, which describes the spike as two quadrilaterals with a common side, may be a more
illustrative generalization of spike shape. The fact that a considerable number of parameters used in
this model are among those significant for predicting the spike density (Tables 3 and 4) suggests that
this model is the most adequate. The general spike characteristics and the parameters of the model of
quadrilaterals are prevalent among the significant parameters. Figures S5–S7 (Supplementary file)
shows how the model approximates two quadrilaterals for the spikes of different shapes as well as the
indices with the largest contributions to density index predictions,

In our work, we have assessed the prediction accuracy for spike density and shape type based
on the quantitative characteristics obtained by analyzing spike images. Two regression methods,
logistic regression and random forest, were selected since the volume of training sample (in our
case, ~200 spikes) is not critical for them as compared with neural networks or deep learning neural
networks, which require thousands and tens of thousands of images to gain a good result [19].

The logistic regression–based prediction of spike density gives a MAE value of 4.61 (using one
spike image projection). Note that the prediction accuracy increases (MAE = 3.33) when the data for
four projections are used, although the number of parameters for prediction remains the same (however,
these 12 parameters include the characteristics obtained by analyzing different spike projections).

The accuracy of spike shape classification into three types (spelt, normal, and compact) using the
random forest algorithm (F1 measure) is 0.78 for one spike projection and 0.85 for four projections.
Interestingly, the latter value is close to the estimate for classifying spikes of four wheat varieties by
Kun et al. [21], which amounts to 0.88 (neural networks using 12 input parameters). A difficulty in
solving this problem is that the spelt and normal spikes may be rather similar, as is shown, in particular,
by a considerable overlapping of the corresponding spike density distributions (Figure 8). Further
accumulation of annotated images and use of deep learning neural network methods will be helpful in
solving this problem.

Results of F2 hybrid plants demonstrated high correlation between spike length values estimated
manually and from 2D image analysis. This allows us to hope for the effective use of the proposed
method to assess the character of the hybrid segregations in interspecific wheat hybridization.

5. Conclusions

Summing up, we have proposed a method allowing for automated assessment of quantitative
spike shape and awnedness characteristics by analyzing the spike images captured with the help of
standard protocols. While the efficiency of this method in its current version is improvable at certain
stages by optimization of processing algorithms and time, the already available image segmentation
accuracy is quite acceptable for further determination of spike shape characteristics.
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It has been shown that the mean error of spike density prediction for the images in the plane of
table amounts to 4.61 (~18%) for the test sample and to 3.33 (~13%) for the prediction involving all
four projections. In an automated spike classification into three types, the value of measure F1 for the
images captured according to ‘table’ protocol is 0.78 versus 0.85 for the ‘clip’ variants with analysis of
four projections.

The method can be useful for assessing the spike characteristics in breeding and genetic studies as
well as for analyzing the spikes in collections.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/9/7/390/s1,
Supplementary file in PDF format: 1. Protocol for Image Capture; 2. Algorithm for Color Scale Identification;
3. Supplementary tables; 4. Supplementary figures; Table S1. Parameters determined by the application for
recognizing spike shape; Table S2. Characteristics of the plants and spikes the images of which were used for
training and testing the method for recognition of spike shape; Table S3. The effect of JPEG image quality on
the accuracy of segmentation; Table S4. The performance measures for spike shape classification and density
estimation for each of the five cross-validation iterations; Figure S1. ‘Clip’ protocol; Figure S2. ‘Table’ protocol;
Figure S3. A zoomed-in fragment of the image illustrating the result of operation of the smoothing algorithm
using a Gaussian filter; Figure S4. Images of spikes and the results of segmentation for two plants of the F2 hybrids
between common wheat Triple Dirk B and Triticum yunnanense with different awn types; Figure S5–7. Stages of
algorithm operation for compact, normal and spelt spikes; Figure S8. Ratio of the total pixels of awns to the total
awn area (mm2) grouped according to imaging scale; Figure S9. Dependence of the mean absolute error (MAE) in
predicting spike density index on the number of best parameters used for training with random forest method;
Figure S10. Scatterplot diagram for the main spike length for Triple Dirk B × KU506 F2 hybrid plants estimated
manually and from the 2D image analysis.
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