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Abstract: Evaluation of sowing density is an important factor for achieving maximum yields without
affecting other agronomic traits. Field experiments were conducted during three consecutive years
(2008, 2009 and 2010) to determinate the effect of four sowing density (62,500; 83,333; 100,000 and
142,857 pl ha−1) on yields and its components of two cotton varieties, ‘Delta Pine 16′ and ‘SN-290′

in Venezuela. The traits evaluated were lint yield, boll weight, number of seeds per boll, 100-seed
weight, and fiber content. Highly significant differences (p ≤ 0.01) were observed among genotypes,
sowing density and their interactions for all traits. Sowing density was not affected by year factor.
High lint yield was found in ‘SN-290′ (4216.2 kg ha−1) at 100,000 pl ha−1; and in ‘Delta Pine 16′

(3917.3 kg ha−1) at 83,333 pl ha−1. The highest sowing density (142,857 pl ha−1), decrease lint yield
and yield components in the genotypes. The highest boll weight was obtained by ‘SN-290′ with 6.4 g
in average. All sowing densities evaluated resulted in lint percentages above 40%. Cotton lint yield
was positively correlated with all yield components. Our results indicate that highest lint yields could
be obtained with sowing densities between 83,333 and 100,000 pl ha−1 depending upon varieties used
across savannahs of Venezuela.
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1. Introduction

Cotton (Gossypium hirsutum L.) is the most important natural fiber crop worldwide, with 33
million hectares cultivated in 82 countries [1], mainly in Asia and America. In 2017, the cotton yield in
Venezuela was 1085 kg ha−1, which is very low compared with yields worldwide (2254 kg ha−1) [2].
However, in Venezuela the main potential of the crop is attributed to the quality of fiber produced in
terms of length, strength and micronaire parameters [3], obtained from medium fiber varieties which
are the most widespread in the country. The patterns of cotton production have not changed in the last
three decades in Venezuela. The sowing systems correspond to (i) hand-planting in floodplain, located
in the south of Guarico state and north of Apure state, in areas adjacent to the Orinoco and Apure rivers,
respectively [4]; and (ii) mechanized in savannas with poorly (Portuguesa and Barinas states) and well
(Monagas and Anzoategui states) drained soils. The mechanized planting system is more successful
due to varieties’ homogeneity in size, precocity and productivity, facilitating mechanized harvesting.

In Venezuela, different studies have focused on the identification of foreign varieties or those
developed in the national cotton breeding program of INIA (Instituto Nacional de Investigaciones
Agropecuarias) that are adapted to specific edaphic and climatic conditions, maximizing expression of
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fiber yield and quality [5–7]. These studies have been developed based on spatial arrangement less than
or equal to 62,500 pl ha−1. However, no further efforts have been made to evaluate a greater number of
plants per unit area and its impact on agronomic traits of interest at agroecologies in Venezuela.

Yield and its components are influenced by genetic parameters and agronomic practices, where
sowing density plays an important role [8]. Optimal sowing density can vary between regions, then
it is necessary to conduct studies in similar areas in management, soils and weather patterns. In the
USA, the plant arrangement used is very different among regions in order to maximize yields; i.e.,
12.6 pl m−2 in Georgia [9], 15.3 pl m−2 in Louisiana [10], 6.6 pl m−2 in Mississippi [11], and 10.0 pl m−2 in
Arizona [12]. On the other hand, plant densities in China are between 22.5 pl m−2 in the northwest [13]
and 2.0 pl m−2 in the Yangtze river valley [14]. These differences are based on the architecture of the
cotton genotype, agronomic management, and harvesting practices.

The generation of new varieties and alternative agronomic practices have encouraged changes in
the production systems of crops [15] with emphasis in manipulation of row spacing dimensions and
plant populations. Several studies in cotton report yield increases and variations in fiber quality due
to changes in the spatial distribution of plants [9,16,17] and is used as an alternative on commercial
fields. Briggs et al. [18] introduced the concept of ultra-narrow rows in cotton, which became very
popular worldwide. However, the use of high planting densities increases the appearance of diseases,
smaller bolls, shading of immature flower, delays in maturation and reduction in plant size [19,20].
Many of these limitations have already been overcome through breeding. Kerby et al. [21] reported
that the increase in plant density from 10 to 15 plants by m−2 delayed maturity in undetermined
growth habits of cotton genotypes, while those with determined growth habit were not affected by
this variation. Traditionally, the distance between single rows of cotton has varied between 80 and
100 cm [22]; however, since 1990 the use of ultra-narrow rows (25 cm or less) was increased as an
alternative to reduce production costs and increase yields [23], with the limitation of mechanized
harvesting causing significant losses in the field and during ginning.

Wilson et al. [24] reported the use of rows spaced at 38 cm, obtaining yields equal to or higher
than those obtained with rows between 97 and 102 cm. Stephenson and Brecke [25] reported slight
increases in yield when planting double rows at 19 cm, compared with simple rows at 76 cm. On the
other hand, Reddy et al. [22] did not find significant differences in performance when experimenting
with double and simple rows at 25 and 102 cm, respectively.

There is not information on the effect of sowing densities on cotton yield performance in Venezuela.
Therefore, the objective of this study was to evaluate the effect of different sowing densities on yield
and other agronomic variables of interest in two commercial varieties of cotton ‘Delta Pine 16′ and
‘SN-290′, in order to identify technological alternatives to make efficient use of land and increase the
productivity and profitability of cotton in Venezuela.

2. Materials and Methods

2.1. Experimental Site

The experiments were conducted during the cotton growing season (July–November) during
three years (2008, 2009 and 2010) at the experimental field of INIA-Portuguesa, located in Araure,
Portuguesa state, Venezuela (9◦36’51” N, 69◦14’34” W, 233 m a.s.l). All the field experiments were
sown in mid-July in each year. The soil taxonomy is an Entisol, Aeric Tropic Flavaquent, silt, mixed,
non-acid, isohyperthermic. The climatic classification according to Köppen is Tropical Dry (Aw).
During the trials, climatic data were collected from an automatic weather station at a 2 km distance
and summarized in monthly data. Historical weather data was obtained of the same station. Across
years, the rainfall accumulation was of 879 mm and temperatures fluctuated between 22.1 and 29.3 ◦C
on average during the field trials (Figure 1).
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Figure 1. Average monthly weather data at Araure, Venezuela during cotton growing season (July-
November) of historical period 1988–2008 (white bars and blue lines) and trial period 2008–2010 (grey 
bars and red lines): (a) precipitation and (b) evaporation expressed in mm; (c) maximum and (d) 
minimum temperature expressed in °C. 

2.2. Plant Material, Treatments and Experimental Design 

The genotypes evaluated were the commercial varieties ‘Delta Pine 16′ and ‘SN-290′, genotypes 
with medium fiber and widely accepted by farmers in Venezuela, because of their fiber quality. In 
total, four spatial arrangements were evaluated, only varying plants’ distance between rows. Three 
simple row treatments spaced at 50, 60 and 80 cm apart; and a double row treatment, spaced 30 cm 
between the double row and 80 cm between single rows (Figure 2). The final spatial arrangements 
were 100,000; 83,333; 62,500 and 142,857 pl ha−1. The treatments were arranged as split plots in a 
completely randomized block design with three replications at each site. The main plot was 
represented by the spatial arrangements, and the subplots by the varieties. The experimental unit 
was four row plots that were 15 m long. 
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Figure 1. Average monthly weather data at Araure, Venezuela during cotton growing season
(July-November) of historical period 1988–2008 (white bars and blue lines) and trial period 2008–2010
(grey bars and red lines): (a) precipitation and (b) evaporation expressed in mm; (c) maximum and
(d) minimum temperature expressed in ◦C.

2.2. Plant Material, Treatments and Experimental Design

The genotypes evaluated were the commercial varieties ‘Delta Pine 16′ and ‘SN-290′, genotypes
with medium fiber and widely accepted by farmers in Venezuela, because of their fiber quality. In total,
four spatial arrangements were evaluated, only varying plants’ distance between rows. Three simple
row treatments spaced at 50, 60 and 80 cm apart; and a double row treatment, spaced 30 cm between
the double row and 80 cm between single rows (Figure 2). The final spatial arrangements were
100,000; 83,333; 62,500 and 142,857 pl ha−1. The treatments were arranged as split plots in a completely
randomized block design with three replications at each site. The main plot was represented by the
spatial arrangements, and the subplots by the varieties. The experimental unit was four row plots that
were 15 m long.
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Figure 2. Schematic representation of cotton sowing densities evaluated in this study. Sowing densities
of (a) 62,500; (b) 83,333; (c) 100,000 and (d) 142,857 pl ha−1 are shown.
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2.3. Management of Trials and Data Collection

Planting was done manually, putting two seeds 0.2 m apart per hole, and 15–18 days after
sowing (DAS) thinned to one plant. Plants were established from seeds protected with fungicide
(Thiophanate-methyl). The emergence of cotton seedlings was homogeneous at 7 DAS approximately.
During land preparation at each year, the trials received the recommended fertilization rates according
to soil analysis, 52 kg ha−1 of N, 90 kg ha−1 de P2O5 and 50 kg ha−1 of K2O. Second doses of N
(80 kg ha−1) were side-dressed at 35 days after crop emergence. Nonlimiting growth conditions were
maintained throughout the experiment, while weed control and insect control were done according
to infestation levels. In the three years, a pre-emergence herbicide, Prowl®400 (pendimenthalin;
3.5 L ha−1), was applied at planting. During cotton growth, larvae of fall armyworm Spodoptera
frugiperda Smith (Lepidoptera: Noctuidae) and adults of boll weevil Anthonomus grandis Boheman
(Coleoptera: Curculionidae) were controlled using Engeo® SC (lambda-cyhalothrin and thiamethoxam;
0.3 l.ha−1) and Decis® EC (deltamethrin; 0.4 l.ha−1). The entire rows per plot were harvested by hand
to determine lint yield (LY, kg ha−1). A subsample of 100 randomly bolls were collected from each plot,
to determine yield components including boll weight (BW, g), seed per boll (SB), seed index (SI, g)
from the weight of 100 seeds, and lint content (LP, %) was as follows:

LY =
Fibre weight(g)

Fibre weight(g) + Seed weight(g)
× 100 (1)

Seed cotton samples were ginned on a laboratory-scale gin (TB510A, TESTEX, Dongguan, GD,
China) to separate lint from seeds.

2.4. Statistical Analysis

Statistical analyses were carried out for the average of each plot, per year. Means were compared
across years using generalized lineal models (GLM) implemented in SAS 9.3 statistical software (SAS
Institute Inc., Cary, NC, USA, 2011). The Shapiro–Wilk statistic test indicated normality for all data.
When significant differences were detected among treatments at each year, a combined analysis was
conducted, with varieties and spatial arrangement as fixed effects and years as random effects. Means
were separated using Tukey test at p ≤ 0.05. Correlation analysis by Pearson was used to determine the
relationship between each pair of traits evaluated.

3. Results and Discussion

Homogeneity of variance test indicated homogeneous error for each trait in the three years and
allowed for a combined analysis across years. The combined analysis of variance showed that sowing
density had highly significance effects (p ≤ 0.01) on lint yield, boll weight, lint percent, number of
seeds per boll and seed index (Table 1). Similarly, mean squares due to genotypes and the interaction
of sowing densities with genotypes had significant effects in all variables evaluated except for lint
percentage in the interaction term, for which the value was non-significant.

Mean squares indicated variability among cotton performance at different sowing densities due to
their diverse genetic background and weather conditions across years. Low values for the coefficients
of variation (15% or less) for all evaluated traits indicated high experimental precision. In this study, the
year effect was significant, as expected for the typical weather variation in the lowlands and savannahs
of Venezuela, where the rainfall distribution is critical in the rainy season. Precipitation at the beginning
of the experiments contributes with cotton growth and lint yields until the crop is relatively advanced.
This crop requires abundant water during the vegetative stage in order to complete all physiological
processes, while it is necessary a low air humidity and no rain during the maturity stage to avoid
productivity losses.
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Table 1. Mean squares and significant test for yield and yield components of sowing density evaluated
during 2008 to 2010.

Source of Variation df LY (kg ha−1) BW (g) LP (%) SB (boll−1) SI (g)

Replication (Rep) 2 15,579 0.0208 0.1539 0.1148 0.2228
Sowing density (Trat) 3 3,716,671 *** 1.5745 *** 3.4216 *** 8.4482 *** 3.8261 ***
Genotype (Gen) 1 1,876,630 *** 0.9090 *** 1.6260 *** 5.1040 *** 1.8625 ***
Year 2 421,222 * 0.1618 * 0.4648 ** 1.4109 ** 0.5605 **
Trat × Gen 3 97,700 * 0.1751 * 0.1841 0.8480 * 0.2938 *
Trat × Year 6 114,712 0.0654 0.0925 0.2746 0.0943
Gen × Year 2 269,942 0.0809 0.1595 0.4777 0.1624
Trat × Gen × Year 6 288,374 * 0.1370 * 0.1878 0.4233 0.2257
Error 46 104,976 0.0441 0.1012 0.2566 0.1059

Grand Mean 3659.3 6.31 41.25 24.74 10.05
Minimum mean 2349.0 5.20 40.11 23.15 9.02
Maximum mean 4625.0 7.06 42.31 26.90 10.98
SD 563.87 0.37 0.53 0.86 0.56
CV (%) 15.41 3.33 0.77 2.05 3.24

*, ** and *** significant at p ≤ 0.05; p ≤ 0.01 and p ≤ 0.001, respectively. df, degrees of freedom; LY, lint yield; BW, boll
weight; LP, lint percentage; SB, number of seeds per boll; SI, seed index.

For each of the traits evaluated, the percentage of sums of squares (SS) remaining (for year,
genotype, sowing density and genotype-sowing density interaction) ranged between 65 and 68%
(Table 2). For the sowing density component, high percentages of SS were found for seed per boll (77%)
and for lint yield (76%). On the other hand, genotype component values were 14% or less for all traits.
Genotype by sowing density and years effects were lower than other SS sources, ranging from 4 to 8%.
Seed index showed high percentages at each source of variation evaluated.

Table 2. Portion of sums of squares (SS) attributed to year, genotype (Gen), sowing density (Trat) and
genotype × sowing density interaction as a percentage of the total sums of squares remaining after
removing sums of squares due to replication, Trat × Year, Gen × Year, and Trat × Gen × Year.

LY (kg ha−1) BW (g) LP (%) SB (boll−1) SI (g)

Pooled error 35 35 32 33 32
Remaining 65 65 68 67 68

Year 6 5 7 7 8
Genotype (Gen) 13 14 12 12 14
Sowing Density (Trat) 76 73 75 77 71
Gen × Trat 6 8 6 4 7

LY, lint yield; BW, boll weight; LP, lint percentage; SB, number of seeds per boll; SI, seed index.

Interactions were observed between sowing density and genotype for all traits evaluated and is
shown in Figure 3; Figure 4. The typical sowing density in Venezuela is 62,500 pl ha−1. However, an
increased in final population was favorable for all evaluated traits in both genotypes, except when
density was 142,857 pl ha−1, where values decrease significantly.

For all treatments, the lint yield (LY) average was 3,659.3 kg ha−1. ‘SN-290′ had high lint yields
(4,216.2 kg ha−1) at 100,000 pl ha−1, representing an increase of 15.2% over the average. In general,
across different sowing densities, ‘SN-290′ had a better lint yield than ‘Delta Pine 16′, with 3820.8 and
3497.9 kg ha−1, respectively (Figure 3a). For each genotype, the best lint yields were obtained with
83,333 pl ha−1 for ‘Delta Pine 16′ and with 100,000 pl ha−1 for ‘SN-290′, representing an increase in lint
yield of 12 and 10.3%, respectively, according to average by genotype (Figure 3b). This study showed
that sowing density and genotype influenced lint yield, boll weight, seed per boll, seed index and lint
percentage. Increasing sowing density positively influenced lint yield and yield components, except
for the sowing density of 142,857 pl ha−1 that resulted in a lint yield reduction of 17%. Similar results
were reported by Enriquez-Sanchez et al. [26] with the variety ‘Delta Pine 5409′ sowed at a density of
150,000 pl ha−1 in Mexico, using subsurface drip irrigation. Yield per unit area generally increases
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with high plant density. Although, as plant density is increased yield per unit area will approach an
upper limit, plateau, and then decline because of competition for resources such as light, water and
nutrients among plants. Higher sowing density may cause an overlap canopy and shading of lower
leaves in the canopy according to the architecture of the plant evaluated. In this study, both ‘SN-290′

and ‘Delta Pine 16′ are bush type with longer fruiting branches, shorter stature, wider canopy and
more vegetative branches, and an excessive overlap could cause a decrease in the plant metabolism.
A rational plant density provides a better canopy micro-environment to gain higher yield [19] and
reduce inputs by minimizing seed use without sacrificing yields [17].
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values. Each bar represents the mean (±SE) values by genotypes such as Delta Pine 16 (white bars)
and SN-290 (grey bars). Bars sharing same letter do not differ significantly at p ≤ 0.05 by Tukey’s
post-hoc test.

Boll weight average was 6.3 g, with ‘SN-290′ at 83,333 and 100,000 pl ha−1 exhibiting the maximum
values, 6% superior than the average (Figure 4a). Also, ‘Delta Pine 16′ at 83,333 pl ha−1 had a higher
BW value than the average. In this study, BW was directly related with LY. An increased in sowing
densities at 142,857 pl ha−1 resulted in fewer bolls at upper nodes and low weights, caused by the
low number of main-stem nodes per plant, as reported by Clawson et al. [27] and McCarty et al. [28].
In contrast, Yang et al. [19], Zhi et al. [29] and Khan et al. [30] also reported a BW decreased as plant
density increased. These authors indicated that at higher sowing density, cotton yield increased by an
inverse relation between boll number and boll weight.

Figure 4b shows the lint percentage. This trait is important to cotton farmers because it represents
the useful fraction used by the textile company. LP average was 41.3%, with ‘SN-290′ at 100,000 pl ha−1

revealing a maximum value with of 41.73%. For both genotypes, LP values decreased significantly
at 142,857 pl ha−1, however LP values were not more inferior than 38%, which is the textile industry
requirement in Venezuela. In this study, LP values were high, as compared with other studies carried
out in similar environments [6,7]. In these cases plants were planted at 62,500 pl ha−1 and followed the
same pattern as reported by McCarty et al. [31], where LP become higher as plant population increased.
Zhi et al. [29] reported an increase of 3.1% in LP in plants at 87,000 pl ha−1 compare with plants at
15,000 pl ha−1.

Seed per boll (SB) was very similar in both genotypes, with differences of up to 2.05 seeds per
boll (Figure 4c). SI average was 10.1 g with maximum values of 10.62 g for ‘SN-290′ at 83.333 pl ha−1

(Figure 4d). A greater number and weight of seeds per boll is desirable because of the greater surface
area for lint production within each boll [32,33].
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per boll; (d) seed index. Each bar represents the mean (±SE) values by genotypes, such as Delta Pine 16
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Results from correlation analysis of lint yield and other yields components are presented in
Table 3. Lint yield was highly positively correlated with boll weight (r = 0.98), seed per boll (r = 0.72)
and lint percentage (r = 0.89), indicating that dry matter accumulation is determinant. There were
not significant correlations between seed per boll and boll weight (r = 0.41), seed per boll and lint
percentage (r = 0.36) or seed index and lint percentage (r = 0.33). These yield components were not
consistent and varied widely among sowing densities and genotypes.

Table 3. Pearson’s correlation coefficients of lint yield and yield components of two cotton genotypes
at four sowing densities.

LY BW SB SI

BW 0.98**
SB 0.72** 0.41
SI 0.45* 0.65* 0.88**
LP 0.89** 0.96** 0. 36 0.33

* and ** significance at p ≤ 0.05 and p ≤ 0.01, respectively.

The superior performance of ‘SN-290′ over ‘Delta Pine 16′ in all evaluated traits, may be due to
differences in the genetic backgrounds. ‘Delta Pine 16′ was an introduced from USA in the mid-1960s,
meanwhile ‘SN-290′ is derived from a selection of different recombinant crosses between newest cotton
genotypes from the 1985–1995 period, used as criterion for selection compact plants to improve light
interception. Compact plants allow to increase the number of plants per area, without affecting other
traits. Bednarz et al. [32] indicated relevant changes within-boll yield components during the last 60
years, where lint percentage has increased from 30 to 40% in average. These changes are attributed in
part to selection of plants with different morphology that make it suitable for mechanical harvesting.
However, high sowing densities are sensitive to fluctuations in the environmental conditions (such as
micro-environments), compared with low densities (≤62,000 pl ha−1) [34]. These results shown that
lint yield and yield components respond different to sowing densities and genotypes.
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4. Conclusions

This study reveals that cotton lint yield is influenced by sowing density and genotype. Increasing
the number of plants by closing rows can help obtaining higher lint yields. Across genotypes, boll
weight, seed per boll, seed index and lint percentage increase linearly with sowing density up to
100,000 pl ha−1. Sowing density of 142,857 pl ha−1 causes a significant decreased of lint yield and other
lint components in both examined genotypes. In general, ‘SN-290′ respond better than ‘DeltaPine 16′

to changes in sowing density. Therefore, this study suggests that farmers can improve their lint yield
by increasing the sowing density from 62,500 to 83,333 and 100,000 pl ha−1 for ‘Delta Pine 16′ and
‘SN-290′, respectively. The finding offers an alternative to cotton growers, who conventionally use
wider rows and densities up to 62,500 pl ha−1.
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