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Abstract: The spatial distribution and location of crops are necessary information for agricultural 
planning. The free availability of optical satellites such as Landsat offers an opportunity to obtain 
this key information. Crop type mapping using satellite data is challenged by its reliance on ground 
truth data. The Integrated Administration and Control System (IACS) data, submitted by farmers 
in Europe for subsidy payments, provide a solution to the issue of periodic field data collection. The 
present study tested the performance of the IACS data in the development of a generalized 
predictive crop type model, which is independent of the calibration year. Using the IACS polygons 
as objects, the mean spectral information based on four different vegetation indices and six Landsat 
bands were extracted for each crop type and used as predictors in a random forest model. Two 
modelling methods called single-year (SY) and multiple-year (MY) calibration were tested to find 
out their performance in the prediction of grassland, maize, summer, and winter crops. The 
independent validation of SY and MY resulted in a mean overall accuracy of 71.5% and 77.3%, 
respectively. The field-based approach of calibration used in this study dealt with the ‘salt and 
pepper’ effects of the pixel-based approach. 

Keywords: agricultural land-cover; multi-spectral; generalized model; machine learning; crop type 
mapping; Integrated Administration and Control System; remote sensing 

 

1. Introduction 

The increasing world population coupled with the high demand for agricultural resources [1] 
require reliable data on agricultural lands for decision making and planning towards the future [2]. 
The knowledge on available croplands is fundamental to food security [3], sustainable cropping [4] 
and the maximization of food production [5]. Information about the spatial distribution of crops and 
the spatial extent of croplands are also essential to ascertain the impact of any human activity on 
croplands [6]. 

Reliable and accurate information about agricultural lands requires an efficient and precise 
approach, which remote sensing (RS) can offer [7–9]. RS-based methods can be used to obtain various 
crop information, such as crop type [10], biomass [11], or yield [12]. The advent of satellite-based 
optical RS has revolutionized large-scale cropland mapping and has been used in many local, 
regional, and global agricultural projects [4,13–15]. 

The free availability of some of these images adds to the many advantages of satellite-based 
optical remote sensing in agriculture [16]. Such data, which is also available for historic time periods 
back to the early 1970s, provides a means to study the present landscapes in relation to how they 
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were in the past. Landsat, which is the oldest running earth monitoring program, provides a 47-year 
archive of satellite data of the entire earth at a 30-meter resolution. As a result, most of the crop types 
and other agricultural mapping studies have used Landsat images as the main data source. For 
instance, Lui et al., [16] used multi-temporal Landsat-8 to successfully map winter wheat in China. 
Maxwell et al., [17] demonstrated an effective corn classification from Landsat images through an 
automated process in south-central Nebraska of USA, and Yin et al., [18] used dense Landsat time 
series data to map agricultural and land abandonment with a high level of accuracy in the Caucasus, 
covering parts of Russia and Georgia. Many of these studies either employed supervised or 
unsupervised classification to ascertain the needed land-cover information [19,20], either at the pixel 
or object-based levels. Despite their accurate performances, they have some limitations [21,22]. 
Supervised learning always requires field information, also known as training or ground-truth data 
[23]. Even with the unsupervised learning, knowledge about the study area is required to assign the 
correct land cover type to the classification results. 

A large number of studies on crop type and cropland mapping used field data from the same 
mapping year [24–26]. This way of mapping is limited in situations, where there are no ground truth 
data available, or data collection is impossible for the period of interest. Due to the yearly and periodic 
changes in cultivated crops, continuous collection of ground truth information is necessary to reliably 
map crop types. However, given the labor-intensive, expensive and difficult nature of ground truth 
data collection [27], studies such as Botkin et al., [28] and Sonobe et al., [29] have recommended 
research into the development of training and classification methods, which is applicable to years 
where field information is not available (i.e., a generalized classifier). 

Given the rotation of crops on fields at different seasons and the fast changes in biomass and 
phenology of crops, the use of temporal information is very crucial in the discrimination of crops. 
Prediction of land-cover based on multi-temporal data involves the use of data from several different 
seasons and has proven to be effective in many studies [30,31], as it integrates the varying 
phenological characteristics among vegetation. Leaf pigment, water, and canopy structure are proven 
to relate with spectral reflectance of crops but varies at different growing seasons [32]. The use of data 
from a single date is known to inefficiently capture the differences among the many crops which 
share similar spectral characteristics [10]. Manfron et al., [33] for instance, analyzed time series of 
satellite images to efficiently estimate the inter-annual variability of the sowing dates of winter wheat 
Many other studies have employed vegetation indices such as the normalized difference vegetation 
index and the enhanced vegetation index to capture the seasonal dynamics of crops and other land-
cover characteristics [19,34]. 

In Europe, there exists a remarkably rich agricultural land cover data body within the Integrated 
Administration and Control System (IACS), which are regularly collected by farmers as part of the 
subsidy payment scheme in the common agricultural policy [35]. A similar agricultural data in the 
United States of America is the reference data collected by the Department of Agriculture (USDA) to 
produce the annual crop data layer (CDL) [36]. These reference data are not available to the public, 
which may be the reason why the CDL has served as validation data in many crop type mapping 
studies [8,37]. Conversely, the IACS data can be freely obtained by scientists and research institutions 
for scientific purposes upon an official request. However, not much has been done with the IACS 
data in crop type mapping. Griffiths et al., [38] created a national single-year wall-to-wall land-cover 
map of Germany and used IACS data as a reference to validate some part of the study area. The study 
of Vuolo et al., [30] demonstrated how multi-temporal Sentinel-2 data can improve the accuracy of 
crop prediction when IACS data was used to independently validate the classified map. To the best 
of the authors’ knowledge, there is no research that has used multi-temporal IACS data as training 
data to develop a generalized model to predict crop types from satellite data at the field level. 

Therefore, we hypothesize that the IACS data can be used to train a multi-temporal field-based 
model, which can predict crop types from a satellite image that is independent of the model’s training 
year. Hence, the calibration data, as well as the data used for testing the models, are from different 
years. In addressing the stated hypothesis, two different modelling approaches, i.e., multiple-year 
(MY) and single-year (SY) calibrations were tested in the present study. While SY models are 
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calibrated using data from just one year, MY modelling involves model training based on data from 
two or more years. The SY and MY approaches have been applied in some crop mapping studies, 
e.g., [8], but were done at the pixel level, which is characterized by the problem of ‘salt and pepper’ 
effects (i.e., a misclassification of neighbouring pixels despite large similarities). On the other side, 
the object-based method of land cover classification, that has recently attracted considerable attention 
[39] as a replacement for the pixel-based [40], suffers from difficulties in the segmentation scale 
selection. Further, it was shown to depend on the size of the objects being mapped [41] and tend to 
misclassify small land-cover objects in low to medium satellite images, such as Landsat [22]. 
Therefore, this study employs a field/polygon-based calibration approach using the exact crop field 
shapes from the IACS database. Our study addresses the following questions: 

1) How well do models based on a single year’s spectral information predict crops when tested 
on years not included in the model calibration process? 

2) What is the prediction performance of models calibrated on spectral information from 
multiple years? 

3) Is the accuracy of the classification models affected by field size? 

2. Materials and Methods 

2.1. Study Area 

The study was done in the Northern Hesse region of Germany (Figure 1) comprising the districts 
of Kassel, Waldeck-Frankenberg, Schwalm-Eder, Hersfeld Rotenburg, and Werra-Meissner. The 
study area comprises ca. 6900 km2 and is characterized by diverse landscapes and sites with favorable 
and less favorable environmental conditions for farming. The favourable arable lands are mostly 
found in flat valleys and on plateaus with moderate slopes, which are often covered by loess of 
substantial thickness mainly in the western and northern parts [42]. The less favourable arable sites 
show shallow soils with less native water and nutrient availability. 

Elevation ranges from 101 to 754 m with mean annual temperatures of 9–10 °C in the lowlands 
and 5–6 °C in the highlands. The mean annual rainfall ranges from 500–1300 mm [43]. The calendar 
of the crop types considered in this study can be seen in Table 1. 

 

Figure 1. Map of the study area. (A) shows a map of Germany and the location of the study area, with 
the boundaries of the Landsat scenes; (B) shows the five districts, where the study was done. 
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Table 1. Generalized calendar of the four crop types in the study area. 

Crop Types Sowing Window Peak Greenness Harvesting Window 
Grassland Depending on the grassland management system 

Maize Late April Mid-August Mid-late September 
Summer crops Late March-Mid April  Mid-Late June July-September 
Winter crops September-October Mid-June July-August 

2.2. Data 

2.2.1. Satellite Data 

A total of 63 satellite images from the period April to October between 2005 and 2015 were used 
for this study. Surface reflectance Landsat scenes (Level-2) as summarized in Table 2 were 
downloaded from USGS’s Earth Explorer [44]. Images from only six years were used because of little 
to no clouds. The images of Landsat 5 TM and 7 ETM+ had been atmospherically corrected using 
Landsat Ecosystem Disturbances Adaptive Processing System (LEDAPS) by NASA [45]. Surface 
reflectance of Landsat-8 was produced using Landsat Surface Reflectance Code [46]. Table 3 shows 
detailed information about the six spectral bands of the Landsat data used. Despite the small 
differences in the spectral ranges of the Landsat types, which have been well studied [47,48] to be 
smaller than 1 standard deviation of time-series of the spectral curve had no significant effect on 
classification results. Additionally, according to USGS [49], the Level-2 product (surface reflectance) 
of the Landsat images are similar, therefore, the Landsat data was not normalized. The 
atmospherically corrected Landsat images were accompanied by cloud mask layers. The images were 
categorized according to the dates when the images were captured, i.e., early summer (ES, April to 
May) and late summer (LS, July to October). ES and LS seasons cover the growing period of crop 
types in the study area; hence their use can help capture the different phenology of the crops at 
different stages of their development. 

Table 2. Summary of satellite images used. (TM: Thematic Mapper, ETM+: Enhanced Thematic 
Mapper plus). The numbers in brackets represent the number of images used per date. 

 Date of Image Acquisition 
Year Satellite  Early Summer Late Summer 
2005 Landsat 5 TM 03-Apr. (1), 21-Apr. (2) 18-Aug. (2) 

 Landsat 7 ETM+ 4-Apr. (2)  

2007 Landsat 5 TM 02-Apr. (2), 25-Apr. (1) , 27-Apr. (1) 16-Jul. (2), 01-Aug. (1), 24-Aug. (2) 
 Landsat 7 ETM+ 26-Apr (2)  

2009 Landsat 5 TM 
07-Apr. (2), 14-Apr. (2), 16-Apr. (2),  

02-May (1), 25-May (1) 
06-Aug. (2), 20-Aug. (2) 

 Landsat 7 ETM+  05-Aug. (1), 22-Sep. (1) 
2010 Landsat 5 TM 17- Apr. (2), 19-Apr. (2) 08-Jul. (1), 31-Jul. (1), 07-Aug. (2) 

 Landsat 7 ETM+ 18-Apr. (2)  

2011 Landsat 5 TM 20-Apr. (1), 22-Apr. (2), 08-May (1) 03-Aug. (1), 15-Oct. (1), 22-Oct. (1) 
 Landsat 7 ETM+ 21-Apr. (2), 07-May(2) 20-Aug. (1), 03-Sep. (2), 21-Sep (1), 28-Sep. (2) 

2015 Landsat 8 24-Apr. (2) 30-Aug. (2) 

Table 3. Summary of the six spectral bands of the Landsat 5, 7 and 8. NIR = Near infra-red, 
SWIR=Shortwave infra-red, TM = Thematic Mapper, ETM+=Enhanced Thematic Mapper plus. 

Landsat 5 TM and 7 ETM+  Landsat 8 

Band number. Band name 
wavelength  

(μm) 
 Band number Band name 

Wavelength  
(μm) 

Band 1 Blue 0.441-0.514  Band 2 Blue 0.452-0.512 
Band 2 Green 0.519-0.601  Band 3 Green 0.533-0.590 
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Band 3  Red 0.631-0.692  Band 4 Red  0.636-0.673 
Band 4 NIR 0.772-0.898  Band 5 NIR 0.851-0.879 
Band 5 SWIR-1 1.547-1.749  Band 6 SWIR-1 1.566-1.651 
Band 7 SWIR-2 2.064-2.345   Band 7 SWIR-2 2.107-2.294 

 

2.2.2. Reference Data 

The IACS data were used as ancillary data in this study. These are spatial data collected by 
farmers as part of the subsidy support system within the EU. It is made up of the shapes of 
agricultural fields and the crop types planted in each cropping season. The models were initially 
developed to predict individual crop species in the study area, but tests (not shown) exhibited 
incorrect predictions among crops species of similar spectral characteristics and growing periods. 
Therefore, several crops were grouped into four crop types. They were grassland, maize, summer, 
and winter crops with their vegetation profiles shown in Figure 2. These vegetation profiles depict 
the spectral characteristics of the crop types at different stages of their development and show a 
similar trend across all years. Farmers are not obliged to register their fields; except for farmers who 
apply for subsidies. Therefore, the reference data used in this study is limited to the declared fields 
as submitted to the responsible agency. Fallow fields were not considered in this study since the 
reference data (i.e., the IACS) used for modelling consists of only cultivated fields. 

 
Figure 2. Vegetation profiles of the four crops based on enhanced vegetation index (EVI). Early 
summer = April to May, Late summer = July to October. 

2.3. Data Processing 

2.3.1. Image Pre-processing 

The different bands (i.e., blue, green, red, near infra-red and shortwave infra-red 1 and 2) of the 
satellite images were stacked together, based on the years and acquisition time (Figure 3). Some of 
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the images had small areas of clouds since cloud cover of less than 10% was considered appropriate 
for the study purpose. As a result, the cloud masks that came with the images were used to mask out 
all clouds. The masked areas were replaced with non-cloudy data from other images of the same area 
around the same time frame (i.e., May for ES and September, October for LS). With respect to the 
Landsat 7, the scan lines which resulted from the failure of the scan line corrector of the ETM+ sensor 
were also replaced with cloud-free satellite data from other images of the same area using the “cover” 
function [50] from the “raster” package in R software [51]. As our study area includes more than one 
Landsat image, some images were mosaicked to cover the entire area of interest. Mean values were 
used for overlapping layers during the mosaicking process. Figure 3 shows a complete workflow of 
the data analysis of this study. 

 
Figure 3. The workflow of the data analysis. SY-Single-year, MY-Multiple-years, VIs-Vegetation 
Indices, B-Blue, G-Green, R-Red, NIR-Near Infra-red, SWIR-Shortwave Infra-red, NDVI-Normalized 
Difference Vegetation Index, EVI-Enhanced Vegetation Index, SAVI-Soil Adjusted Vegetation Index, 
NDMI-Normalized Difference Moisture Index. 

2.4. Model Calibration and Validation 
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Crop type prediction models were built based on random forest (RF) algorithm, which is an 
ensemble supervised machine learning classifier that creates numerous decision trees for prediction 
by randomly selecting subsets of the training data through the process of bagging [52]. Higher 
accuracies have been achieved with RF as compared to other machine learning algorithms in many 
crop mapping studies [7,8]. It can effectively function with only two main parameters, i.e., the number 
of trees to grow (Ntree) and the number of predictor variables selected for the best splitting of each 
tree node (Mtry) [53]. In this study, Ntree was set at 500 for all models since the error steadies before 
this number is reached, while Mtry was set to the square root of the input variables as reviewed by 
Belgiu and Drăgu [53]. 

2.4.1. Input Variables Used in the Model 

Spectral data obtained from the satellite data and used as predictors in the crop type predictive 
models consisted of blue, green, red, near infra-red (NIR), shortwave infra-red 1 (SWIR 1) and 
shortwave infra-red 2 (SWIR 2). Additionally, four widely used spectral vegetation indices (VIs), i.e., 
normalized difference vegetation index (NDVI) [54], enhanced vegetation index (EVI) [34], soil 
adjusted vegetation index (SAVI) [55] and normalized difference moisture index (NDMI) [56], were 
computed from a ratio of different satellite bands (see Equations (1), (2),(3), (4)) and included as 
explanatory variables. These VIs capture the dynamics of vegetation like greenness and vigor among 
others at different phenological stages. The potential of NDVI to assess vegetation dynamics of crops 
has been demonstrated by a number of studies [10,19]. However, it has shortcomings of sensitivity 
to saturation, soil background effects, or atmospheric effects. In dealing with these limitations, EVI 
and SAVI were added. SAVI deals with the soil background effects, while EVI uses the blue band to 
deal with the atmospheric influences by aerosols. EVI, NDVI, and SAVI, as shown in Equations (1), 
(2), and (3), respectively, use the NIR and red bands in their computation, and they complement each 
other when used in vegetation analysis. NDMI, which uses NIR and SWIR for measuring the water 
content in vegetation, was also included in the analysis (Equation (4)), as it adds some complementary 
information to the other VIs. 

NDVI = (NIR − Red) / (NIR + Red) (1) 

EVI = G × (NIR − Red) / (NIR + C1 × Red - C2 × Blue + L) (2) 

SAVI = [(NIR − Red) / (NIR + Red + L)] × (1+ L) (3) 

NDMI = (NIR − SWIR) / (NIR + SWIR) (4) 

Where NIR = Near Infra-red, G = gain factor, C1 and C2 are aerosol resistance term coefficients, L in 
Equation (2) is non-linear canopy background adjustment, L in Equation (3) is soil brightness factor 
and SWIR = Shortwave Infra − red (values: G = 2.5, C1 = 6, C2 = 7.5, LEVI  = 1, LSAVI = 0.5). 

2.4.2. Field-based Extraction of Spectral Information. 

The extraction of the spectral information was done at field base with the exact crop fields as 
objects. Mean values of each crop’s field were extracted from the spectral data, which consisted of six 
individual bands of the satellite image, as well as four vegetation indices; grouped into early summer 
(ES) and late summer (LS) spectral information. In all, 20 different spectral information were used as 
predictors in the RF models. Since the IACS data (Figure 5) represent field information and, crops are 
cultivated with unequal distribution of fields for each crop type, almost equal numbers of 
polygon/field samples for each crop type were selected. Thus, crop types with many fields were 
always undersampled compared to those which were represented by fewer fields. Six different data 
tables were built for the six respective years, which were later used to calibrate and validate the crop 
type prediction model, with the spectral information and crop types as predictor and response 
variables, respectively. 

2.4.3. Crop Type Prediction Modelling 
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Two different modelling approaches called same-year (SY) and multiple-year (MY) training 
were employed. With respect to SY models, an RF algorithm was trained using only the spectral 
information of one year and cross-validated using the remaining years as shown in Figure 4A. This 
was repeated six times, where for each repetition a different year was used to train the model, and 
the model’s performance in predicting crop types was assessed using the remaining single-year data. 

 
Figure 4. An illustration of the two modelling approaches. 

MY models were trained by combining the extracted spectral information from five different 
years during the training phase and tested on an independent year. The training combination with 
multiple years was done six times, and with each repetition a single year was left out to validate the 
efficacy of the MY models (Figure 4B). The contribution of the predictors was assessed based on the 
internal mean decrease Gini of RF, which is the average of all Gini impurity recorded for each input 
variable when selected for splitting at each tree node [57]. Graphs showing the six most important 
predictor variables (based on percentages of the mean decrease Gini Index) of the best modelling 
method were created for visualization. 

2.4.4. Accuracy Assessment 

The performance of the models in predicting crop types was independently evaluated at field 
scale based on a confusion matrix. The independent validation was done by comparing the predicted 
crop types with the known crops using the reference data. The three most important and widely used 
metrics namely, overall accuracy (OA), user accuracy (UA) and producer accuracy (PA), resulting 
from the confusion matrix were calculated. OA assesses the overall performance of a model and is 
the ratio of correctly predicted crops and the total number of predicted crops. UA evaluates how well 
the predicted crops agree with the known reference data (i.e., the IACS field data), while PA measures 
the agreement between the reference data and the prediction. From the confusion matrix, the error of 
commission (EC) and error of omission (EO) of the respective land cover types can be obtained. Since 
the performance of each developed SY model was tested for all years, except for the training years, 
the presented accuracy measures are averages of OA, UA, and PA of the same years. Since accuracies 
and errors of spatial data are spatially explicit, a map was created that demonstrates our models’ 
ability to visualize correctly and wrongly predicted fields using the best modelling method. 

2.5. Relationship between Field Size and Accuracy 

To check whether the accuracy of crop type prediction depended on the size of crop fields, the 
correctly and wrongly predicted fields along with their sizes were extracted for each of the MY 
models. Field sizes were rounded to the nearest multiples of 1.5 ha (i.e., the average field size) to 
create field size classes, with the count of the all correct (True) and wrong (False) predictions for each 
field size category. The percentages of correct predictions for all the field size categories were 
computed. 

3. Results 

3.1. Agricultural Land Cover Data 
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The IACS data used as reference data to calibrate and validate the developed models showed 
different field numbers, average field size, and area for grassland, maize, summer crops, and winter 
crops (Figure 5). The average field size for grassland was around 1 ha and did not change significantly 
over time. Summer crops showed a slightly higher average field size between 1.2 and 1.5 ha for all 
years under consideration. Maize and winter crops had the biggest average field sizes, ranging 
between 1.8 ha to 2 ha from 2005 to 2015. 

While grassland had the highest number of fields followed by winter crops, the number of maize 
and summer crops were the lowest. Consequently, winter crops covered the largest area of arable 
lands in the study area followed by grassland, whereas the area of maize and summer crops was 
comparatively small. 

 
Figure 5. Characteristics of Integrated Administration and Control System (IACS) data used as 
reference information for the predictive crop type models. 

3.2. Assessment of the Modelling Approaches 

The general performance of the two modelling approaches as indicated by the OA (Figure 6) 
ranged from 67.7% to 73.4% with an average value of 71.5% for the SY models. The MY modelling 
approach showed an OA between 67.1% and 86.1% with an average of 77.3% (Figure 7). The lowest 
OA for the SY models was observed when they were tested with crops in the year 2015, while the 
highest OA value was achieved in 2011. Conversely, MY models achieved their highest OA in 2015, 
whereas, the lowest performance was observed in 2011. 

The SY prediction of individual crop types in different years based on user (UA) and producer 
accuracy (PA) showed a high UA (81.6%) and PA (82.2%) values for grassland, while UA (76.7%) and 
PA values (67%) for maize were somewhat lower. Prediction of summer crops (UA and PA of 60.6 % 
and 69.5 % respectively) was less accurate than winter crops (UA 76%, PA 71.1%). 
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Figure 6. Accuracies of single year models. The mean bars represent average PA and UA, respectively, 
for each crop across years. Values in brackets represent the average overall accuracies of all models. 
UA = User accuracy and PA = producer accuracy. 

The application of MY models to identify grassland area of different years resulted in a mean 
UA of 83.1% and a PA of 87.8% (Figure 7). Maize was discriminated with a mean UA and PA of 71.8% 
and 85.2% respectively, while winter crops were discriminated with a mean accuracy of 79% (UA) 
and 79.6% (PA). The average accuracy for summer crops was comparatively low (PA = 71.5% and PA 
= 69.3%), which was mainly a result of the confusion between summer crops and the other crops. 

Overall, grasslands always exhibited higher accuracies (UA and PA > 80%) across years when 
predicted by the two modelling methods, whereas the arable crops were better predicted by the MY 
models in comparison to the SY models. 
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Figure 7. Accuracies of multiple-year models. The mean bars represent average producer accuracies 
(PA) and user accuracy (UA), respectively, for each crop across years. Values in brackets represent 
the average overall accuracies of all models.  

3.3. Classified Maps Based on Best Modelling Method 

Since MY models proved to be the best modelling approach, their capability to create accurate 
crop-type maps are exhibited in Figure 8 for 2015, which corresponds to an OA of 86.1% (see 
Appendix, Table A6 for a confusion matrix). The map was derived with model 6 (Figure 4B), which 
is an MY model developed based on information from 2005, 2007, 2009, 2010, and 2011. On closer 
examination, regions at higher altitudes with less favourable growth conditions, which are 
dominated by grasslands (Figure 8A), can be clearly distinguished from fertile areas, where a 
multitude of arable crops is grown and where grassland is only interspersed. Moreover, the spatial 
distribution and patterns of crops, the shape, and edges of fields can clearly be observed. The so-
called ‘salt and pepper’ effects, that characterize most land-cover maps at a pixel base were not 
experienced with the maps produced in this research, which may be a result of the fact that our 
models were calibrated with the mean spectral information at field scale based on the IACS field 
polygons. Maps of the remaining years and their respective confusion matrices are shown in the 
appendix, that is, Figures A1–A5 and Table A1–A5, respectively. 
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Figure 8. A classified map of 2015 resulting from a multiple-year model based on spectral information 
of 2005, 2007, 2009, 2010 and 2011. ‘A’ and ‘B’ show areas dominated by grassland at higher altitudes 
and fertile areas dominated by arable crops respectively. 

3.4. Relationship between Model Accuracy and Field Size 

An increase in mean accuracy from 74% to 87% was observed as the field size increased (i.e., 1.5-
9 ha) (Figure 9). Furthermore, a slight decrease in the mean accuracy from 87% to 85% of crop type 
prediction was seen with increasing field size from 9 ha to 12 ha. As the field size increased further 
to 13.5 ha, a slight increase in accuracy was observed (from 85% to 88%). However, a marginal 
reduction to 87% accuracy was observed as the field size increased further. The consistent and 
marginal rise and fall in accuracy with increasing field sizes indicate that crop type prediction by MY 
models is independent of field size. But it is important to state that the majority of fields (> 60%) 
belong to the smallest field category (1.5 ha). The accuracy maps of the MY models can be seen in 
Figure 10 and the rest in the appendix (Figures A6–A10) 

 
Figure 9. The relationship between the accuracy of crop type prediction and field size based on the 
multiple-year models. The accuracies are mean values for all years, with the last bin representing the 
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average accuracy of all fields ranging 15–34.5 ha. The value on top of each bar represents the number 
of fields for each field size group. 

 
Figure 10. An IACS-based accuracy map of 2015 resulting from a multiple-year model calibrated 
using spectral data of 2005, 2007, 2009, 2010 and 2011 representing wrongly and correctly predicted 
fields. ‘A’ and ‘B’ show areas dominated by grassland at higher altitudes and fertile areas dominated 
by arable crops respectively. 

3.5. Importance of Predictor Variables 

One of the strengths of RF models is the ability to measure and assess the contribution of each 
predictor variable used. Figure 11 presents the importance values of the first 6 most important input 
variables used in the MY models. Late summer (LS) NDMI was the first most important predictor 
variable in most models, and only in one instance the means of early summer (ES) NDVI was ranked 
first (Figure 11B). Another predictor that seemed to be important across models was the early summer 
NDVI as shown in Figure 11 (A, C–F). The contribution of VIs in the prediction of crops was much 
stronger than the individual bands. Red and green bands are the only bands that appeared among 
the first six important predictors, with red being the dominant one across all models. 
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Figure 11. The 6 most important predictors used in the multi-year models expressed in decreasing 
order of importance from the top of the y-axis. Variable importance on the x-axis is expressed as a 
percentage of Mean Decrease Gini. (A), (B), (C), (D), (E), (F) are MY models trained by a combination 
of (2005 + 2007 + 2009 + 2010 + 2011), (2005 + 2007 + 2009 + 2010 + 2015), (2005 + 2007 + 2009 + 2011 + 
2015), (2005 + 2007 + 2010 + 2011 + 2015), (2005 + 2009 + 2010 + 2011 + 2015) and (2007 + 2009 + 2010 + 
2011 + 2015) respectively. LS = Late summer, ES = Early summer. 

4. Discussion 

Crop type mapping in large agricultural landscapes is challenged by the daunting task of 
periodic training data collection. The traditional satellite-based mapping approach of using reference 
data from the same year impedes mapping specifically in periods where reference data is not 
available. The IACS data, which is a field-based crop type data presents reliable reference datasets to 
deal with the problem of frequent training data collection for satellite-based crop type mapping 
through the development of a generalized model. The issue of generalized classifiers has been raised 
and exploited in a few agricultural mapping studies, but less focus was put on specific crop type 
mapping. Thus, this study aimed at assessing the efficacy of IACS data to be used as reference data 
for the development of generalized SY and MY crop type models to predict grassland, maize, summer 
and winter crops as land-cover categories. 

The accuracies achieved in our study are similar to the work of [8], where corn and soybeans 
were predicted based on spectral characteristics using the single-year modelling approach. While our 
study considers four different crop types with an acceptable average UA and PA for grassland across 
years (> 80%), maize, summer and winter crops were predicted at somewhat lower accuracies. That 
means that despite the somewhat low performance of SY models in predicting the other crop types, 
it is able to predict grassland with an acceptable level of accuracy across years. 

The overall accuracy of the SY calibration method employed in our study is rather low compared 
to the traditional method, where calibration and testing data are from the same year. Probable reasons 
may be different growing dates of the crops in different years, inter-annual differences in climate, 
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image acquisition time as well as variation in image quality between years, as was also suggested by 
Laborte et al., [58] and Zhong et al., [8]. The performance of MY models in predicting crop types 
showed higher robustness across years than the SY calibration approach. An average increment of 
6% in OA (i.e., 77.3%) was achieved by MY models across years. A similar OA of 73.1% was achieved 
by Massey et al., [37] when an MY calibrated model was used to predict crop types from MODIS data 
for an independent year. The higher robustness of MY models might be attributable to the fact that, 
through the use of spectral information from different years, the interannual climate variability as 
well as variations in image quality from different years, are reduced to a certain degree [8,58]. Thus, 
these factors make them generic with high prediction accuracies when applied to predict crops from 
data not seen by the model. Additionally, MY calibration compensates for the phenological 
differences of crops among years through the inclusion of many phenological situations using 
multiple data from different years. This makes MY models more efficient and generalized for 
satellite-based crop type classification when training data is not available for a period of interest. 

The prediction of crops from the spectral-temporal profiles of satellite images can heavily 
depend on the time and quality of the images used [10,58]. Occasionally, a compromise has to be 
made between the quality and time of images in the same growing season, which may ultimately 
have the consequence that not all years will have high accuracies when data from multiple years are 
used [8]. In this study, for example, the 2009 and 2011 seasons comprised of very late September and 
October images (Table 2) due to the lack of earlier images. However, in the study area, maize fields 
are harvested as late as the end of September or early October, whereas summer crops are harvested 
much earlier to give way for winter crops, which might have developed one or two leaves at this 
time. Such sources of variation might explain the somewhat lower accuracies of 2009 and 2011 data 
as compared to the other years. 

The data on the assessment of the spectral predictors used in the MY models indicates a 
paramount contribution of VIs in the prediction of crops as compared to the individual bands. A 
similar conclusion was drawn by Fletcher [59] in the discrimination of soybean and three weed 
species. The highest contribution of VIs in the prediction of the crops was expected since their 
calculation involved two or more bands and as a result, used the unique spectral characteristics of 
the individual bands to produce a single layer which captured the different phenological dynamics 
among the crops. Vegetation indices, which are based on SWIR and NIR spectral bands, are known 
for their contributions to plant separation [59]. Therefore, despite the contributions of the other 
predictor variables, the late summer NDMI is ranked as the topmost dominant predictor variables 
for almost all years, followed by early summer NDVI. NDMI uses a normalized ratio of the difference 
and sum of NIR and SWIR and is known to be sensitive to changes in water content of vegetations 
canopies [56]. It can, therefore, be inferred that the differences among the four crop types are better 
captured by the content of moisture in their leaf canopies during late summer. 

The subject of object size and prediction accuracy is very crucial in the mapping of agricultural 
areas [39]. Our results suggest that the prediction of a particular crop type does not necessarily 
depend on the corresponding size of the field. It was expected that the prediction of bigger fields may 
be easier than with smaller fields, but the results do not confirm that. The biggest crop field category 
(≥15 ha) achieved a prediction accuracy of 88%, nonetheless, comparatively smaller field sizes (9 ha) 
also achieved the same accuracy. Thus, the present study does not support the conclusions of Castilla 
et al., [41], that the possibility of correct classification of land-cover type decreases with decreasing 
object size. The reason may be that Castilla et al., [41] employed a segmentation method, which is 
dependent on the land cover size, whereas the present study used the exact field polygons declared 
by farmers in the study area as objects for the prediction of the crop types. However, since the present 
study area is dominated by smaller fields with very few large fields, future research is required to 
further investigate the relationship between field size and accuracy of crop types prediction in 
agricultural areas with a relatively even distribution of field sizes. 

The uniqueness of this study compared to other studies of generalized classifiers for cropland 
mapping is the field-based approach employed. This approach deals with some of the challenges 
associated with the widely used methods. The issue of segmentation scale selection of the other 



Agronomy 2019, 9, 309 16 of 27 

 

object-based classification [21] is avoided. Moreover, the ‘salt and pepper’ effects that characterize 
the pixel-based prediction of land-cover types are equally averted in this study. Hence, our MY 
modelling approach can be used to map past and present crop types which may be necessary to 
ascertain the impacts of any agricultural activity (e.g., biogas production) heavily dependent on 
croplands. 

Finally, the hypothesis that IACS data can be used to calibrate models for the prediction of crop 
types from a satellite image differing from the calibration year has been proven through a field-based 
SY and MY calibration approach. However, Cai et al., [60] stated that increasing the calibration years 
to a maximum of 10 years can further increase accuracy. Therefore, our five-year MY models could 
be improved further by incorporating more years of spectral information, as more satellite data 
(Sentinel and EnMap) become available in the future. 

5. Conclusion 

For the first time, this study used a field-based approach to test the usefulness of IACS data in 
calibrating an RF-based model to predict crop types from satellite images, that are not from the same 
year as the calibration year. Thus, two modelling methods called SY (i.e., using spectral data from a 
single year) and MY calibration (i.e., using spectral data from multiple years) were tested in the 
discrimination of grassland, maize, summer and winter crops. 

The results depict a superior performance of the MY approach as compared to SY model. The 
MY approach included a larger range of inter-annual variability in image quality, climate, and 
growing dates of crops from different years, thus, contributing to its robustness in predicting crop 
type from satellite images of different years. The approach employed in this work, unlike other object-
based methods, is not dependent on field size. It is, therefore, recommended to use the field-based 
MY calibration approach for practical crop type mapping, particularly when reference data for the 
mapping year is not available. This method is useful for practical reasons and can be used to map 
past and present croplands for comparative analysis. However, the inclusion of soil data and 
phenological metrics as predictors of MY model may have a potential for future research. This might 
help improve performance and provide an opportunity for more specific crop type mapping, rather 
than generic crops like summer and winter crops as used in this study. A combination of data from 
different satellites like Sentinel or upcoming satellites like EnMap or HyspIRI might further improve 
the MY modelling approach due to higher revisiting time and thus a denser time series 
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Appendix A 

 
Figure A1. A classified map of 2005 resulting from a multiple-year model based on spectral 
information of 2007, 2009, 2010, 2011 and 2015. 

 
Figure A2. A classified map of 2007 resulting from a multiple-year model based on spectral 
information of 2005, 2009, 2010, 2011 and 2015. 
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Figure A3. A classified map of 2009 resulting from a multiple-year model based on spectral 
information of 2005, 2007, 2010, 2011 and 2015. 

 
Figure A4. A classified map of 2010 resulting from a multiple-year model based on spectral 
information of 2005, 2007, 2009, 2011 and 2015. 
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Figure A5. A classified map of 2011 resulting from a multiple-year model based on spectral 
information of 2005, 2007, 2009, 2010 and 2015. 

 
Figure A6. An IACS-based accuracy map of 2005 resulting from a multiple-year model calibrated 
using spectral data from 2007, 2009, 2010, 2011 and 2015. 
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Figure A7. An IACS-based accuracy map of 2007 resulting from a multiple-year model calibrated 
using spectral data from 2005, 2009, 2010, 2011 and 2015. 

 
Figure A8. An IACS-based accuracy map of 2009 resulting from a multiple-year model calibrated 
using spectral data from 2005, 2007, 2010, 2011 and 2015. 
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Figure A9. An IACS-based accuracy map of 2010 resulting from a multiple-year model calibrated 
using spectral data from 2005, 2007, 2009, 2011 and 2015. 

 
Figure A10. An IACS-based accuracy map of 2011 resulting from a multiple-year model calibrated 
using spectral data from 2005, 2007, 2009, 2010 and 2015. 
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Table A1. Confusion matrix of the classified map of 2005 using the multiple-year model. The shaded 
diagonals represent the number of correctly predicted crops. GL = Grassland, MZ = Maize, SC = 
Summer crops, WC = Winter crops, UA = User accuracy, PA = Producer accuracy, EC = Error of 
commission, EO = Error of omission and OA = Overall accuracy. 

    Reference     
  GL MZ SC WC Total UA (%) CE (%) 

Pr
ed

ic
tio

n 

GL 4339 137 270 214 4960 87.48 12.52 
MZ 292 4527 442 33 5294 85.51 14.49 
SC 264 229 3792 1099 5384 70.43 29.57 
WC 105 48 496 3654 4303 84.92 15.08 

Total 5000 4941 5000 5000    

PA (%) 86.78 91.62 75.84 73.08    

OE (%) 13.22 8.38 24.16 26.92    

  OA (%) 81.8             

Table A2. Confusion matrix of the classified map of 2007 using the multiple-year model. The shaded 
diagonals represent the number of correctly predicted crops. GL = Grassland, MZ = Maize, SC = 
Summer crops, WC = Winter crops, UA = User accuracy, PA = Producer accuracy, EC = Error of 
commission, EO = Error of omission and OA = Overall accuracy. 

    Reference       
  GL MZ SC WC Total UA (%) CE (%) 

Pr
ed

ic
tio

n 

GL 4380 203 316 156 5055 86.65 13.35 
MZ 158 3738 463 38 4397 85.01 14.99 
SC 68 358 3384 154 3964 85.37 14.63 
WC 394 90 837 4652 5973 77.88 22.12 

Total 5000 4389 5000 5000    

PA (%) 87.60 85.17 67.68 93.04    

OE (%) 12.40 14.83 32.32 6.96    

  OA (%) 83.32             

Table A3. Confusion matrix of the classified map of 2009 using the multiple-year model. The shaded 
diagonals represent the number of correctly predicted crops. GL = Grassland, MZ = Maize, SC = 
Summer crops, WC = Winter crops, UA = User accuracy, PA = Producer accuracy, EC = Error of 
commission, EO = Error of omission and OA = Overall accuracy. 

      Reference     
  GL MZ SC WC Total UA (%) CE (%) 

Pr
ed

ic
tio

n 

GL 4185 986 430 175 5776 72.45 27.55 
MZ 166 4070 394 26 4656 87.41 12.59 
SC 345 889 3347 748 5329 62.81 37.19 
WC 304 531 1743 4051 6629 61.11 38.89 

Total 5000 6476 5914 5000    

PA (%) 83.70 62.85 56.59 81.02    

OE (%) 16.30 37.15 43.41 18.98    

  OA (%) 69.91             

Table A4. Confusion matrix of the classified map of 2010 using the multiple-year model. The shaded 
diagonals represent the number of correctly predicted crops. GL = Grassland, MZ = Maize, SC = 
Summer crops, WC = Winter crops, UA = User accuracy, PA = Producer accuracy, EC = Error of 
commission, EO = Error of omission and OA = Overall accuracy. 

    Reference       
  GL MZ SC WC Total UA (%) CE (%) 
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Pr
ed

ic
tio

n 

GL 4262 376 179 91 4908 86.84 13.16 
MZ 172 4990 956 185 6303 79.17 20.83 
SC 238 1830 4388 827 7283 60.25 39.75 
WC 328 171 307 3897 4703 82.86 17.14 

Total 5000 7367 5830 5000    

PA (%) 85.24 67.73 75.27 77.94    

OE (%) 14.76 32.27 24.73 22.06    

  OA (%) 75.6             

Table A5. Confusion matrix of the classified map of 2011 using the multiple-year model. The shaded 
diagonals represent the number of correctly predicted crops. GL = Grassland, MZ = Maize, SC = 
Summer crops, WC = Winter crops, UA = User accuracy, PA = Producer accuracy, EC = Error of 
commission, EO = Error of omission and OA = Overall accuracy. 

    Reference       
  GL MZ SC WC Total UA (%) CE (%) 

Pr
ed

ic
tio

n 

GL 4493 209 264 460 5426 82.81 17.19 
MZ 141 3427 732 151 4451 76.99 23.01 
SC 108 4073 4644 363 9188 50.54 49.46 
WC 258 507 872 4026 5663 71.09 28.91 

Total 5000 8216 6512 5000    

PA (%) 89.86 41.71 71.31 80.52    

OE (%) 10.14 58.29 28.69 19.48    

  OA (%) 67.09             

Table A6. Confusion matrix of the classified map of 2015 using the multiple-year model. The shaded 
diagonals represent the number of correctly predicted crops. GL = Grassland, MZ = Maize, SC = 
Summer crops, WC = Winter crops, UA = User accuracy, PA = Producer accuracy, EC = Error of 
commission, EO = Error of omission and OA = Overall accuracy. 

    Reference       
  GL MZ SC WC Total UA (%) CE (%) 

Pr
ed

ic
tio

n 

GL 10313 461 592 1163 12529 82.31 17.69 
MZ 183 8111 891 69 9254 87.65 12.35 
SC 305 296 9943 1134 11678 85.14 14.86 
WC 199 53 464 7634 8350 91.43 8.57 

Total 11000 8921 11890 10000    

PA (%) 93.75 90.92 83.62 76.34    

OE (%) 6.25 9.08 16.38 23.66    

  OA (%) 86.1             

Appendix 

Figure A1. A classified map of 2005 resulting from a multiple-year model based on spectral 
information of 2007, 2009, 2010, 2011 and 2015. Figure A2. A classified map of 2007 resulting from a 
multiple-year model based on spectral information of 2005, 2009, 2010, 2011 and 2015. Figure A3. A 
classified map of 2009 resulting from a multiple-year model based on spectral information of 2005, 
2007, 2010, 2011 and 2015. Figure A4. A classified map of 2010 resulting from a multiple-year model 
based on spectral information of 2005, 2007, 2009, 2011 and 2015. Figure A5. A classified map of 2011 
resulting from a multiple-year model based on spectral information of 2005, 2007, 2009, 2010 and 
2015. Figure A6. An IACS-based accuracy map of 2005 resulting from a multiple-year model 
calibrated using spectral data from 2007, 2009, 2010, 2011 and 2015. Figure A7. An IACS-based 
accuracy map of 2007 resulting from a multiple-year model calibrated using spectral data from 2005, 
2009, 2010, 2011 and 2015. Figure A8. An IACS-based accuracy map of 2009 resulting from a multiple-
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year model calibrated using spectral data from 2005, 2007, 2010, 2011 and 2015. Figure A9. An IACS-
based accuracy map of 2010 resulting from a multiple-year model calibrated using spectral data from 
2005, 2007, 2009, 2011 and 2015. Figure A10. An IACS-based accuracy map of 2011 resulting from a 
multiple-year model calibrated using spectral data from 2005, 2007, 2009, 2010 and 2015. Table A1. 
Confusion matrix of the classified map of 2005 using the multiple-year model. The shaded diagonals 
represent the number of correctly predicted crops. GL = Grassland, MZ = Maize, SC = Summer crops, 
WC = Winter crops, UA = User accuracy, PA = Producer accuracy, EC = Error of commission, EO = 
Error of omission and OA = Overall accuracy. Table A2. Confusion matrix of the classified map of 
2007 using the multiple-year model. The shaded diagonals represent the number of correctly 
predicted crops. GL = Grassland, MZ = Maize, SC = Summer crops, WC = Winter crops, UA = User 
accuracy, PA = Producer accuracy, EC = Error of commission, EO = Error of omission and OA = 
Overall accuracy. Table A3. Confusion matrix of the classified map of 2009 using the multiple-year 
model. The shaded diagonals represent the number of correctly predicted crops. GL = Grassland, MZ 
= Maize, SC = Summer crops, WC = Winter crops, UA = User accuracy, PA = Producer accuracy, EC 
= Error of commission, EO = Error of omission and OA = Overall accuracy. Table A4. Confusion 
matrix of the classified map of 2010 using the multiple-year model. The shaded diagonals represent 
the number of correctly predicted crops. GL = Grassland, MZ = Maize, SC = Summer crops, WC = 
Winter crops, UA = User accuracy, PA = Producer accuracy, EC = Error of commission, EO = Error of 
omission and OA = Overall accuracy. Table A5. Confusion matrix of the classified map of 2011 using 
the multiple-year model. The shaded diagonals represent the number of correctly predicted crops. 
GL = Grassland, MZ = Maize, SC = Summer crops, WC = Winter crops, UA = User accuracy, PA = 
Producer accuracy, EC = Error of commission, EO = Error of omission and OA = Overall accuracy. 
Table A6. Confusion matrix of the classified map of 2015 using the multiple-year model. The shaded 
diagonals represent the number of correctly predicted crops. GL = Grassland, MZ = Maize, SC = 
Summer crops, WC = Winter crops, UA = User accuracy, PA = Producer accuracy, EC = Error of 
commission, EO = Error of omission and OA = Overall accuracy. 
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