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Abstract: Vegetation indices and canopy temperature are the most usual remote sensing approaches 
to assess cereal performance. Understanding the relationships of these parameters and yield may 
help design more efficient strategies to monitor crop performance. We present an evaluation of 
vegetation indices (derived from RGB images and multispectral data) and water status traits 
(through the canopy temperature, stomatal conductance and carbon isotopic composition) 
measured during the reproductive stage for genotype phenotyping in a study of four wheat 
genotypes growing under different water and nitrogen regimes in north Algeria. Differences among 
the cultivars were reported through the vegetation indices, but not with the water status traits. Both 
approximations correlated significantly with grain yield (GY), reporting stronger correlations under 
support irrigation and N-fertilization than the rainfed or the no N-fertilization conditions. For N-
fertilized trials (irrigated or rainfed) water status parameters were the main factors predicting 
relative GY performance, while in the absence of N-fertilization, the green canopy area (assessed 
through GGA) was the main factor negatively correlated with GY. Regression models for GY 
estimation were generated using data from three consecutive growing seasons. The results 
highlighted the usefulness of vegetation indices derived from RGB images predicting GY.  

Keywords: wheat, canopy temperature depression, NDVI, RGB images, grain yield, δ13C  
 

1. Introduction 

Bread wheat is one of the most cultivated herbaceous crops in the Mediterranean region [1], with 
water stress and low nitrogen fertility being the main constraints limiting productivity [2]. These 
limitations are likely to increase in the future because climatic change is expected to decrease 
precipitation and increase evapotranspiration in the Mediterranean region [3]. Increasing 
productivity in these semi-arid environments depends on the efficiency of crop management [2] and 
breeding [4], where efficient and affordable methodologies to monitor crop performance, or to assess 
phenotypic variability for breeding, are needed. Remote sensing techniques at the canopy level have 
become valuable tools for precision agriculture and high throughput phenotyping [5–7]. Thus, both 
spectral and thermal approaches have been proposed as potential solutions to identify crop N status 
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and water stress across large areas [8,9]. In this way, these techniques can help farmers to practice 
more sustainable agriculture, minimizing risks of losing the harvest by providing (whenever 
possible) the resources (e.g., water and fertilizer) needed to secure yield. However, the adoption of 
new technologies often requires much up-front investment and is therefore restricted to large-scale 
production and/or farmers with substantial economic resources. This limitation is particularly 
evident for smallholder farmers from developing countries. Nevertheless, satellite-derived indices 
can be used in local management to support farmers’ decision making, including the rate of irrigation 
and fertilizer application, and eventually yield prediction in wheat [10,11] and other crops [12,13]. 
While satellite images are often freely available, as in the case of Sentinel-2 [14], the resolution (not 
higher than 100 square meters per pixel), together with the periodicity of image acquisition and 
weather constraints (e.g., clouds) and the need for computing support and trained staff makes this 
form of remote sensing is unattainable for smallholder farmers. Different approaches to small-scale-
tailored crop management have been proposed. For example, site-specific nitrogen management 
using leaf color charts has been proposed in irrigated wheat [15,16]. However, the interaction of the 
water regime with nitrogen status may affect leaf color, making this method impractical for rainfed 
or deficit-irrigation crops. A more flexible alternative uses optical sensors such as portable 
spectroradiometers (like, for example, the GreenSeeker) [17,18]. However, the cost of the equipment 
may limit the uptake of this approach. In this sense, the use of low-cost remote sensing methods to 
schedule irrigation and fertilization and predict yield, such as digital conventional imagery and/or 
infrared thermometry [19], may contribute to more sustainable agriculture in arid and semi-arid 
regions of the Mediterranean where irrigation and fertilization are not optimized in terms of timing 
and amount. While remote sensing has been regarded as a potentially useful approach in predicting 
grain yield, an inherent limitation of remote sensing methods is that the relationships between yield 
and vegetation indices may be site and season specific, changing between sites and years. Thus, for 
example, in the case of sensor calibration for N management, site-year characteristics have a critical 
impact [20]. While new methods for sensor-based site-specific N management are probably needed, 
it is likely that the best approaches will arise from the use of multiple sensors [20,21], therefore 
increasing the cost of deployment. Even when low cost remote sensing approaches using single 
sensors have shown great potential in experimental trials with wheat [22], their practical application 
needs to be proven.  

The normalized difference vegetation index (NDVI) is one of the most well-known multispectral 
vegetation indices. The NDVI has been used extensively to estimate plant biomass [23–25], nitrogen 
status [26] and yield in wheat and other cereals [27–29]. The leaf chlorophyll content measured with 
a portable chlorophyll meter, which uses the same principle as the NDVI, but on the basis of the light 
transmitted through the leaf, has also been used extensively [30]. As an alternative, information 
derived from conventional digital Red-Green-Blue (RGB) images to formulate canopy vegetation 
indices is a low-cost and an easy proximal sensing approach to assess grain yield in cereals [31–33], 
even when limitations related to shadows and changes in ambient light conditions need to be taken 
into consideration [34]. Information derived from RGB images allows estimation of a wide range of 
crop traits in durum and bread wheat, such as early vigor, leaf area index, leaf senescence, aerial 
biomass and grain yield [31,33]. The green area and the greener area are two indices derived from 
conventional digital images [31]. The first parameter describes the amount of green biomass in the 
picture, while the second one excludes the more yellowish-green pixels. In fact, greener area is aimed 
at capturing active photosynthetic area and plant senescence [31]. Such indices are formulated using 
open access software [19,35].  

It has been long recognized that plant temperature may represent a valuable index to detect 
differences in plant water regimes [36–38]. Reynolds et al. (2007) [39] have reported that wheat 
canopy temperature is a relative measure of plant transpiration associated with water uptake from 
the soil. Under water limited conditions, transpiration and its associated evaporative cooling are 
reduced, resulting in higher leaf temperatures. Given that a major role of transpiration is leaf cooling, 
canopy temperature and its depression relative to ambient air temperature is an indicator of the 
degree to which transpiration cools leaves under a demanding environmental load [40]. In that sense, 
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infrared thermometry has been proposed as a low-cost approach in crop management to enable 
scheduling of support irrigation [41], to assess spatial soil heterogeneity [42], or to evaluate genotypic 
performance to drought [43]. However, potential interaction effects between N fertilization and water 
regime should be considered. In particular, how does N fertilization affect the water by temperature 
relationships and even how does water affect the interaction of N fertilization with vegetation indices. 
This is not trivial because haying-off, which is the negative effect of nitrogen fertilization on 
productivity caused by an imbalance between transpired biomass and the available water, is 
regarded as a potential problem for wheat cultivation in Mediterranean regions [44]. As a 
consequence, unexpected relationships between remote sensing readings and grain yield may occur.  

Similarly, other physiological characteristics related to plant water status, such as stable carbon 
isotope composition (δ13C; frequently measured as discrimination from the surrounding air, Δ13C) are 
also often used for evaluating genotypic performance under water stress [40,44] or even to monitor 
spatial variability and water status [45]. The natural 13C abundance in plant matter provides time-
integrated information of the effects of water stress on the photosynthetic carbon assimilation of C3 
species, including wheat [46–48]. Conditions inducing stomatal closure (e.g., water deficit or salinity) 
restrict the CO2 supply to carboxylation sites, which then decreases the Δ13C (or increases the δ13C) of 
plant matter [47,49]. Under Mediterranean conditions the δ13C of mature kernels is better correlated 
with grain yield than the δ13C of other plant parts [50]. The costs of these analyses have decreased 
throughout the years, making their analysis increasingly feasible. 

The objective of this study was to assess the grain yield performance of wheat under a range of 
water and fertilization conditions in the Mediterranean, using different low-cost remote sensing 
approaches to assess canopy green biomass (NDVI and vegetation indices derived from conventional 
RGB images), and characteristics associated with plant water status, (canopy temperature 
depression), together with additional traits informing on the water status (δ13C of mature grains and 
the stomatal conductance of the flag leaf). The novelty of the study centers on (i) testing how different 
low-cost, user-friendly remote sensing techniques may contribute to site-specific wheat management 
and eventually to the prediction of yield across seasons; and (ii) how interactions between growing 
conditions (water regime and N fertilization) may affect the predictive strength of these techniques. 
Moreover, to better explore the potential usefulness of our study for wheat phenotyping we 
developed a conceptual model of how the combination of these different traits explains genotypic 
variability in grain yield under different combinations of water regimes and nitrogen fertilization.  

2. Materials and Methods  

2.1. Plant Material and Growing Conditions 

Field trials were conducted during the 2014–2015 crop season at Bir Ould Khelifa in the area of 
Khemis Miliana commune, approximately 230 km to the south west of Algiers (Algeria) and with 
geographical coordinates 36°11’50.23’’ N and 2°13’17.69’’ E. This commune receives an average 
rainfall of between 400 and 450 mm, and it is characterized by clay-silty fertile soils, with high organic 
matter content and high levels of total and mineral nitrogen (Table S1). Monthly total accumulated 
rainfall and temperatures for the study region for the 2014–2015 crop season are presented in Table 
S2. Four bread wheat (Triticum aestivum L.) genotypes were planted on 14 December 2014. The wheat 
genotypes were “Ain-Abid” and “Arz” (modern varieties) and “Wifak” and “Maaouna” (local 
varieties). The experimental design was a split-split-plot, with the main-plot factor being water 
regime, the subplot factor was the N amount and the sub-subplot factor was genotype (Figure S1). A 
total of 108 plots (four genotypes, three replicates per genotype, three water regimes, and three 
nitrogen fertilization treatments) each with a size of 10 m × 1.2 m and six rows, 20 cm apart, were 
studied. The three water regimes consisted of one rainfed and two support irrigation treatments of 
30 mm (SI-1, a single amount of supplemental irrigation) and 60 mm (SI-2, a double amount of 
supplemental irrigation) aimed at providing water in the typical range for the agronomic practices in 
this area. Supplementary irrigation was applied with sprinklers around the beginning of stem 
elongation. For SI-1, one irrigation (30 mm) was applied at the beginning of stem elongation (31 
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Zadoks stage), whereas for SI-2, a second irrigation was also delivered at heading (58 Zadoks stage). 
Nitrogen fertilization was applied using urea fertilizer, and treatments consisted of no fertilizer (N0) 
and 60 kg ha−1 and 120 kg ha−1 of nitrogen fertilizer (N60, N120 respectively). Application of N 
fertilization was achieved at two growing stages, tillering and jointing (26 and 31 Zadoks stages). 
Plots were harvested with a sickle after physiological maturity and grain yield was estimated. 
Thousand kernel weight and the number of kernels per square meter (Kernel m−2) were evaluated. 

2.2. Vegetation Indices  

Remote sensing measurements were performed on a sunny day around anthesis (26th March 
2015) between 10 h and 15 h solar time. The NDVI was determined with a portable spectroradiometer 
(GreenSeeker handheld crop sensor, Trimble, Sunnyvale, CA, USA). The NDVI is formulated using 
the following equation: (NIR − R)/(NIR + R), where R is the reflectance in the red band and NIR is the 
reflectance in the near-infrared band. The distance between the sensor and the plots was kept constant 
at around 50–60 cm above and perpendicular to the canopy. Additionally, one conventional digital 
picture was taken per plot, holding the camera about 80 cm above the plant canopy in a zenithal 
plane and focusing near the center of each plot. The images were acquired with an Olympus E-M10 
camera (Olympus Corporation, Tokyo, Japan), using a 14 mm lens, triggered at a speed of 1/125 
seconds with the aperture programmed in automatic mode. The size of the images was 4608 × 3456 
pixels stored in JPG format using RGB color standard [51]. Pictures were analyzed with the free-
access BreedPix 0.2 software, now integrated within the CerealScanner plugin 
(https://integrativecropecophysiology.com/software-development/cerealscanner/), from the 
Mediterranean Crop Ecophysiology Group, University of Barcelona [22], which was developed for 
digital image processing. This software quickly provides digital values from different color 
properties. The vegetation indices measured were the green area (GA) and the greener area (GGA). 
GA is the portion (as a %) of pixels with 60 < Hue < 120 from the total amount of pixels, whereas 
greener area is formulated as the % of pixels with 80 < Hue < 120 [31,52]. GGA is designed to capture 
the active photosynthetic area excluding senescent leaves. In addition, the leaf chlorophyll content of 
five flag leaf blades per plot was measured using a Minolta SPAD-502 portable meter (Spectrum 
Technologies Inc., Plainfield, IL, USA). 

2.3. Canopy Temperature Measurements 

Canopy temperature (CT) was measured at noon (12 h–14 h), on the same day around anthesis 
as the vegetation indices, using an infrared thermometer (PhotoTempTM MXSTMTD, Raytek®, Santa 
Cruz, CA, USA). Measurements were taken above the plants, pointing towards the canopy at a 
distance of about one meter and having the sun towards the rear. The air temperature was measured 
simultaneously for each plot with a temperature humidity meter (Testo 177-H1 Logger, Testo, 
Lenzkirch, Germany) and employed for the calculation of the canopy temperature depression (CTD) 
as the difference between the ambient and the canopy temperature.  

2.4. Stomatal Conductance  

Stomatal conductance was measured on the flag leaves on the same days as the remote sensing 
traits. Two measurements per plot were taken around noon (12 h–14 h), using a Decagon SC-1 Leaf 
Porometer (Decagon Devices Inc., Pullman, WA, USA).  

2.5. Stable Carbon Isotope Composition  

Carbon isotope composition was analyzed in mature grains using an Elemental Analyzer (Flash 
1112 EA; ThermoFinnigan, Bremen, Germany) coupled with an Isotope Ratio Mass Spectrometer 
(Delta C IRMS, ThermoFinnigan, Bremen, Germany) operating in continuous flow mode to 
determine the stable carbon (13C/12C) isotope ratios. Samples of about 0.7 mg of dry matter and 
reference materials were weighed into tin capsules, sealed, and then loaded into an automatic 
sampler (ThermoFinnigan, Bremen, Germany) prior to EAIRMS analysis. Measurements were 
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carried out at the Scientific Facilities of the University of Barcelona. The 13C/12C ratios were expressed 
in δ notation determined by: δ13C = (13C/12C)sample/(13C/12C)standard − 1 [53], where sample refers to plant 
material and standard to Pee Dee Belemnite (PDB) calcium carbonate. International isotope 
secondary standards of known 13C/12C ratios (IAEA CH7 polyethylene foil, IAEA CH6 sucrose, and 
USGS 40 L-glutamic acid) were used for calibration to a precision of 0.1‰. 

2.6. Statistical Analysis  

Data were subjected to factorial ANOVA to test the effects of the growing conditions (water 
regime and nitrogen fertilization), genotype, and their interaction. Mean comparisons were 
performed using Tukey’s honestly significant difference (HSD) test. Pearson correlation coefficients 
between grain yield and all different traits were calculated. Multiple linear regression analysis 
(stepwise) was used to analyze grain yield under different growing conditions. Data were analyzed 
using IBM SPSS Statistics 24 (SPSS Inc., Chicago, IL, USA). Figures were created using Sigma-Plot 
11.0 for Windows (Systat Software Inc., Point Richmond, CA, USA).  

The performance of the different remote sensing traits in predicting yield performance across 
the seasons was evaluated using data from the present study, together with data already published 
by our team from the two previous seasons (2012–2013 and 2013–2014) related to grain yield and 
different remote sensing traits measured in a set of genotypes grown under different water regimes 
[54]. The equations of the linear relationships between these traits and grain yield (GY) determined 
in the first crop season (2012–2013) were further tested during the two following crop seasons 2013–
2014 and 2014–2015 (the latter of these conducted during the present study). Predicted and measured 
grain yields were expressed as relative values; grain yields were normalized with regard to the 
highest yield combination (genotype and growing condition), then the means of the three replicates 
per genotype were calculated. Finally, we performed path analyses to quantify the relative 
contributions of direct and indirect effects of water status (δ13C, gs and CTD) and vegetation indices 
(GA, GGA) on grain yield. This methodology offers the possibility of building associations between 
variables on the basis of prior knowledge. Mechanisms that play potential roles in grain yield 
variation and involving traits that exhibited genotypic differences have been proposed, as detailed 
in the conceptual model displayed in Figure S2. This model was aimed at understanding grain yield 
responses to genotypic differences under different levels of nitrogen fertilization (N0, N60, N120) and 
under different water regimes (supplementary irrigation and rainfed). A model with a comparative 
fit index (CFI) [42] with values > 0.9 was taken as indicative of a good fit. Data were analyzed using 
IBM, SPSS, Amos 21 (SPSS Inc., Chicago, IL, USA).  

3. Results 

3.1. Irrigation and Fertilization Effects on Grain Yield  

Both irrigation and nitrogen fertilization significantly affected the grain yield (GY) and the 
agronomic yield components (Table 1). The doubled amount of supplemental irrigation (SI-2 with all 
nitrogen fertilization combined) and the highest nitrogen fertilization N120 (120 kg N ha−1 of fertilizer 
with all irrigations combined) were the growing conditions that exhibited the highest grain yield. 
Significant interactions only existed for grain yield between genotype and water regime (p = 0.049). 

Table 1. Mean values of genotypes, water regimes, nitrogen fertilization levels for grain yield (GY), 
thousand kernel weight (TKW) and kernels m−2 and the corresponding ANOVA. 

 
GY  

(T ha−1) 
TKW 

(g) 
Kernels

m−2 

Genotypes    
Ain Abid 2.20a 21.73a 275.9a 

Arz 2.35ab 23.70b 298.3ab 

Maaouna 2.35ab 24.35b 307.9b 
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Wifak 2.50b 24.83b 308.6 b 
Water regime    

RF 2.07a 22.42a 270.6a 
SI-1 2.29b 22.72a 308.8b 
SI-2 2.68c 25.83b 313.7b 

Nitrogen fertilization     
N0 2.05a 22.60a 291.3a 

N60 2.40b 23.43a 307.6a 

N120 2.60c 24.93b 294.1a 

Level of significance    
Genotype (G) 0.026 0.000 0.029 

Water regime (WR) 0.000 0.000 0.000 
Nitrogen fertilization (N) 0.000 0.001 0.256 

G × WR 0.049 0.126 0.388 
G × N 0.065 0.141 0.688 

N × WR 0.070 0.110 0.840 
G × WR × N 0.801 0.050 0.863 

Means followed by different letters are significantly different (p < 0.05) according to Tukey’s honestly 
significant difference (HSD) test. For more details, including the acronyms for the treatments, see 
Materials and Methods. 

3.2. Vegetation Indices  

The water regime significantly affected the NDVI (p < 0.001), as well as the green area (GA) (p < 
0.001) and the greener area (GGA) (p < 0.001) indices (Table 2). The values of these three vegetation 
indices were highest under SI-2 compared to the single amount of supplemental irrigation (SI-1) and 
rainfed conditions. However, no difference was observed in vegetation indices across fertilization 
treatments except for GGA (p = 0.005). Moreover, leaf chlorophyll content (LC) slightly increased 
(Table 2) under SI-1 and rainfed conditions compared to SI-2 and under N60 and N120 compared to 
N0. Interactions were not significant, whatever the combination (genotypes, water regimes and 
fertilization levels) or variables considered. 

Table 2. Mean values of genotypes, water regimes, and nitrogen fertilization levels for the vegetation 
indices NDVI (Normalized Difference Vegetation Index), GA (Green Area), GGA (Greener Area) and 
LC (Leaf chlorophyll content) and the corresponding ANOVA. Parameters were measured around 
anthesis. Means followed by different letters are significantly different (p < 0.05) according to Tukey’s 
honestly significant difference (HSD) test. 

 NDVI GA GGA LC 
Genotypes     
Ain Abid 0.70c 0.88c 0.74d 46.88a 

Arz 0.64b 0.82b 0.58b 52.32c 

Maaouna 0.57a 0.74a 0.50a 50.04b 

Wifak 0.58a 0.81b 0.64c 50.57bc 

Water regime     
RF  0.56a 0.73a 0.52a 50.52b 
SI-1  0.62b 0.78b 0.60b 50.35ab 
SI-2 0.70c 0.93c 0.73c 49.00a 

Nitrogen fertilization      
N0 0.62a 0.80a 0.58a 49.08a 

N60 0.63a 0.82a 0.64b 50.75b 

N120 0.63a 0.82a 0.63b 50.03ab 

Level of significance     
Genotype (G) 0.000 0.000 0.000 0.000 
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Water regime (WR) 0.000 0.000 0.000 0.037 
Nitrogen fertilization (N) 0.699 0.304 0.005 0.038 

G × WR 0.071 0.073 0.381 0.144 
G × N 0.729 0.423 0.562 0.438 

N × WR 0.765 0.721 0.598 0.495 
G × WR × N 0.975 0.518 0.492 0.257 

3.3. Canopy Temperature Depression, Stable Carbon Isotope Composition and Stomatal Conductance 

Water regime affected significantly the canopy temperature depression (CTD) (p < 0.001), the 
stomatal conductance (gs) (p < 0.001) and the stable carbon isotope composition (δ13C) (p < 0.001) of 
mature grains. Rainfed conditions decreased gs and CTD, whereas δ13C increased compared to 
support irrigation conditions (Table 3). Nevertheless, fertilization treatments did not affect any of 
these three parameters (Table 3). No significant interactions were observed except for the δ13C 
between the water regime and nitrogen fertilization (p = 0.022). 

Table 3. Mean values of genotypes, water regimes, and nitrogen fertilization levels for canopy 
temperature depression (CTD), stomatal conductance (gs) of the flag leaves and the stable carbon 
isotope composition (δ13C) of the mature grains. Means followed by different letters are significantly 
different (p < 0.05) according to Tukey’s honestly significant difference (HSD) test. 

 
CTD 
(°C) 

gs 
(µmol CO2 m−2 s−1) 

δ13C 
(‰) 

Genotypes    
Ain Abid 1.92a 143.71a −24.07b 

Arz 1.48a 119.07a −24.09b 

Maaouna 1.20a 119.51a −24.43a 

Wifak 1.07a 149.90a −24.64a 

Water regime    
RF -0.49a 71.18a −23.50c 
SI-1 1.68b 95.31a −24.19b 
SI-2 3.07c 232.65b −25.23a 

Nitrogen fertilization    
N0 1.67a 132.37a −24.28a 

N60 1.40a 146.86a −24.34a 

N120 1.19a 119.93a −24.31a 

Level of significance    
Genotype (G) 0.066 0.102 0.000 

Water regime (WR) 0.000 0.000 0.000 
Nitrogen fertilization (N)  0.269 0.142 0.841 

G × WR 0.743 0.689 0.371 
G × N 0.307 0.963 0.502 

N × WR 0.336 0.950 0.022 
G × WR × N 0.658 0.106 0.932 

3.4. Genotypic Effect on Grain Yield, Vegetation Indices and Water Status Traits  

The genotypic effect was significant (p < 0.05) for grain yield (GY) and (p < 0.001) for vegetation 
indices (Tables 1 and 2) under the growing conditions analyzed together, whereas only the δ13C (in 
the case of water status traits) was significantly (p < 0.001) different between genotypes (Table 3). The 
genotypic difference was also examined within each of the nine growing conditions, resulting from 
the combination of the three water regimes and the three nitrogen fertilization levels (Table 4). GY 
only showed a genotypic effect under SI-2 combined with nitrogen fertilization (either N120 or N60). 
However, under the SI-1 and rainfed conditions, GY did not show genotypic differences, regardless 
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of the N fertilization regime. The vegetation indices, LC content, δ13C and gs also showed genotypic 
effects in some specific growing conditions while CTD did not (Table 4).  

Table 4. Genotype effect on the Normalized Difference Vegetation Index (NDVI) and the Green Area 
and the Greener Area (GA and GGA) vegetation indices, the leaf chlorophyll content (LC), the 
stomatal conductance (gs) of the flag leaf, the canopy temperature depression (CTD), the stable carbon 
isotope composition (δ13C) of the mature grains and the grain yield (GY).  

Growing 
Conditions 

NDVI GA GGA LC gs CTD δ13C GY 

SI-2 with N120 0.002** 0.089ns 0.010** 0.037* 0.061ns 0.493ns 0.308ns 0.048* 
SI-2 with N60 0.000*** 0.009** 0.002** 0.043* 0.970ns 0.564ns 0.216ns 0.024* 
SI-2 without N 0.003** 0.000*** 0.001*** 0.008** 0.796ns 0.111ns 0.112ns 0.144ns 

SI-1 with N120 0.127ns 0.650ns 0.299ns 0.118ns 0.624ns 0.703ns 0.292ns 0.279ns 

SI-1 with N60 0.050* 0.109ns 0.006** 0.071ns 0.000*** 0.076ns 0.205ns 0.708ns 

SI-1 without N 0.129ns 0.519ns 0.455ns 0.883ns 0.973ns 0.610ns 0.027* 0.070ns 

Rainfed with N120 0.064ns 0.150ns 0.056ns 0.035* 0.212ns 0.738ns 0.594ns 0.732ns 

Rainfed with N60 0.034* 0.005** 0.034* 0.002** 0.416ns 0.682ns 0.019* 0.751ns 

Rainfed without N 0.000*** 0.002** 0.001*** 0.103ns 0.242ns 0.519ns 0.086ns 0.149ns 

Significance levels—ns, not significant; *p < 0.05; **p < 0.01 and ***p < 0.001. 

3-5 Relationships of the Grain Yield with the Vegetation Indices 

Combining both irrigation (SI-2 and SI-1) conditions, the two RGB vegetation indices (GA and 
GGA) were positively correlated with GY at N120 and only GA at N60, while the NDVI was not 
correlated with GY (Figure 1). Moreover, under rainfed conditions GA, GGA and the NDVI were 
correlated with GY at N60 (Figure 1). In the absence of nitrogen fertilization, no correlation was found 
between GY and the different vegetation indices (Table S3). 
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Figure 1. Relationships of grain yield (GY) with NDVI, GA, and GGA, δ13C of mature grains and the 
canopy temperature depression (CTD) under (left column) irrigation with N120, (central column) 
irrigation with N60, and (central column) rainfed conditions with N60. The irrigation data combines 
the two support-irrigation regimes (SI-1, SI-2). Significance levels—ns, not significant; *p < 0.05 and 
**p < 0.01. Abbreviations for variables and growing conditions are as defined in Tables 1 and 2. 

3.6. Relationships of the Grain Yield with the Canopy Temperature Depression and the δ13C 

Grain yield was negatively correlated with the δ13C of mature grains under irrigation at both 
N120 and N60, and positively correlated with the δ13C of rainfed conditions at N120 (Figure 1). 
Moreover, GY was positively correlated with CTD under either irrigation (SI-1 and SI-2 combined) 
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or rainfed conditions at N120, while under N60 no association was found (Figure 1 and Table S3). In 
the absence of N fertilizer, no correlations were found (Table S3). 

3.7. Relationships of Vegetation and Water Status Indices 

The NDVI correlated highly and positively with both the GA and GGA vegetation indices when 
all genotypes, growing conditions, and replicates analyzed were combined (Table 5). Moreover, the 
CTD was also significantly (p < 0.01) correlated with the other water status parameters; negatively 
with δ13C and positively with gs. Likewise, both vegetation and water status indices were significantly 
(p < 0.01) correlated; the NDVI, GA and GGA were positively associated with CTD and gs and 
negatively correlated with δ13C (Table 5).  

Table 5. Correlation coefficients of the relationships between different indices used to measure crop 
biomass and water status. Parameters were measured at anthesis. Treatments and genotypes were 
analyzed together. Significance levels—**p < 0.010; ***p < 0.000. Abbreviations of variables as in Tables 
1 and 3. 

Vegetation Indices Correlation Coefficients 
NDVI vs GA 0.77*** 

NDVI vs GGA 0.73*** 
Water status indices  

CTD vs δ13C −0.57** 
CTD vs gs 0.63** 

Vegetation and water status indices  
NDVI vs CTD 0.63** 

GA vs CTD 0.55** 
GGA vs CTD 0.54** 
NDVI vs gs 0.51** 

GA vs gs 0.58** 
GGA vs gs 0.55** 

NDVI vs δ13C −0.43** 
GA vs δ13C −0.49** 

GGA vs δ13C −0.44** 

3.8. Grain Yield Estimation Using Vegetation Indices and Canopy Temperature 

A general model using linear regression of the NDVI, GA and CTD with GY in the 2012–2013 
crop season was developed in this study to estimate GY in the two successive crop seasons (2013–
2014 and 2014–2015). Only the NDVI, GA and CTD were involved in this model because they were 
the three variables included in the stepwise models to explain the difference in GY in the present 
study (see section 3.9 below) and were significantly (p < 0.01) correlated with GY in the first crop 
season [54]. With all growing conditions and genotypes analyzed together, the predicted and 
measured grain yields were positively and highly significantly (p < 0.01) correlated in 2013-2014 and 
2014–2015 (Figure 2) using any of the three parameters studied alone (NDVI, GA, CTD). However, 
the range of normalized values predicted was smaller, in general, using the NDVI (at 2014–2015 crop 
season) than either of the other two indices. Predicted and measured GY for the 2013–2014 crop 
season was also positively and highly correlated using the NDVI, GA and CTD (Figure 3) under 
irrigation (SI-2 and SI-1 combined) with N fertilization (N120 and N60 combined) and without N 
fertilization (N0). For the 2014–2015 crop season, predicted and measured grain yields were also 
highly significantly (p < 0.01) correlated using either the NDVI, GA or CTD (Figure 3), but only under 
irrigation (SI-2 and SI-1 combined) with N fertilizer (N120 and N60 combined) and with no 
correlation under N0. In the absence of irrigation (rainfed conditions) and regardless of the N 
fertilization conditions, we did not find any association between the predicted and the measured 
grain yields (Figure 3). Grain yield estimation was also examined within each of the nine growing 
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conditions resulting from the combination of the three water regimes and the three nitrogen 
fertilization levels (Figure S3). Under any of the two irrigation conditions with and without N 
fertilizer and the rainfed conditions with N fertilizer, the predicted GY was positively correlated with 
the measured GY in both 2013–2014 and 2014–2015 using at least one of the NDVI, GA or CTD 
parameters (Figure S3). Under rainfed conditions and N0 the predicted and measured GYs were not 
correlated in either crop season (Figure S3). 

 

Figure 2. Relationships of the measured versus the predicted grain yields of wheat achieved during 
two successive crop seasons (2013–2014 and 2014–2015). Predicted grain yield values were calculated 
using the linear relationships of the grain yield with two vegetation indices, the Normalized 
Difference Vegetation Index (NDVI), the relative Green Area index (GA), as well as the canopy 
temperature depression (CTD). All variables were evaluated during the 2012–2013 crop season. 
Measurements were performed in the same region as the present study. For each crop season, 
different combinations of wheat genotypes under different water regimes and nitrogen fertilization 
levels are plotted together. Significance levels—ns, not significant; *p < 0.05; ***p < 0.01 and ***p < 0.001. 
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Figure 3. Correlation coefficients of the relationships of the measured versus the predicted grain 
yields achieved during two successive crop seasons (013–2014 and 2014–2015). Predicted grain yield 
values were calculated using the linear relationships of the grain yield with the NDVI, (GA) and CTD 
evaluated during the 2012–2013 crop season in the same region as the present study. Predicted and 
measured grain yield were correlated under irrigation and rainfed conditions both with and without 
N. The irrigation with N values combine both irrigation regimes and the N120 and N60 treatments, 
irrigation without N combines the two irrigation regimes without N fertilization, and the rainfed 
conditions with N combine the two levels of N fertilization. Significance levels—ns, not significant; 
**p < 0.01 and ***p < 0.001. Abbreviations of variables are as in Tables 1, 2 and 3. 

3.9. The Combined Effect of Remote Sensing Indices and Physiological Traits in Explaining Grain Yield  

Stepwise regressions were performed for the irrigation conditions combined (SI-1 and SI-2) and 
the rainfed conditions, and considered both groups under each of the three N fertilization levels using 
grain yield (GY) as the dependent variable and the vegetation indices (NDVI, GA, GGA and LC) and 
water status traits (CTD, gs, and δ13C) as independent variables (Table 6). Except for the rainfed 
conditions with N60, the first trait selected by the model to explain GY was related to the plant water 
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status, while under rainfed conditions the NDVI was the first and only trait chosen by the model 
(Table 6).  

Table 6. Multiple linear regressions (stepwise) explaining grain yield (GY) variation as a dependent 
variable and the NDVI, GA, GGA, LC, CTD, gs and δ13C as independent variables. 

Dependent 
Variable 

Growing Conditions 
Variable 
Chosen 

Correlation 
Coefficients 

Final Stepwise Model 

GY Irrigation with N120 CTD 0.63*** 0.24 CTD + 2.14 
GY Irrigation with N60 δ13C 0.55** −0.42 δ13C − 7.91 
GY Irrigation without N No variables were entered into the equation for this treatment 
GY  Rainfed with N120 CTD 0.66*** 0.09 CTD + 2.27 
GY Rainfed with N60 NDVI 0.63** 0.80 NDVI + 2.33 
GY Rainfed without N No variables were entered into the equation for this treatment 

Data were analyzed under each level of N fertilizer for the irrigation (combined SI-1 and SI-2) and the 
rainfed treatments. Significance levels—**p < 0.01 and ***p < 0.001. Abbreviations for variables and 
growing conditions as defined in Tables 1, 2and 3. 

Furthermore, the genotypic differences in grain yield within each of the nine growing conditions 
(resulting from the combination of the three water regimes and the three nitrogen fertilization levels) 
were assessed through a stepwise model having GY as the dependent variable and any of the 
vegetation indices and water status traits as independent variables. The model identified at least one 
trait positively correlated with GY in only four of the nine growing conditions (Table S4). 

Additionally, a conceptual model based on a path analysis was proposed (Figure S2) that 
separated direct acclimation responses in grain yield related to water status traits and vegetation 
indices (through GA and GGA). The three water status traits were included in the model because 
they represent different scales: Temporal (δ13C), individual organ (gs) and canopy (CTD). Concerning 
the vegetation indices, the NDVI was discarded because GA (whole photosynthetic biomass) and 
GGA (non-senescent biomass) already tracked the same parameter. The final objective of the model 
was to dissect how these physiological traits may have directly or indirectly assessed GY performance 
within different growing conditions. The four path models proposed (Figure 4A–D) provided an 
acceptable fit to the data (CFI > 0.9 in all cases). Under irrigation and with and without N fertilizer, 
gs had a strong and negative association with δ13C and strong and positive associations with CTD 
and GA (Figure 4A, B). Significant paths corresponding to a direct (negative) association of δ13C with 
GY were also observed in irrigation conditions without N fertilizer and without (Figure 4A, B), while 
CTD had a positive association with GY only under irrigation with N fertilizer. A direct positive and 
strong association of GA with GGA was observed under irrigation. GGA was in turn strongly and 
negatively associated with GY only under irrigation without N fertilizer (Figure 4B). Under rainfed 
conditions, GY was not associated with δ13C (Figure 4C, D), but was positively associated with CTD 
and GGA with N fertilizer, and negatively associated with GGA without fertilizer. (Figure 4D).  
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Figure 4. Path analyses of four wheat genotypes grown under different combinations of nitrogen 
fertilization and water regimes. The irrigation with N values combine both the SI-1 and SI-2 irrigation 
regimes and the N120 and N60 nitrogen treatments, irrigation without N combines the two irrigation 
regimes (SI-1 and SI-2) without N fertilization, and the rainfed conditions with N combine the two 
levels of N fertilization (N60 and N120). Physiological parameters included in the model are: The 
stomatal conductance (gs), the stable carbon isotope composition (δ13C) of mature grains, the Relative 
Green Area (GA) and the Relative Greener Area (GGA), and the canopy temperature depression 
(CTD). The width of the arrows is proportional to the path coefficient values. Dashed lines indicate 
negative relationships. CFIs with values > 0.9 are taken as indicative of a good fit. Significance levels—
*p < 0.05; **p < 0.01 and ***p < 0.001. 

Path analysis was also examined within each of the nine growing conditions (resulting from the 
combination of the three water regimes and the three nitrogen fertilization levels (Figure S4). Water 
irrigation conditions with and without N fertilization indicated the dependence of grain yield on the 
water status traits δ13C and CTD (and the latter also under rainfed conditions with N fertilizer). In 
the absence of N fertilization under both irrigation and rainfed conditions, GY seemed strongly and 
negatively dependent on the vegetation index GGA. 

4. Discussion 

The grain yields achieved, even under the best growing conditions (SI-2 with N120) are below 3 
tonnes per hectare, and this clearly corresponds with moderate–low yielding conditions in the 
Mediterranean [44,54]. The vegetation indices tested in this study, generated either 
spectroradiometrically (NDVI) or derived from RGB images, performed well when assessing 
differences in water conditions. The efficacy of these indices in capturing differences in growth and 
senescence in response to water regime has been reported for wheat already [32,33,54]. The choice of 
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anthesis as the phenological stage for the remote sensing measurements was decided based on the 
results of Yousfi et al. (2016) [54] under similar agro-ecological conditions as in the present study, 
together with an additional study under Mediterranean conditions where NDVI and RGB indices 
were measured periodically during the crop cycle [22], with robust correlations between those indices 
measured at anthesis and grain yield being reported. While the argument may be valid that any 
action on N management at anthesis is probably too late to significantly affect yield, particularly for 
fully irrigated wheat, it may still positively affect grain quality. More importantly, scheduling 
irrigation at anthesis may be fully relevant for cereals under Mediterranean conditions where 
drought increases progressively during the reproductive stage of the crop. Thus, following previous 
reports in wheat [54–56], a significant association between the NDVI, GA and GGA vegetation indices 
and the water status parameters (δ13C, gs and CTD) was also found in this study. The NDVI, GA and 
GGA were positively associated with CTD and gs and negatively associated with δ13C. In this context, 
Lopes and Reynolds (2012) [57] reported that the relationship observed between chlorophyll 
retention or ‘stay-green’ (assessed via the NDVI) and canopy temperature would confirm the 
functionality of stay-green in terms of gas exchange and would explain a better capacity to use water 
by the stay-green genotypes under stressful environments related to low fertilization and the lack of 
water. Our data confirm the close association between vegetation indices and water status parameters 
and identified the canopy greenness as a good indicator of crop water status and irrigation 
management.  

4.1. Vegetation Indices and Nitrogen Fertilization  

Digital images have been used to evaluate the nitrogen status of crops [58,59]. Our results 
showed that GGA was the only vegetation index exhibiting a significant difference between N 
treatments, with lower values found under N0 compared with N60 and N120. The absence of N 
fertilizer limits plant growth, whereas it may accelerate plant senescence during the reproductive 
stage of the crop, therefore decreasing GGA compared to plants fertilized with nitrogen. In this 
context, [31] described the greener area index (GGA) derived from RGB images is a good parameter 
for capturing active photosynthetic area and plant senescence because it is formulated with green 
pixels alone. Furthermore, the NDVI failed to assess differences under different N treatments. Digital 
pictures provide information that is not currently acquired through spectral reflectance 
measurements, such as the portion of yellow leaves in wheat growing under field conditions 
[31,32,52]. In the case of GA, this index, which takes into account yellow/green pixels, is less stringent 
in terms of excluding non-senescent parts of the plant. This may explain why GA measured during 
anthesis was not affected by N fertilization.  

4.2. Canopy Temperature and Water Status in Wheat 

Many studies have recognized canopy temperature depression (CTD) as an indicator of overall 
plant water status [36,60] and a potential tool for irrigation management [9,61]. In our study, CTD 
measured with an infrared thermometer was lower (and even negative) under rainfed conditions 
compared to support irrigation. A priori, a higher CTD indicates a greater capacity for transpiration, 
for taking up water from the soil, and therefore for maintaining a better plant water status [36]. In the 
case of the rainfed trials, the fact that the leaf temperature was higher than the air temperature 
indicates that rainfed plants were subjected to severe water stress that closed the stomata. In fact, the 
stomatal conductance measured in the rainfed plants was very low and one third of that measured 
under the best support-irrigation regime.  

In addition, Gutierrez et al. (2010) [62] reported that the association between canopy temperature 
and the normalized difference water index confirmed that canopy temperature is a good indicator of 
hydration status. According to this, our results showed highly significant associations of CTD with 
δ13C (negative) and gs (positive). Furthermore, CTD seems to be a better indicator of the water status 
at the crop level than other traits related to water status, such as leaf gs [63]. In our study, CTD was 
strongly associated with δ13C (r = 0.84***) under SI-1 at N60, with the NDVI (r = 0.67**) under rainfed 
conditions without N, and with grain yield (r = 0.66**) under rainfed conditions at N120, while gs was 
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not correlated with any of these parameters. These results confirm the close association between 
canopy temperature and other water status parameters and identify the canopy temperature as a 
good indicator of crop water status.  

4.3. Relationship of Vegetation Indices and Water Status Traits with GY 

As found in previous studies in wheat, the RGB canopy indices measured at flowering were 
strongly correlated with GY [31,32,64]. For wheat under Mediterranean conditions, the reproductive 
stage is usually the best period for crop monitoring, since the crop is exposed to increasing stress 
(drought) conditions during the last part of the crop cycle. Following on from this, the present study 
revealed a positive relationship between GA and GGA with grain yield under irrigation. 
Additionally, stepwise analysis reinforced the evidence for the usefulness of the RGB vegetation 
indices to assess GY. The GA vegetation index was chosen by the model as the first independent 
variable, explaining 66% of GY variability under SI-2 without N fertilizer. Moreover, various studies 
have reported that RGB-based indices may perform far better than the NDVI for GY prediction in 
wheat [32,56,65]. In our study, the NDVI failed to assess GY under irrigation. In contrast, the NDVI 
was correlated (positively) with GY under rainfed conditions and was also the only variable chosen 
by the stepwise model, explaining 63% of GY variation under rainfed conditions. In this context, 
Casadesus et al. 2007 [18] reported that the NDVI measured at anthesis in durum wheat correlated 
positively with GY under severe water stress conditions, but failed to correlate under well-watered 
conditions. Verhulst and Govaerts (2010) [66] have also reported that the NDVI has been correlated 
with long-term water stress. The reason for the low correlation of NDVI against GY under well-
watered conditions is because plant canopies during anthesis are very dense and the measured NDVI 
values become saturated. NDVI is an index based on the strong contrast between the near infrared 
and the red band reflectance of a vegetation canopy, and this difference becomes wider as the canopy 
cover increases. Thus, NDVI works better with stress conditions where canopies are sparse and/or 
early senescence is present [27,31]. In any case, anthesis proved to be the correct phenological stage 
for remote sensing evaluations when crops under different levels of stress were compared, which 
may be the case for crops exposed to a range of different combinations of water and nitrogen 
fertilization conditions.  

Furthermore, the water status of plants can also be associated with grain yield. In our study, 
CTD (positively) and δ13C (negatively) correlated with GY and both parameters were chosen by the 
stepwise model as the first variables to explain GY variation under different irrigated and rainfed 
growing conditions. In this context, previous studies have shown that a higher CTD is associated 
with increased wheat yield under irrigated, hot environments [38,67], but also under dryland 
environments [68].  

However, in our study, and regardless of the water regime (rainfed or irrigation), neither the 
vegetation indices (NDVI, GA and GGA) nor the water status indices (CTD and δ13C) were associated 
with GY in the absence of N fertilizer. A lack of variability in green biomass and grain yield associated 
with the lack of nitrogen fertilization might explain this outcome.  

4.4. Phenotyping Parameters under Different Water and N Supplies 

The results of our study have shown the usefulness of vegetation indices with low 
implementation costs as a means to identify genetic variability under different growing conditions in 
the field. From nine of the growing conditions studied (resulting from the combination of the three 
water regimes and the three nitrogen fertilization levels), GY was significantly different between 
genotypes under only two of the growing conditions (SI-2 at N120 and N60). In contrast, two of the 
vegetation indices (NDVI, GGA) measured at anthesis were able to distinguish between the 
genotypes growing under six of the nine growing conditions (including rainfed), regardless of the N 
fertilization conditions. In this context, multispectral ground-based portable spectroradiometric 
devices have been used in wheat phenotyping [24,27]. The conventional RGB images have also been 
proposed as a selection tool for cereal breeding [18–20].  
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The genotypic differences observed using vegetation indices possibly reflect differences in 
canopy stay green during the reproductive stage. Lopes and Reynolds (2012) [57] reported that stay-
green is regarded as a key indicator of stress adaptation. Thus, our study revealed the usefulness of 
the vegetation indices to select the most tolerant genotypes in terms of retaining a greener biomass 
during the last part of the crop cycle. The three vegetation indices assayed were able to identify 
genotypic differences, even under the most severe growing conditions, such as rainfed with and 
without N fertilizer and where GY failed to detect differences among genotypes. Phenotyping wheat 
genotypes for water and N fertilization deficit at anthesis using these vegetation indices should 
permit the formulation of the best crosses between genotypes. However, by comparison, canopy 
temperature performed much worse as a phenotyping parameter in our study. It has been reported 
that CTD is a poor indicator of plant performance when the yield is highly dependent on limited 
amounts of soil-stored water [69,70]. Moreover, the canopy in these trials, particularly during the 
reproductive stages, frequently leaves areas of bare soil exposed that may affect the canopy 
temperature readings. Leaf chlorophyll content measured by a portable device was perfect for 
distinguishing among genotypes, regardless of the water status (irrigation or rainfed), but only when 
trials were provided with nitrogen fertilizer. Therefore, for the agronomic conditions of our study, 
the vegetation indices assessed at the canopy level performed better as phenotyping tools than 
canopy temperature and chlorophyll content measures. 

4.5. Grain Yield Prediction across Crop Seasons Using Low-Cost Remote Sensing Techniques 

The results of data combining the growing conditions, genotypes and replicates support the use 
of different affordable remote sensing techniques to estimate grain yield across crop seasons. 
However, in agreement with Clevers (1997) [71], estimates of crop growth and yield using crop 
growth models often lost accuracy as the growing conditions became more stressed. The loss of 
accuracy may be the consequence of a very narrow range of variability in grain yield associated with 
stressed growing conditions. Moreover, vegetation indices derived from RGB images performed 
comparatively better than the NDVI, probably because GA was less saturated than the NDVI. The 
application timing could have played a critical role here—i.e., saturated NDVI at anthesis is indeed 
not expected to perform well, while the saturation pattern of RGB indices is less evident. In fact, the 
acquisition of high-resolution RGB images is fast and its dependence on atmospheric conditions (e.g., 
sunny versus cloudy days) is minimal [22,32]. Therefore, the availability, cost and practicality of 
digital cameras make them an ideal tool for the management of crop water and fertilization status 
[19,22]. However, in agreement with previous reports, the relationships between yield and vegetation 
were site and season specific [20,21]. In our study models were not able to predict absolute yields, 
but rather relative differences in yield, which makes the approach unfeasible for yield forecasting, 
but it is still useful in terms of crop management and even phenotyping. The strong relationships of 
these vegetation and water status indices with grain yield expressed in relative units support the 
effectiveness of these low-cost indices in crop management. Nevertheless, whereas the evaluations in 
the three successive seasons were performed in the same region, crop management conditions (water 
and fertilization regimes) affected the performance of the models. Hence, to make yield predictions 
more holistic and effective across different environments, it is necessary to use more robust 
calibration; for example, incorporating site-year covariates or a multi sensor approach [21].  

4.6. An Integrated Model to Predict Grain Yield That Combines Remote-Sensing Traits, Canopy Reflectance 
Measurements and Grain δ13C  

In this study, we performed a path analysis to dissect how the vegetation indices (GA and GGA) 
and the water status (CTD, δ13C and gs) indices directly or indirectly assessed GY performance within 
each of the growing conditions assayed. The following parameters may provide suitable coverage of 
the factors affecting GY performance under a given water regime and nitrogen fertilization supply: 
Vegetation indices as indicators of photosynthetic capacity (GA) and the effect of early senescence 
(GGA) on the canopy; CTD which informs about the current water status of the canopy; the δ13C in 
mature grains as a time-integrated indicator of photosynthetic and transpirative gas exchange of the 
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crop; and the water status at the single organ level (assessed as the gs of the flag leaf). Under irrigation 
and nitrogen fertilization, both δ13C and CTD (indicators of photosynthetic and water status) had a 
direct association with GY. Better grain yield performance is associated with higher CTD and lower 
δ13C under supplementary irrigation. The association of δ13C (negative) and CTD (positive) with GY 
is probably due the higher stomatal conductance and transpiration, (which increases CTD), therefore 
increasing the photosynthetic capacity even at the expense of a lower water use efficiency (and thus 
δ13C) and the consequent increases in GY [47,72]. Under rainfed conditions with N fertilizer, the 
transpiration/water status (assessed through CTD) and photosynthetic potential (evaluated through 
vegetation indices) affected GY. Under rainfed conditions with N120, CTD had a positive effect on 
GY. We suggest that N fertilization only had a positive effect on grain yield providing that there was 
water available to maintain transpiration (higher CTD), stomatal conductance and thus 
photosynthesis in the available canopy (higher vegetation indices).  

In the absence of nitrogen fertilization, and despite the water conditions (irrigated or rainfed), 
the total canopy area (evaluated through GA) has a positive effect on GY. However, an excess of 
young (not senescing) leaf area (evaluated through GAA) had a strong negative association with GY. 
Stay-green character may have a negative effect on GY in the absence of nitrogen fertilization because 
it limits the retranslocation of N to the inflorescences and ultimately affects grain filling. In the case 
of the rainfed crop fertilized with a limited amount of nitrogen (N60), the active canopy area 
(evaluated through GGA) had a positive effect on grain yield, which may indicate that the limitation 
is imposed by the amount of photosynthetic area rather than by the availability of N to reproductive 
tissues. Under conditions of high nitrogen fertilization (N120) and irrespective of the water regime 
(irrigated or rainfed), GY is not affected by the size of the canopy or even by its greenness (assessed 
through GA or GGA), but by the water status of the crop (evaluated through CTD and δ13C).  

5. Conclusions 

This study demonstrated the potential of low-cost RGB vegetation indices and the canopy 
temperature for the management of growing conditions (essentially the water and nitrogen regimes) 
under Mediterranean conditions. Although the models did not predict absolute yields, they are still 
useful in terms of crop management and even phenotyping. Nevertheless, grain yield estimation 
performs better under irrigation than under the low-yielding conditions of rainfed cultivation in the 
absence of nitrogen fertilization and this illustrates one of the potential limitations associated with 
the remote sensing-based yield predictions; they are affected by specific environmental conditions. 
Even though a multispectral vegetation index, such as the NDVI is a widely accepted approach to 
monitor changes in growth under different conditions, in this study we have shown that vegetation 
indices derived from conventional images like the GA and GAA indices provided a similar if not 
better prediction of grain yield and at a comparatively lower cost than the NDVI. The use of 
vegetation indices derived from RGB images to assess GY could be popularized in the near future via 
apps installed on mobile phones.  

The vegetation indices have also proven their suitability for differentiating among genotypes. 
Furthermore, these traits may contribute through path analysis to develop physiological models for 
assessing wheat ideotypes best suited to different water and nitrogen regimes. The models showed 
that for nitrogen fertilized trials, and regardless of the water regime imposed, the water status 
parameters were the main factors determining GY performance. Moreover, a larger green area at 
anthesis may also contribute to a larger yield. In the absence of nitrogen fertilization, a large greener 
canopy area (assessed through GGA) at anthesis is a factor that negatively affects grain yield.  

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Scheme 
detailing the different plots of the experimental design, Figure S2: Conceptual model of the path analyses 
quantifying the relative strengths of the direct and indirect relationships of the different physiological traits and 
grain yield. Physiological parameters included in the model are: The stomatal conductance (gs), the stable carbon 
isotope composition (δ13C) of mature grains, the Relative Green Area (GA) and the Relative Greener Area (GGA) 
indices calculated from digital pictures, and the canopy temperature depression (CTD) measured with an 
infrared thermometer, Figure S3: Relationships of the measured versus the predicted grain yields of wheat 
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achieved during two successive crop seasons (2013–2014 and 2014–2015). Predicted grain yield values were 
calculated using the linear relationships of the grain yield with the two vegetation indices, the Normalized 
Difference Vegetation Index (NDVI) measured with a portable spectroradiometer, and the relative Green Area 
index (GA) calculated from digital images, and the canopy temperature depression (CTD) measured with an 
infrared thermometer. All variables were evaluated during the 2012-2013 crop season. Measurements were 
performed in the same region as the present study. Grain yield and vegetation index data of the two first crop 
seasons have been reported in Yousfi et al. (2016). For each crop season, the nine different growing conditions 
(resulting from the combination of the three water regimes and the three nitrogen fertilization levels) were 
analysed. The different combinations of nitrogen fertilization and water regimes for the 2013–2014 crop season 
were as follows: Supplementary irrigation (SI-2) with nitrogen fertilization N120 and N60 and without N 
fertilization; Supplementary irrigation (SI-1) with nitrogen fertilization N120 and N60 and without N 
fertilization; Rainfed with nitrogen fertilization N120 and N60 and without N fertilization. In addition, for the 
2014–2015 crop season the combinations were as follows: Supplementary irrigation (SI-2) with nitrogen 
fertilization N120 and N60 and without N fertilization; Supplementary irrigation (SI-1) with nitrogen 
fertilization N120 and N60 and without N fertilization; Rainfed with nitrogen fertilization N120 and N60 and 
without N fertilization. Significance levels—ns, not significant; *p < 0.05; **p < 0.01 and ***p < 0.001, Figure S4: 
Path analyses of four wheat genotypes grown under different combinations of nitrogen fertilization and water 
regimes. The different combinations of nitrogen fertilization and water regimes are as follows: (A) SI-2 with high 
fertilization (N120); (B) SI-2 with medium nitrogen fertilization (N60); (C) SI-2 without nitrogen fertilization; (D) 
SI-I with high nitrogen fertilization (N120); (E) SI-I without nitrogen fertilization (N60); (F) Rainfed with high 
fertilization (N120); (G) Rainfed with medium nitrogen fertilization (N60); (H) Rainfed without nitrogen 
fertilization. Physiological parameters included in the model are: The stomatal conductance (gs), the stable 
carbon isotope composition (δ13C) of mature grains, the Relative Green Area (GA) and the Relative Greener 
Area (GGA) indices calculated from digital pictures, and the canopy temperature depression (CTD) measured 
with an infrared thermometer. The width of the arrows is proportional to the path coefficient values. Dashed 
lines indicate negative relationships. Overall fit statistics for each path model (chi-squared, the probability and 
comparative fit index, CFI) are shown at the bottom left of each panel. CFIs with values > 0.9 were taken as 
indicative of a good fit. Significance levels—*p < 0.05; **p < 0.01 and ***p < 0.001; Tables S1: Soil chemical 
characteristics at different depths, Table S2: Monthly total accumulated rainfall (PP), minimum air temperature 
(T min), maximum air temperature (T max) and average air temperature (T aver) for the 2014–2015 crop season. 
Values were collected at the meteorological station of Khemis Miliana (Algeria), Table S3: Correlation 
coefficients of the linear relationships of grain yield (GY) with NDVI, GA, GGA, CTD and δ13C under irrigation 
without N fertilization and rainfed conditions with N120, N60 and without N, Table S4. Multiple linear 
regressions (stepwise) across genotypes and replicates explaining grain yield (GY) variation as a dependent 
variable and the NDVI, GA, GGA, LC, CTD, gs and δ13C as independent variables. Data were analyzed within 
each level of nitrogen fertilization and water regime. Significance levels—*p < 0.05; **p < 0.01 and ***p < 0.001. 
Abbreviations for variables and growing conditions as defined in Tables 1 and 2. 
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